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Abstract 11 

Biological systems show diversity in terms of the underlying network structure and the governing 12 

rules of such networks.  Yet, different types of biological networks may develop similar adaptation 13 

strategies in face of environmental changes. Degeneracy refers to the ability to compensate for 14 

compromised function without the need for a redundant component in the system. Highly degenerate 15 

systems show resilience to perturbations and damage because the system can compensate for 16 

compromised function due to reconfiguration of the underlying network dynamics.  17 

Although formal definitions of degeneracy have been proposed, these definitions have only been 18 

tested in relatively simple networks involving weighted connections between network nodes. In this 19 

study, we test an information theoretic definition of degeneracy on random Boolean networks, frequently 20 

used to model gene regulatory networks. Random Boolean networks are discrete dynamical systems with 21 

binary connectivity and thus, these networks are well-suited for tracing information flow and the causal 22 

effects. By generating networks with random binary wiring diagrams, we test the effects of systematic 23 

lesioning of connections and perturbations of the network nodes on the degeneracy measure.  24 

Our analysis shows that degeneracy, on average, is the highest in networks in which ~20% of the 25 

connections are lesioned while 50% of the nodes are perturbed. Moreover, our results for the networks 26 

with no lesions and the fully-lesioned networks are comparable to the degeneracy measures from 27 

weighted networks, thus we show that the degeneracy measure is applicable to different networks. Such a 28 

generalized applicability implies that degeneracy can be used to make predictions about the variety of 29 

systems’ ability to recover function.  30 

Author Summary 31 

 Degeneracy – the ability of structurally different elements to perform similar functions – is a 32 

property of many biological systems. Systems exhibiting a high degree of degeneracy continue to exhibit 33 

the same macroscopic behavior following a lesion even though the underlying network dynamics are 34 
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significantly different. Degeneracy thus suggests how biological systems can thrive despite changes to 35 

internal and external demands. Although degeneracy is a feature of network topologies and seems to be 36 

implicated in a wide variety of biological processes, research on degeneracy in biological networks is 37 

mostly limited to weighted networks (e.g., neural networks). To date, there has been no extensive 38 

investigation of information theoretic measures of degeneracy in other types of biological networks.  In 39 

this paper, we apply existing approaches for quantifying degeneracy to random Boolean networks used 40 

for modeling biological gene regulatory networks.  Using random Boolean networks with randomly 41 

generated rulesets to generate synthetic gene expression data sets, we systematically investigate the effect 42 

of network lesions on measures of degeneracy.  Our results are comparable to measures of degeneracy 43 

using weighted networks, and this suggests that degeneracy measures may be a useful tool for 44 

investigating gene regulatory networks.  45 

Introduction 46 

Biological systems can adjust their functioning dynamically in face of changing circumstances. 47 

However, such functional adjustments are constrained by the structural properties of the components that 48 

perform the functions [1–7] as well as the topology of the system. Biological systems as complex 49 

networks have evolved multiple strategies to achieve a ‘working’ reconfiguration of the components that 50 

ensures survival through shifts in environmental contingencies [8–15]. One strategy is redundancy which 51 

means that a system has multiple structurally identical components serving the same function [16–19]. 52 

Systems also can utilize multifunctionality (or alternatively, pluripotentiality [20,21]) that is the capacity 53 

for a single component to serve multiple functions [22–26]. Another strategy for biological systems to 54 

respond flexibly to perturbations is called degeneracy [9,10,27–29]. 55 

Degeneracy (or alternatively, ‘distributed redundancy’ [30], ‘distributed robustness’ [31], ‘functional 56 

redundancy’ [25], ‘extrinsic buffering’ [32]) describes the ability of components in a biological system 57 

that are structurally different to carry out the same or similar functions [20,21,21,28,33–40].  As 58 

difference in the structure implies different functions [41], under certain conditions degenerate 59 
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components do not necessarily show functional variety [42,43] but instead, each degenerate component is 60 

responsible for a (set of) function(s) which is initially determined by their biochemical(/physical) 61 

structure [9,21,31]. Unlike multifunctionality and redundancy, degeneracy implies a change in the role 62 

assignments among the components such that the system can continue to function even when its normal 63 

processes have been compromised.  64 

A biological network with high degeneracy means that the system can show the same macroscopic 65 

behavior following a lesion even though the underlying network dynamics are significantly different. In 66 

other words, if the system is highly degenerate, after a lesion, the function can be recovered by a 67 

structurally different (i.e., performing a different function under normal conditions) component taking 68 

over a new function. For example, in the brain many different neural clusters can affect the same motor 69 

outputs, and if some of the brain areas are damaged, an alternative (non-redundant) pathway can be 70 

recruited in order to generate functionally equivalent behaviors [44–48]. Degeneracy thus suggests how 71 

biological systems can thrive despite changes to internal and external demands. 72 

It has been shown that degeneracy also plays a role in complexity and evolvability of the biological 73 

systems [8,10,27,28,32,36,49]. Higher levels of degeneracy correlate with an increase in the degree of 74 

both the functional integration and local segregation of a system, and therefore, higher degeneracy is 75 

accompanied by higher degree of complexity of the systems [33].While local segregation (namely, 76 

functional specialization) enables system to be flexible against environmental stress (due to diversity of 77 

functions), functional integration allows system to be robust [50–52]. If a component, or a group of 78 

components are compromised in a highly degenerate system, functions can be reassigned among distinct 79 

elements (that are locally segregated) while the macro-level behavior (which requires the system to be 80 

functionally integrated) is conserved. This adaptability brings an obvious advantage over the course of 81 

natural selection [44]. 82 

To measure degeneracy in systems, Tononi et al. [33] introduced a quantitative measure for 83 

neural networks (see also alternatives [53]) using an information theoretic approach. Information theory 84 
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[54–56] provides a set of tools to describe how information is processed in systems.  It allows us to 85 

measure the statistical (in)dependencies in terms of the information content of the components. Mutual 86 

information (MI), which is a measure provided by information theory, can also capture nonlinear 87 

dependencies(/relationships) that are not detectable by correlation analysis [54,57].  However, direction of 88 

the interaction between the components cannot be discerned from MI alone [33,57,58].  Incorporating MI 89 

with systematic perturbations (to determine directionality), degeneracy is formalized [33] in terms of the 90 

causal effects of the changes in the state of the subsets (components and/or subgroups of components) on 91 

the system’s output.  If the output activity of the system is not affected by the change (e.g., perturbation) 92 

in a subset’s state, then the system is highly degenerate with regard to the function that is performed by 93 

that subset. This information theoretic measure of degeneracy is, first, applied to highly abstract networks 94 

in the work by Tononi et al. [33] which is followed by applications to the weighted networks with a high 95 

degree of biological fidelity (e.g., Hodgkin-Huxley type neural networks [40] and genetic networks with 96 

epistasis [59]).  97 

Although it has been shown that degeneracy as a network property exists at different levels of 98 

biological organization (from molecules to behavior [30,36,44]), a quantitative analysis of degeneracy at 99 

such levels is sparse and methods are individualized to specific cases (see the different versions of 100 

degeneracy measurements in other works [10,53,60]). In systems biology, information theoretic measures 101 

are widely applied to many problems [61], yet, to date, there is not a comprehensive study applying this 102 

measure for biologically realistic networks other than networks with weighted connections.  103 

Neural networks offer one example of how biological systems can incorporate degeneracy to 104 

ensure survival after being damaged.  However, other biological networks are likewise capable of 105 

recovering partial or full function following damage.  For example, in between-species interaction 106 

networks a species loss can be compensated by other species contributing to ecosystem functioning [62].  107 

Likewise, on a smaller scale, it has been shown that loss of functioning in some (non-redundant) genes 108 

has a weak or no effect on the fitness of the gene networks [8]. Although degeneracy might not be 109 
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detectable under normal conditions, after perturbating or lesioning the biological networks, changes in the 110 

environment may also evoke degenerate responses (‘degeneracy lifting’ effect [9]). Environmental 111 

(evolutionary) pressure in receptor-signal transduction networks [53] can push the signaling pathways to 112 

reconfigure into a degenerate form.  113 

Although degeneracy is a feature of biological gene networks, it is unclear whether models of 114 

gene networks can be analyzed using the same information theoretic approach as used for neural network 115 

models. A GRN is a network of gene-gene interactions through their regulators that control the gene 116 

expression levels of the products (mRNAs and proteins) which, ultimately, determine the cell fate (final 117 

cell type, i.e., function of the cell) [63].  Measurements of degeneracy at the level of gene transcription 118 

control may provide insights on how functions of genes that determine the cell function, can be recovered 119 

as a consequence of the network properties (GRN topology).  120 

Random Boolean network (RBN) models, as discrete models of GRNs, are well-suited to study 121 

degeneracy since with RBNs we can induce and trace the effects of targeted lesions while 122 

environmental/external pressure is a parameter that can be controlled over in silico experiments. Unlike 123 

neuronal networks where edges are (synaptic) weight vectors, RBNs have a static wiring diagrams [64] 124 

governed by logic equations that represent the functions of gene regulatory factors (e.g., transcription 125 

factors).  Logic equations describe the underlying network architecture. For example, for a simple 126 

network of 3 genes, if gene G1 is regulated both directly by G3 and through an indirect link from G2, this 127 

architecture is represented by the logic function of “G1 AND (G2 OR G3)”. Likewise, if there is an 128 

inhibitory regulation of G1 through G2 while the same architecture is preserved from the network 129 

described above, this structure can be represented by the logic equation of “G1 AND ((NOT G2) OR 130 

G3)”. Since each state of gene expression is the direct outcome of the activity of (regulatory interactions 131 

in) the previous state, one can assess the effects of circuit architecture on gene expression levels [63]. 132 

Hence, in RBNs, it is feasible to trace the information flow at each (discrete) time step and so, causal 133 

influences. 134 
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In this study we test to what extent the information theoretic measure of degeneracy applies to RBNs.   135 

Furthermore, we test systematic lesions in randomly generated Boolean networks while varying the 136 

number of perturbed nodes. This enables us to explore how degeneracy quantitively changes as a function 137 

of interventions to the nodes and induced topological alterations in the networks. Results show that 138 

degeneracy measures are comparable to different networks – not only to weighted networks. 139 

Results 140 

Lesioning  141 

We first investigate the effects of systematic lesioning on measures of degeneracy in randomly 142 

wired RBNs.  Edges between network nodes were lesioned in two ways.  In type-1 lesioning, only 143 

outgoing edges were lesioned incrementally while it is possible (due to the pseudo-random algorithm to 144 

generate the logic functions) that incoming edges stayed intact and for all the nodes, self-connections 145 

were preserved in the network (for details see Methods).  The networks with type-1 lesions decrease in 146 

average degeneracy values as the cut percentage increases (Fig1). This validates that degeneracy emerges 147 

as a network property.  148 

In the second type of lesioning (hence the name type-2 lesion), we lesioned all incoming and outgoing 149 

edges (but not the self-connections) for randomly chosen genes incrementally. Similar to the type-1 150 

lesioning, average degeneracy decreases as a function of lesioning. We have anticipated that there could 151 

be a difference between the effects of lesioning types as a direct consequence of the partial lesioning (the 152 

incoming edges are preserved) in type-1 condition which can lead some nodes to become dead ends since 153 

the activity ends in those nodes. Active nodes without outgoing edges means that such nodes do not serve 154 

a function, and this eventually would result in lower degeneracy values. The comparison of two lesioning 155 

types, in Fig 1, demonstrates that both conditions have similar effect on the average degeneracy, where 156 

there is a no significant difference (two-way analysis of variance, ANOVA) found between both types of 157 

lesioning. However, average degeneracy varies with cut conditions (p = 0.004).  158 
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Fig1. Average degeneracy values compared between type-1 (green line) and type-2 (blue 159 

line) lesioning. On the x axis, the cut percentage represents the affected number of nodes (in total 160 

of 10 nodes) whose edges are lesioned given the networks. For both lesioning types, degeneracy 161 

was lowest in the 100% cut condition where edges of all nodes (10) were cut. 162 

Perturbation 163 

Degeneracy is calculated as the area between the average MIP(X 
k;O) (mutual information, MI, 164 

between the portion of entropy shared by the system for each perturbed subset k and the output O) and 165 

overall-MI (mutual information between the system and its output) for different perturbed subset sizes, k 166 

(see Equation 3 in Methods).  This area shows a characteristic shape of the degeneracy function: a non-167 

zero value that declines to zero as perturbed subset size k approaches k = O, following an increase that is 168 

“higher than would be expected from a linear increase” [33] .  This characteristic shape has furthermore 169 

been replicated in networks composed of in Hodgkin-Huxley neurons [40]. In our study, the analogous 170 

condition for such illustration of degeneracy is where no edges are lesioned in the networks (Fig2a).  171 

In weighted networks with no connections, the average (overall-) MI shows a linear increase where 172 

degeneracy is zero [33]. Here, we have replicated this condition (i.e., 100%-of-edges-cut) in a similar way 173 

except, in our networks, nodes have preserved self-connections while all outgoing edges were lesioned. 174 

These networks also have initial variance due to the model (see details in Methods and Supporting 175 

Information) which is a system of stochastic differential equations (SDEs). Our results for no-edges-cut 176 

condition and the characteristic profile of degeneracy are comparable to corresponding findings in 177 

previous studies (Fig2 a, b). 178 

Fig 2. Degeneracy, (grey area) is computed (see Equation 3 in Methods) as the average MI 179 

between subsets of X and O under perturbation over increasing perturbed subset size k, in 180 

networks with (a, c) no lesions and with (b, d) 100%-cut condition.  181 
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Further inspection of partial degeneracy (see Methods for details) values from individual 182 

simulations showed that partial degeneracy can have a negative value for some conditions (only two of 183 

such conditions captured here for comparison, Figs 3a-b). Although we have observed that partial 184 

degeneracy is negative for different cut-conditions and different sizes of perturbed subset, when MI is 185 

averaged over the simulations for all the perturbed subset sizes k, <MIP(Xk;O)>, degeneracy DN(X; O) 186 

was above zero in all conditions. 187 

Fig3. Partial degeneracy values from individual networks for each perturbed subset size k. 188 

Data from 10 (k) x 1000 simulations of networks with (a) no-cut condition and (b) 100%- cut 189 

condition. The distribution of partial degeneracy values for (b) shows clear modes in the data 190 

where there is an overlap of the perturbed subset and output sheet.  191 

Interactions of lesions and perturbations 192 

 Increases in both lesion extent and the number of nodes perturbed contribute to decreases in the 193 

degeneracy, raising the question of how these two factors may interact.  We therefore conducted 194 

additional simulations in which each lesion condition (0%-100%, see Methods) was crossed with each 195 

perturbation condition (k = 1-10). Fig 4 (a-b) show how average partial degeneracy changes as a function 196 

of perturbation subset size k, given cut percentages. For both lesioning types, partial degeneracy peaks 197 

around when half of the nodes (k ~ 5) are perturbed in the system. The measure of degeneracy can detect 198 

existing isofunctionality between the different structures only when one of the structures is perturbed. 199 

When half of the nodes in the system are perturbed, we, thereby, maximize the probability of 200 

selecting/measuring the right structure for given degeneracy.    201 

Fig4.  Average degeneracy computed as a function of perturbation subset size k in type-1 202 

lesioning (a) and type-2 lesioning (b). Each line represents the cut condition for lesioned edges 203 

given the percentage of number of nodes in networks. 204 
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Discussion 205 

Although a variety of types of biological networks are thought to exhibit degeneracy, previous 206 

theoretical work has primarily focused on networks with weighted connections [33,40,59]. In this study, 207 

we demonstrate that degeneracy measures are also suitable for RBNs, frequently used to model gene 208 

regulation mechanisms. Although our simulations largely replicated previous studies investigating 209 

degeneracy in neurally-inspired networks, RBNs use Boolean logic operators rather than weighted 210 

connections to determine function.  It therefore might have been the case that information-theoretic 211 

approaches developed for one class of networks might not have generalized correctly to a new class.  By 212 

replicating previous findings using RBNs, we demonstrate that information-theoretic approaches are 213 

applicable to a broad range of network types.  214 

Network and graph theoretic approaches, frequently formulated in terms of information theory, 215 

have been applied extensively to neuroscience [50–52,58,65–74] to predict individual differences, 216 

consequences of lesions, and ability to recover function following injury. Extending this approach to the 217 

study of GRNs opens the door to investigating the consequences of, and possible remedies for, genetic 218 

dysfunction. Because most genetic functions are performed by subsets of many components within 219 

functional modules [5,75], diseases may emerge due to disorganization of the components in these 220 

modules.  Degeneracy measures can be recruited for predicting and inducing topological modifications 221 

(for example, ‘rewiring of diseased modules’ [75]) to achieve desired functional outcomes that have 222 

clinical significance, such as enhanced pharmaceuticals with better drug targets.  223 

In addition to replicating previous results, we explored the impact of systematically  manipulating 224 

network connectivity (lesioning) while decomposing degeneracy by size of the perturbed subset.    In 225 

doing so, we identify a potential interaction between the number of perturbed nodes and the magnitude of 226 

the impact of lesions on network degeneracy. In networks in which ~20% of the connections are lesioned 227 

while 50% of the nodes are perturbed, it is observed that average partial degeneracy reaches its highest 228 

value among all other cut conditions and for all perturbed subset sizes. This can be interpreted as, for 229 
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some conditions (here, k = 5 and ~20%-cut) might allow the expression of degenerate structures without 230 

compromising their function, whereas more lesioning would diminish both primary and degenerate 231 

structures, and more perturbation would confound the functions of the nodes. Likewise, if perturbation (of 232 

the number of nodes) is smaller, not all possible degenerate structures might have expressed in the 233 

network and, also, when the lesioning is less, degenerate structures might be unobservable since most of 234 

the primary structures are intact.  235 

In the literature it has been shown that additional damage (gene/node deletions) can restore the 236 

function of previously compromised (metabolic) networks [76–78].  Here, we show that, up to a point, 237 

progressively lesioning a network results in increased degeneracy.  This finding suggests that it might be 238 

possible to determine an optimum degree of lesioning and perturbation given a network to achieve higher 239 

degeneracy in the systems.  Thus, partial degeneracy measures might be helpful to develop strategies to 240 

predict how to recover the function after damage.   241 

As originally conceived, degeneracy was intended to capture the idea that identical functions 242 

could be carried out by distinct network structures.  Intuitively, therefore, degeneracy would seem to have 243 

a lower bound at zero – in a network with no degeneracy, all structures would serve their own individual 244 

functions, and perturbation of those structures would disrupt network output related to the function 245 

served. Although on average degeneracy in our simulations tended to be above or equal to zero, we 246 

observed individual simulations in which partial degeneracy values were below zero. In previous studies 247 

([40,59]), negative degeneracy has been observed especially for network models with increased biological 248 

fidelity.   249 

One possible reason for the observation of negative degeneracy may be that the information-250 

theoretic measure for degeneracy was originally developed for and tested on neural networks with no 251 

initial variance. As the biological fidelity of the models (thus, inherent variance in the systems) increases, 252 

for some conditions (lower coupling and lower connection probability [40] and networks with lower 253 

complexity [59]) negative degeneracy has been shown.  However, we have not observed such effects on 254 
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overall degeneracy measurements where 1000 MI values for each possible subset size k were averaged 255 

across random networks.  Mathematically, degeneracy gets a negative value when the portion (k/n) of the 256 

MI between the whole system (n) and the output sheet (n/2) is higher than the average of the MI between 257 

the (perturbed) subset of the system (k) and the output sheet (n/2). However, the biological 258 

meaning/equivalence of negative degeneracy remains unclear. For studying more biologically realistic 259 

complex networks, adjustments in the tools for quantifying degeneracy may be needed.   260 

Methods 261 

Network Architecture 262 

RBNs were initially proposed as simplified models for gene regulatory networks by Kauffmann 263 

[79] where network nodes represent the genes, and the edges represent the regulatory functions. A RBN 264 

constitutes a discrete dynamical system that has N nodes with K incoming edges (hence, also referred to 265 

as N-K models). Each node (gene) can be ON or OFF (1 or 0); a network of N binary nodes therefore has 266 

2N distinct states [79]. This system is state determined [79] according to Boolean functions that are 267 

assigned to each node randomly (from KN possible states) where each node has a minimum of zero to a 268 

maximum of N inputs [80] . Such a state-space allows random network configurations which often leads 269 

to nonlinear dynamics. In this study, the nodes can have no inputs (but the self-connection) without an 270 

upper boundary, so that a gene can have a maximum of N inputs. The total number of nodes representing 271 

the genes, here, is N = 10, thus there are 210 possible states. In RBNs, the state of the nodes in the network 272 

can be updated synchronously or asynchronously in discrete time steps. In this study, for simplicity 273 

purposes, a synchronous update rule is chosen.  274 

RBNs have a well-defined function mapping scheme through logic (Boolean) operators which 275 

constitute the rules for connections that control the state of gene regulators. In our setting, operators AND, 276 

NOT, OR are randomly placed to generate rulesets (functions). If a node has only one input (that is one 277 

gene is connected to another gene) the probability of the function to have NOT operator is 0.5.  If a node 278 
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has two genes assigned to it (outgoing edges), the probability of these two genes to be connected to the 279 

node via OR operator or AND NOT operator is both 0.5. Outgoing edges are randomly distributed for each 280 

node with the condition that each node has at least one (thereby, connectivity is preserved) and at most 281 

two (more than one Boolean operator) edges mapped to the other nodes, while all the nodes have self-282 

connections Thus, incoming edges are assigned to the nodes in a completely random fashion (allowing for 283 

the emergence of network hubs). 284 

Network Lesioning 285 

Degeneracy, as a strategy (or design principle [10,21,81]) for networks to recover their function, 286 

refers to the rearrangement of (structurally different) components in a way that function/output remains 287 

the same even after a damage. In a network with high degeneracy, there are many possible network 288 

reconfigurations that can produce/recover the function. To test the potential factors that give rise to 289 

(higher/lower) degeneracy in networks, here, we induce interventions to the systems at the network-level 290 

by lesioning the edges.  291 

Two different lesions were introduced to the synthetic networks. In type-1 lesioning, all outgoing 292 

edges from randomly chosen nodes were cut while the self-connections of the nodes and incoming edges 293 

were preserved. In the second type of lesioning, all incoming and outgoing edges were cut (except for 294 

self-connections) from randomly selected nodes given the percentage of total lesioned edges. In both 295 

types of lesioning, the edges are lesioned in increments of ten percent of the total number of the nodes 296 

given a network.  For example, in type-1 30% cut condition, we have lesioned all the outgoing edges 297 

(except the self-connections) of the 3 randomly chosen nodes given a network of 10 nodes. Likewise, in 298 

type-2 30% cut condition, all the edges (incoming and outgoing, except the self-connections) of 3 299 

randomly chosen nodes (out of 10 nodes total in a network) were lesioned. By 100%-cut condition (in 300 

both lesioning types), we refer to networks where no node is connected to the other, and the nodes have 301 

only self-connections.  302 
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For both lesioning types, 0%-cut condition refers to networks that are not lesioned, yet the edges 303 

are randomly disturbed (according to the method that is defined previously). This may lead some nodes to 304 

not have any edges (but the self-connection) due to random assignments of the rules, therefore, 305 

mimicking a (partially) lesioned condition.  306 

Biologically realistic random Boolean networks: Discrete to Continuous  307 

Boolean functions describe how the states of the regulators control the state of the target genes 308 

[82]. In our study, Boolean functions are randomly generated for each simulation with incremental 309 

lesioning. To execute numerical simulations, we used the BoolODE pipeline by Pratapa et al. [82]. 310 

BoolODE systematically converts a random Boolean network into a system of SDEs that is a continuous 311 

model of gene regulation (for model specifications see SI Text 1 and SI Table).  Time points in the 312 

numerical solution result in vectors of gene expression values that correspond to individual cells. That 313 

means for every analysis, each sampled time point is from a cell [82], and in this study, we sample from 314 

990 time points  (1000-10, first 10 timepoints treated as burn-in) for each gene in a single simulation and 315 

total of 1000 simulations are run for each lesioning percentage increment of 10s (from no cut condition to 316 

all 10 genes cut) which makes 10000 simulations for each type of lesioning and thus, 2 (lesioning type) x 317 

10 (k subset of perturbed genes) x 11 (cut conditions, no-cut condition inclusive) x 10 synthetic cells with 318 

random gene regulatory mechanisms. 319 

Quantification of degeneracy in neural networks  320 

To measure degeneracy, we used the mathematical framework described by Tononi et al. [33]. In 321 

this framework, degeneracy is characterized in terms of the average mutual information between subsets 322 

of elements within a system and an output sheet (which is also a subset of network X).  The output sheet 323 

is a set of randomly chosen nodes in a network and its activity is a result of the interactions the other 324 

nodes in the system. Thus, activity in the output sheet represents the behavior or the response of the whole 325 

system.  326 
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From information theory, entropy (Shannon entropy with log base 2 for binary representation) is 327 

calculated from probability density functions for subsets of X (Equation 1). Then mutual information that 328 

measures the portion of entropy shared by the system subset Xj
k and the output O, is calculated as follows 329 

(Equation 2): 330 

𝐻(𝑋) =  − ∑ 𝑃(𝑥𝑖) 𝑙𝑜𝑔2 𝑃(𝑥𝑖)

𝑛

𝑖=1

 331 

(1) 332 

 333 

𝑀𝐼(𝑋𝑗
𝑘; 𝑂) =  𝐻(𝑋𝑗

𝑘) + 𝐻(𝑂) − 𝐻(𝑋𝑗
𝑘 , 𝑂) 334 

(2) 335 

H(Xj
k) and H(O) are the entropies of Xj

k and O considered independently, whereas H(Xj
k;O) is the 336 

joint entropy of subset Xj
k and output O. To measure degeneracy in the network, we need to determine the 337 

effects of the (subset of) element(s) on the entropy of the output - the behavior of the network. Since 338 

mutual information does not capture direction, however, mere calculation of mutual information is not 339 

enough to determine the contribution of the elements to the output of the system. To overcome this, 340 

perturbations (variance) are injected to the system. If no initial variance is assumed in the system, the 341 

value of mutual information between the network and the output is zero before any perturbation [33]. 342 

Variance (perturbation) is injected as uncorrelated random noise to each subset k.  343 

Under such perturbations, mutual information of the system is computed as in EQ3 and this 344 

procedure is repeated for all subsets of sizes 1 ≤ k ≤ n. Then, degeneracy DN (X;O) of X with respect to O 345 

can be calculated as: 346 

𝐷𝑁(𝑋; 𝑂) =  ∑[< 𝑀𝐼𝑃(𝑋𝑗
𝑘; 𝑂) >  − (

𝑘

𝑛
) 𝑀𝐼𝑃(𝑋; 𝑂)]

𝑛

𝑘=1

 347 
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(3)  348 

MIP(X;O) is MI for all elements to the output sheet, and <MIP(Xj 
k;O)> is the average of the contribution 349 

of each perturbed subset size k to the output sheet.  350 

Quantification of degeneracy in random Boolean networks  351 

Biological RBN simulations (via BoolODE) results in continuous unit activity in terms of gene 352 

expression vectors since the simulated networks are translated into nonlinear dynamical system (SI Text 1 353 

and 2, SI Figure). To quantify degeneracy in RBNs we therefore discretize the gene expression vectors by 354 

taking the median activity for a unit.  Activity that is above the median is set to 1, and activity below the 355 

median is set to 0. 356 

We apply the degeneracy measures to the discretized gene expression vectors generated from the 357 

simulations. In our simulations, perturbations are systematically injected to the subset size k of genes as 358 

normally distributed (with mean = 0, and standard deviation = 0.01) random noise through the governing 359 

SDE. The number of elements (namely, the genes) is n = 10 for all simulations with output sheet 360 

consisted of the activity of O = n/2 = 5 elements, that is also randomized for each trial.  361 

Fig5. Illustration of RBNs under perturbation. A network of X, composed of nodes (light and 362 

dark blue circles, n = 10) that are interconnected. Arrows represent the edges for incoming, 363 

outgoing, and self-connections. Light blue circles represent randomly chosen perturbation subsets of 364 

nodes for k = 2 (a) and k = 7 (b). Perturbation (represented as syringes) of the nodes in boxes with k 365 

notation, is injected as a variance (uncorrelated noise). The box with O notation represents output 366 

sheet that is also consisted of randomly chosen set of (n/2 = 5) nodes (dark blue circles).  For each 367 

network, MI is calculated for perturbed set size k and the output sheet O, for all subset sizes of 368 

perturbed set noted as j. 369 
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Partial degeneracy in random networks  370 

Degeneracy can be measured by alternate ways that are mathematically equivalent (see other 371 

definitions in [33]). The formal definition that we use in this study requires averaging over every MI 372 

measured between each node (unit, j) which are incrementally perturbed (from k = 1 to k = n) and the 373 

output sheet for a given network structure (<MIP(Xj 
k;O)>). However, in case where all the networks are 374 

randomly generated and the output sheet units are randomly chosen, an alternate way of computing 375 

<MIP(Xj 
k;O)>  is taking the average of MI measured for each random network that is perturbed once for a 376 

particular perturbed subset size k in range of 1 ≤ k ≤ n. This way, degeneracy is measured for a specific 377 

subset given a network rather than for all possible subset sizes. Here, we call this measurement partial 378 

degeneracy.  379 

Supporting information 380 

S1 Text 1. Simulation platform. 381 

S1 Text 2. Model specifications. 382 

S1 Figure. A toy network with Boolean functions and translation into SDE. 383 
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