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Abstract

Cannabinoid receptor 1 (CB1) is a therapeutically relevant drug target for control-

ling pain, obesity, and other central nervous system disorders. However, full agonists

and antagonists of CB1 have been reported to cause serious side effects in patients.

Therefore, partial agonists have emerged as a viable alternative to full agonists and

antagonists as they avoid overstimulation and side effects. One of the key bottlenecks in

the design of partial agonists is the lack of understanding of the molecular mechanism

of partial agonism. In this study, we examine two mechanistic hypotheses for the origin

of partial agonism in cannabinoid receptors and explain the mechanistic basis of par-

tial agonism exhibited by ∆9-Tetrahydrocannabinol (THC). In particular, we inspect

whether partial agonism emerges from the ability of THC to bind in both agonist and

antagonist binding pose or from its ability to only partially activate the receptor. Ex-

tensive molecular dynamics simulations and the Markov state model capture the THC

binding in both antagonist, and agonist binding poses in CB1 receptor. Furthermore,

we observe that binding of THC in the agonist binding pose leads to rotation of toggle

switch residues and causes partial outward movement of intracellular transmembrane

helix 6 (TM6). Our simulations also suggest that the alkyl side chain of THC plays a

crucial role in determining partial agonism by stabilizing the ligand in the agonist and

antagonist-like poses within the pocket. This study provides us fundamental insights

into the mechanistic origin of the partial agonism of THC.

Introduction

Cannabinoid receptor 1 belongs to the family of Class A G-Protein Coupled Receptors

(GPCRs) (1 , 2 ), which modulates diverse cellular signaling processes via intracellular G-

proteins (3 ) and β-arrestins (4 ). CB1 receptors were first discovered in the last decade of

the twentieth century as a target of plant cannabinoid molecules (5 ). Due to its ubiquitous

presence in physiological processes, CB1 is an important drug target for the potential treat-

ment of a variety of diseases. In the last thirty years, several synthetic molecules have been
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designed to target the CB1 for the treatment of pain, obesity, and inflammation (6 –8 ). CB1

receptor agonists such as MDMB-Fubinaca (3 ) and inverse agonists such as Rimonabant

(9 , 10 ) have been shown to modulate the receptor activity significantly. However, these

designed agonists and antagonists of CB1 also exhibit dangerous side effects. For instance,

Fubinaca, also known as ”zombie drug”, caused the hospitalization of thousands of patients

in New York (11 ). Rimonabant had to be withdrawn from the market due to its psychotic

side effects like depression and anxiety (12 ). While these designed agonists and antago-

nists have failed to meet the drug safety guidelines, alternate approaches (e.g., allosteric

modulator, partial agonist) can be explored for designing therapeutics. We recently studied

the binding of a negative allosteric modulator (NAM), sodium ion (Na+), to cannabinoid

receptors (CBs) using molecular dynamics simulation (13 ). Simulation revealed important

differences in binding site and pathway between CB1 and CB2, which can be exploited to

design a selective NAM drug. Similarly, a partial agonist Dronabinol has been approved by

Food and Drug Administration (FDA) as an appetite stimulant drug for AIDS patients and

an antiemetic drug for chemotherapy (14 ). Dronabinol is a synthetic form of THC (Figure

1), the main psychoactive compound in marijuana which binds to the CB1 as a partial agonist

and affects the endocannabinoid signaling pathway. THC has been shown to demonstrate

positive effects for treating Huntington’s disease, Parkinson’s disease, Alzheimer’s disease

(15 ). Although THC has the potential to become a valuable drug for several diseases, this

drug is still banned by the FDA due to its side effects. Therefore, molecular level understand-

ing of THC and the mechanism by which it partially activates the cannabinoid receptors will

inform the design of potential partial agonist drugs targeting CB1 receptor. Structural stud-

ies of CB1 have revealed that toggle switch residue (TRP3566.48 and PHE2003.36) movement

by the agonist is crucial for the activation of CB1 (Figure 2B)(3 , 16 –21 ). Kumar et al.(3 )

proposed that due to the smaller size of THC as compared to the full agonists, there is less

interaction between toggle switch residues and ligand. Furthermore, they proposed that the

THC binding position with downward facing alkyl chain can shift the toggle switch residues
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Figure 1: 2D and 3D representation of THC structure. Numbering of carbon atoms and rings are
mentioned in the figure.

and activate the receptor. However, the crystal structures and docking studies only provide

static interactions of a ligand in the binding pose. These studies do not reveal the mechanism

of ligand conformational switching inside the binding pocket. This proposed hypothesis has

not been rigorously examined from either the experimental or computational approaches.

Therefore, it is difficult to obtain structural understanding of the origin of partial agonism

exhibited by THC. A recent study employing Metadynamics simulations showed that a par-

tial agonist GAT228 binds in multiple positions inside the ligand binding pocket of CB1 (22 )

due to the large size of the pocket as compared to the ligand volume (18 ). This observation

is also consistent with the distinct poses of agonist and antagonist in the binding pocket

(Figure 2A). Therefore, it is likely that partial agonist THC might be stabilized in both

the agonist and antagonist-like pose inside the binding pocket and only the subset of THC

molecules bound to CB1 in the agonist-like pose activate the receptor. This phenomenon

would decrease the maximum response of the secondary messenger. The first hypothesis is

shown as equations 1, 2, 3 where R, RA**, RPA**,[RPA] represent the receptor in apo form,
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agonist bound active state, partial agonist bound active and inactive state, respectively. In

RPA** and [RPA], partial agonist binds in agonist and antagonist bound poses, respectively.

Agonist and partial agonist are represented as A and PA.

Hypothesis I

R + A −→ RA∗∗ (1)

R + PA
AgonistPose−−−−−−−→ RPA∗∗ (2)

R + PA
AntagonistPose−−−−−−−−−→ [RPA] (3)

Canonical class A GPCR activation is characterized by intracellular TM6 movement,

which facilitates the G-protein binding. A partial agonist, Salmeterol, binds in the orthosteric

pocket in the β2-Adrenergic receptor and causes partial movement of TM6 compared to the

full movement by an agonist (Figure 2C) (23 ). Therefore, we hypothesize that partial

activation may happen if the partial agonist stabilizes the receptor in different conformation

than the active structure. THC has smaller side chain compared to agonist AM11542 (18 ).

Furthermore, absence of the dimethyl group at the first carbon (C1’) of the alkyl chain

decrease the interaction with toggle switch residues. Thus, we propose that THC binding

may also cause the partial outward movement of the TM6.

Hypothesis II

R + A −→ RA∗∗ (4)

R + PA −→ RPA∗ (5)

The second proposed hypothesis is explained in equation 4, 5 where RPA* represents

partial agonist bound partially active form of the receptor. Other notations are similar to

the reactions 1, 2, 3.

We assess the validity of these hypotheses by running extensive simulations of THC

binding to CB1 (see methods section). Using the Markovian property of Molecular Dynamic
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(MD) simulations, we build Markov State Model (MSM) using the simulation data. From

the eigenvalues and vectors of MSM, we obtain the timescale and the thermodynamics of

the ligand binding process. MSM weighted data reveals that THC is stabilized in both

antagonist and agonist bound poses in agreement with our first hypothesis. The free energy

barrier of ∼ 1kcal/mol is estimated for THC to transition between the antagonist to agonist

bound pose, which implies that thermal fluctuations at the human body temperature could

easily allow the THC to transition between these poses. In the agonist bound pose, THC

rotates the important toggle switch residue TRP3566.48. The new position of the TRP3566.48

is different compared to active state of CB1. This intermediate position TRP3566.48 leads

to partial outward movement of TM6 suggesting THC can only partially active the receptor

according to out second hypothesis. This mechanistic study explains the reason behind

the partial agonism behavior of THC compared to other agonists and will aid future drug

development targeting cannabinoid receptors.

Results

THC is stabilized in both antagonist and agonist binding poses in the orthosteric

pocket of CB1. Active and inactive structures of CB1 reveal that orthosteric binding site

volume undergoes a large change upon activation as compared to other class A GPCRs (18 ).

Comparison of active (PDB ID: 5XRA (17 )) and inactive (PDB ID: 5TGZ (18 )) structures

also reveal that the agonist and antagonist bind in the different regions within the pocket

(Figure 2A). Agonist molecule binds in a region close to the TM5, whereas antagonist binds

in the extended pocket formed by TM1 and TM2. In the inactive structure, the downward

movement of the N-loop towards the binding pocket separates the agonist and antagonist

binding regions (Figure 2A). However, partial agonist bound crystal structure of CB1 or CB2

is not reported in the literature. Therefore, the partial agonist binding position is not well

documented. Preliminary docking studies in both inactive and active structures reveal that
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Figure 2: Pictorial representation of both the hypotheses. (A), (B) are representing hypothesis 1.
Superposition of active (PDB ID: 5XRA, color: pink) and inactive (PDB ID: 5TGZ, color: cyan)
structures of CB1 is shown in all panels of (A). In the top and bottom panel of (A), antagonist
(AM6538, color: yellow) and agonist (AM11542, color: silver) are shown as stick and mesh rep-
resentation. N-loop is colored differently (Active: red, Inactive: Blue). TM6 and TM7 are not
shown in the cartoon representation for better visualization of ligand poses. In (B) toggle switch
residues (TRP3566.48 and PHE2003.36) are shown as sticks. Superposition of active (PDB ID: 3SN6,
color: pink), partially active (PDB ID: 6CSY (23 ), color: green), and inactive (PDB ID: 2RH1,
color: cyan) structures of β2-AR is shown in (C). Intracellular TM6 movement is highlighted in a
separated box.

THC binds to the agonist binding region in a similar conformation as other agonists (17 , 18 ).

However, docking alone cannot infer the exact binding pose of a ligand which undergoes a
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dynamic conformational change within the binding pocket. Therefore, we perform ∼ 143µs

of MD simulations to characterize the THC binding mechanism in CB1 starting with inactive

structure.

To capture the THC binding process and upward movement of the N-loop, we project

the MD simulation data along the two metrics that characterize these motions (Figures 3A,

S1A and S1B). MSM weighted free energy landscape plot (Figure 3A) shows the movement

of THC molecule towards TM5 as indicated by the distance between THC- C1’ atom (Figure

1) and TYR2755.39-Cα atom on TM5. THC enters CB1 binding pocket through the space

between the space of TM1, TM2, and N-loop (Figure S2) (24 ). THC further diffuses inside

the pocket and is stabilized in antagonist binding pose where distance between THC(C1’)

and TYR2755.39(Cα) is 15 to 21 Å(Figure 3B). We observe two stable local energy wells in

the antagonist binding pose. The free energy well away from agonist bound pose is named

antagonist-like pose 1 and second well is named antagonist-like pose 2. These two minima are

separated by the activation barrier of 0.55± 0.43 kcal/mol. Superposition of predicted MD

structures of THC bound in antagonist-like pose 1 and 2 with inactive structure shows that

B and C ring of the tricyclic dibenzopyran group of THC binds in same position as Arm 3 of

the antagonist, AM6538 (Figures 3C and 3D) (17 ). The aromatic ring of THC matches with

pyrazole ring of the antagonist. However, THC alkyl chain (side chain) orientation varies

between the two binding poses. In antagonist-like pose 1, it extends towards the conserved

sodium binding site (13 , 25 , 26 ) similar to the arm 1 of antagonist, whereas, in antagonist-

like pose 2, it orients itself in the direction of agonist binding site similar to the arm 2 of

the antagonist (Figures 3C and 3D). In both the antagonist-like poses, THC forms stable

polar interaction with SER3837.39 and hydrophobic interaction with N-loop (PHE102N−loop,

MET103N−loop), TM1(SER1231.39, ILE1191.35), TM2 (PHE1702.57) and TM7 (ALA3807.36)

(Figures 4B, 4C, S3A and S2B ). In these poses, N-loop remains inside the pocket and

restricts the movement of THC towards the agonist binding region. The upward movement

of N-loop allows the movement of THC inside the pocket and stabilizes it in the agonist-
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like pose (Figure 3E). THC has smaller alkyl side chain than cannabinoid like full agonists

of CB1, thus, first carbon of THC (C1’) binds closer to to TM5 compared to the agonist,

AM11542. In agonist binding pose, THC(OH) forms polar interaction with SER3837.39 same

as other agonists. Furthermore, THC forms extensive hydrophobic interactions with amino

acid residues of TM3 (VAL1963.32, LEU1933.29), TM5 (TRP2795.43) , TM7 (PHE3797.35),

N-loop (MET103N−loop), and ECL2 (PHE268ECL2) as shown in Figures 4D and S3C.

To capture the timescale of this entire binding process, we run Kinetic monte carlo

(kMC) simulations on MD data. kMC utilizes MSM transition probability matrix to find

the probable pathway for binding (method section). 150 µs long KMC trajectory reveals

that entire binding process from unbound to bound poses takes approximately 100 µs (Figure

S4A). From the solution, THC is first stabilized in antagonist bound pose in ∼ 50µs. THC

occupies antagonist pose I and II for approximately 30 µs and subsequently moves to the

agonist binding pose (Figure S4A).

THC chain orientation plays an important role in partial agonism. Alkyl chain

of THC plays an important role in binding and activation of CB1. Modification of Alkyl

chain leads to change in binding affinity. For example, increasing the chain length of ∆8-

THC (structural homolog of ∆9-THC) from five carbons to eight carbons increases the

binding affinity from ∼40 nM to ∼8nM (27 ). Furthermore, adding a dimethyl group in

first carbon of the alkyl chain is hypothesized to increase the interaction with toggle switch

TRP3566.48 (18 ). To characterize the importance of the alkyl chain of THC, we observe chain

dihedral angle (C2-C3-C1’-C2’) (Figure 1) movement during binding. Positive dihedral is

crucial to orient the alkyl chain of THC in orthogonal direction of aromatic group as in

agonist-like pose (Figure 3E). The free energy landscape of THC alkyl chain dihedral with

respect to binding (Figures 5A and S5) reveals that THC binds to CB1 in two different

chain orientations. If hydrogen atom on C1 faces downward (or positive dihedral angle )

during the binding, it moves to agonist binding pocket with maximum free energy barrier

of ∼ 2 ± 0.4 kcal/mol. This alkyl chain orientation enables THC to pressurize N-loop in
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Figure 3: Distinct stabilized poses of THC inside binding pocket of CB1. (A) MSM weighted free
energy landscape to capture THC binding and N-loop upward motion. THC binding distance is
measured between THC-C1’ and TYR2755.39-Cα (TM5) and N-loop upward motion is measured
between MET103N−loop-Cα (N-loop) and ASP1632.50-Cα (TM2). (B) One dimensional free energy
diagram depicting stabilized binding position of THC and activation barrier between them. (C), (D)
Superposition of inactive (PDB ID: 5TGZ (17 ), color:cyan) structure of CB1 and MD snapshots
from antagonist-like pose 1 (C) and 2 (D). (E) Superposition of active (PDB ID: 5XRA (18 ),
color:pick) structure of CB1 and MD snapshot from agonist-like pose. MD snapshots are shown in
green color. Agonist (AM11542 (18 )), partial agonist (THC) and antagonist (AM6538 (17 )) are
represented as sticks with silver, violet, and yellow color respectively. TM6 and TM7 are not shown
in the cartoon representation for better visualization of ligand poses.
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Figure 4: Important interactions between protein residues and THC at different stabilized positions
during binding (side view). (A) A representative structure when THC enters the receptor through
the space between N-loop, TM1 and TM2. (B), (C) Representative structures from antagonist-like
pose 1 and 2, respectively. (D) A representative structure from agonist-like pose. Stable interactions
were measured using GetContacts package. Protein structures are shown as cartoon representation
(color:green). THC (color:violet) and interactive residues (color:green) are shown as stick.

upward direction to take orthogonal conformation similar to full agonist. However, if THC

enters the receptor with negative dihedral, it is stabilized in the antagonist-like poses. High

free energy barrier of ∼ 4 ± 0.4 kcal/mol is required for THC to move from macrostate

3’ to 4’ (Figure 5A). In this conformation (macrostate 3’), tricyclic dibenzopyran group of

THC is unable shift N-loop upward as the active structure. Hence, alkyl chain of THC

shifts the population to macrostate 3 which is more accessible as the free energy barrier is

lower than eariler transition. Applying Transition path theory (TPT) on MSM states we

can calculate effective timescales of these macrostate transitions. TPT provides mean free

passage time (MFPT) for the transition between two macrostates by taking into account all

possible pathways through the intermediate states. Calculated MFPT shows that transition
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between state 3’ to 3 (2.4± 0.5µs) is more accessible compared to the 3’ to 4’ (13.2± 3.5µs)

(Figures 5B and S6). The binding of THC to the agonist-like pose, shows the orientation of

alkyl chain may flip between macrostate 4 to 4’ as they are energetically favorable. However,

THC has more tendency to stay in the orthogonal conformation (macrostate 4) compared

to macrostate 4’. The conditional probability of THC to be in orthogonal conformation in

the agonist-like pose is 0.9 ± 0.0. Our results show that THC is stabilized in agonist and

antagonist-like poses that supports our first hypothesis.

THC rotates toggle switch TRP3566.48 in the agonist binding pocket. Although,

we establish the fact that THC can be stabilized in different position of the orthosteric bind-

ing pocket, it is not clear how THC activates the receptor. Crystal structures of the CB1

receptor in active and inactive position depicts that toggle switch residues play an impor-

tant role in the activation of the receptor. Agonist molecule triggers the movement of toggle

switch residue TRP3566.48 movement of the receptor towards the TM5 which consequently

leads to outward movement of TM6 (18 ). It was hypothesized that THC behaves as partial

agonist due to the lack of interaction with toggle switch residues (3 ). However, we observe

that binding of THC leads to the rotation of TRP3566.48 (Figures 6A and S7). The dihedral

angle of TRP3566.48 shifts from inactive conformation (χ2 dihedral angle between 60◦ to

120◦) to new intermediate active conformation (−30◦ to 30◦) as well as relatively less stable

state (−120◦ to −60◦) (Figures 6A and 6B). We referred energetically favorably accessible

states as partially active state 1 and state 2, respectively. The rotation of TRP3566.48 leads

to breakage of aromatic interactions with PHE2003.36 and it moves towards TM2 similar

to active structure (Figure 6B). Comparison of representative structures from partially ac-

tive state 1 with inactive CB2 shows that toggle switch TRP3566.48/TRP2586.48 has similar

rotamaric conformation as CB2 inactive structure (Figure S8). An inverse agonist of CB2,

MRI2687, which was predicted to retain the toggle switch residue to similar conformation

(28 ), acts as a partial agonist for CB1. This in turn supports our prediction that THC

stabilizes the TRP6.48 in intermediate state to partially activate the receptor.
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Figure 5: THC alkyl chain movement during binding to CB1. (A) MSM weighted free energy
landscape to capture THC binding and THC side chain dihedral. THC binding distance is mea-
sured between THC-C1’ and TYR275-Cα (TM5) and THC sidechain dihedral is measured between
C2,C3,C1’,C2’. Manually defined macrostate regions are numbered in the figure. (B) Mean free
passage time (MFPT) of transitions between the 8 macrostates are shown. Each macrostate is rep-
resented by MD snapshot from the region. Different range of MFPT are shown with distinguished
arrow thickness. Protein structures are shown as cartoon and THC molecules are shown as stick.
TM6 and TM7 are not shown in the cartoon representation for better visualization of ligand poses.

Although, THC can rotate toggle switch TRP3566.48 for subset of structures in ago-

nist binding position, we noticed a favorable free energy minima around inactive pose of

TRP3566.48. In these minima, THC is unable to shift the toggle switch movement. To

explain the reason for the two different orientation of TRP3566.48, we calculated the proba-

bility TRP3566.48 rotation with respect to the THC alkyl chain dihedral in agonist-like pose
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(Figure 6C). Our calculations show that with negative alkyl chain dihedral, THC can move

TRP3566.48 for only 4.0 ± 0.8% structures. With negative dihedral, the first carbon of the

alkyl chain (C1’) binds far from the toggle switch and cannot induce conformational change

(Figure 5B). However, binding with a positive dihedral leads to rotation of TRP3566.48 for

95.5± 0.8% of the structures due to more interactions.

The changes in the toggle switch residue leads to the outward movement of TM6 as

shown in the Figures 7A and S9. When the toggle switch remains in the inactive position,

intracellular TM6 can move easily 2-3 Åeither side inactive structure (low free energy bar-

rier). For this case, TM3-TM6 distance is similar or less than the inactive structure with

a probability of 0.74 ± 0.0 (Figures 7B). However, TRP3566.48 rotation creates a torsion in

TM6 and stabilizes the intracellular part of TM6 of the receptor in between inactive and

active-like conformation with probability of 0.6 ± 0.0 (Figures 7B). Comparison of repre-

sentative structure from partially active state minima with β2-AR inactive structure shows

that intracellular TM5, TM6, and TM7 matches well (Figure S10). Therefore, THC in

partially activated state forms favorable interaction with TRP3566.48 and stabilize in inter-

mediate conformation compared to the inactive structure. These results support our second

hypothesis that THC can only activate the receptor partially.

Conclusion

In this study, we propose two hypotheses for the partial agonism of THC molecule for

Cannabinoid receptor 1. Our first hypothesis is based on different binding position of the

THC inside the orthosteric binding pocket. Second hypothesis states that THC may only able

to move TM6 partially. To test the hypotheses, we perform unbiased molecular dynamics

simulation for THC binding to CB1. Our results support both our hypotheses. Simulations

show that during binding THC is stabilized in agonist-like and antagonist-like poses. While

binding in the antagonist-like poses, the aromatic group of THC orients itself as Arm 2 of

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.29.441987doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.29.441987
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6: TRP3566.48 rotation due to THC binding in Agonist-like pose (A) MSM weighted free
energy landscape to capture THC binding and toggle switch TRP3566.48 χ2 angle. THC binding
distance is measured between THC-C1’ and TYR2755.39-Cα (TM5). Inactive and partially active
(state 1 and 2) macrostates are marked when the THC is bound to the agonist bound pocket. (B)
Mean free passage time (MFPT) of transitions between the inactive to partially active conformations
of toggle switch residues are shown. Direction of the conformational change in TRP3566.48 and
PHE2003.36 are shown via arrow. Different range of MFPT are shown with distinguished arrow
thickness. Protein structures (color: green) are shown as cartoon. THC molecules (color: violet)
and toggle switch residues (color: green) are shown as stick. (C) Box plot to show the probability
of TRP3566.48 rotation with positive or negative THC dihedral in agonist-like pose. Blue and red
boxes show the conditional probabilities when TRP3566.48 is in inactive and partially active pose.
Data distribution in box plot is generated with 200 rounds of bootstrap sampling with 80% of total
number of trajectories (Method section).

the antagonist, whereas alkylchain of THC can take the conformation of arm 1 and arm

3. During the binding process, alkyl chain orientation is shown to be important factor of

determining the binding of THC to agonist pose. When THC enters the receptor with

positive side chain dihedral angle (C2-C3-C1-C2), it leads to the upward movement of N-

loop and favors the THC binding to the agonist-like pose. Whereas, with negative dihedral
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Figure 7: Movement of intracellular TM6 due to TRP3566.48 rotation (A) MSM weighted free en-
ergy landscape to capture toggle switch TRP3566.48 (TM6) χ2 angle and intracellular TM6 move-
ment of CB1. Intracellular TM6 movement is measured ARG2143.50-Cα (TM3) and LYS3436.35-Cα
(TM6). (B) Box plot to show the probabilities of intracellular TM6 movement with TRP3566.48

in inactive and partially active condition. Data distribution in box plot are generated with 200
rounds of bootstrap sampling with 80% of total number of trajectories (Method section). (C, D)
Representative structure from partial active minima (color:green) is superimposed with inactive
(color:cyan) (C) and active (color:pink) (D) structure of CB1 to depict the toggle switch movement
and intracellular movement.

angle THC increases the free energy barrier for transition from antagonist-like binding pose

to agonist-like binding pose. Therefore, chemical modification which can stabilize the side

chain in perpendicular direction to the aromatic ring may increase the agonistic property of

the ligand.

Over the years, various effects on THC alkyl chain modifications on binding and function-

ality have been proposed. ∆9-THC and ∆8-THC have similar binding affinity and agonistic
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property. It has been shown that ∆8-THC analog with cis double bond between C1 and C2

(which fixes the side chain in perpendicular direction) with same side chain length, increases

the agonistic property of the ligand(27 ). Our simulations also support this experimental

observation. With cis bond, THC analog can move to the agonist-like pose with less free

energy barrier (Figure 4A) and therefore has more agonist property which bolsters our claim

in the first hypothesis.

To generalize our first hypothesis that THC can be stabilized at both agonist and antago-

nist pocket, we performed docking of other partial agonists on representative CB1 structures

pf THC bound agonist binding pose and antagonist binding pose (Figure S11). Five avail-

able partial agonists are selected for GPCRdb database(29 ): Magnolol, AM4089, NMP-4,

(S)-∆3-THC, (R)-∆3-THC. Docking studies reveal stable docked poses for partial agonists

in both the binding pocket. In the antagonist binding pose, we observed that the partial

agonists extend downwards towards Na+ binding site similar to THC(13 ). These partial

agonists binds with similar affinity in agonist and antagonist binding pocket. These dock-

ing results show that our hypothesis for partial agonism may be universally valid for other

partial agonists for CB1.

Our results also show that the THC can rotate the toggle switch TRP3566.48 conformation

when binding to the agonist like poses. The partially active conformation of CB1 matches

well with CB2 inactive structure which helps to explain yin-yang relation for some ligands

between CB1 and CB2. Recently published NMR-study on another class A GPCR, A2AAR,

has shown that partial agonist rotates TRP2466.48 in a distinct conformation compared to full

agonists or antagonists(30 ). These experimental observations support our results obtained

computationally. Furthermore, our simulations reveal that partially active toggle switch

movement consequently affects the intracellular side of the receptor and leads to the partial

outward movement of TM6. In future study, this partial movement of the TM6 can be

experimentally validated by DEER spectroscopy (31 –34 ).

Overall, our present computational study with MD simulations and MSM is competent
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with previous experimental results and also provide new insights for partial agonism of THC

for CB1. The findings of the paper are crucial for guiding the chemical modification for

cannabinoid ligands for future drug development.

Method

System Preparation

Inactive structure of CB1 (PDB ID: 5TGZ(17 )) is used as a starting structure for MD

simulation. Non-protein residues and stabilizing fusion partner within the receptors third

intracellular loop (ICL3) are removed from the PDB structure file. Hydrogen atoms are

added to protein amino acid residues using reduce command of AMBER package (35 ).

Truncated N-terminus and C-terminus & unconnected residues of TM5 and TM6 are capped

with neutral terminal residues (acetyl and methylamide groups). Thermostabilized mutant

residues are replaced with original residues using tleap (17 ). The modified protein structure

is embedded in POPC bilayer using CHARMM-GUI (36 ). Salt concentration of 150 mM

(Na+ and Cl-) is to neutralize the system. MD system is solvated using TIP3P water model.

3-D structure of THC is obtained from PubChem in sdf format. Forcefield parameters of

THC are obtained using antechamber (37 , 38 ). THC is added to MD system using packmol

(39 ) to generate the starting structure.

Simulation Details

Molecular dynamic simulations are performed using AMBER18. The MD system is subjected

to minimization with gradient descent and conjugate gradient algorithm for 5000 and 10000

steps respectively. Minimized system is slowly heated from 0K to 10K and 10K to 300K in

NVT ensemble to increase the temperature at desired level. Each step is done in 1 ns period.

To control the pressure of the heated system at 1 bar NPT ensemble in employed. During

modulation of temperature and pressure, protein backbone Cα atoms are restrained with
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a spring force. Furthermore, total 50 ns of equilibration is performed in NPT ensemble to

maintain the temperature and pressure at desired level of 300K at 1bar without any restraint

force. Production runs are also performed in NPT ensemble. The Temperature and pressure

of the system is maintained by berendsen thermostat and barostat (40 ). Simulation timestep

of 2 fs is used for MD simulation. As, hydrogen atom is the lightest atom in the system,

Vibrational frequency of the hydrogen can be lower than the specified timescale. It can create

instability in the system due to the large fluctuation of hydrogen atom. Therefore, SHAKE

algorithm(41 ) is used to put restraint in the movement of hydrogen atom by implementing

lagrangian multiplier. For nonbonded force calculation, 10 Åcutoff distance is used. Periodic

boundary condition is applied for all simulations. To consider the non-bonded long range

interactions, Particle Mesh Ewald method is implemented(42 ). Simulations are performed

with Amber FF14SB(43 ) and GAFF(37 ) forcefield parameters.

Adaptive Sampling

Ligand binding to GPCR is rare event compared to MD simulations timescale. To capture

the entire binding process, Adaptive sampling technique is utilized. This approach has been

shown to sample the conformational ensemble of a variety of biological systems(26 , 44 –

46 ) including the ligand binding process(13 , 47 –50 ). In this technique, data from one

round of simulation is represented by conformational space of protein by using biological

relevant features. The features are used to cluster the protein space using k-means clustering

algorithm. The structures for next round of simulation are selected randomly from the cluster

centers with lowest count of data points. This process is repeated in each round. For this

case, intracellular and extracellular helical distance and THC binding distance from TM5 are

used as adaptive sampling feature matrices. Although adaptive sampling helps to parallelize

the simulation by sampling from lower probability space, it affects the ensemble distribution

and therefore brings sampling error in free energy calculation. To overcome this caveat

Markov state model (discussed below) is implemented to remove the sampling the bias from
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the simulation data. A total 143 µs of simulation data was collected using adaptive sampling

protocol.

Markov State Model

The theory of MSM(51 –53 ) depicts that in a sequence of event, the transition probability of

moving from one state to another depend only on the present state and not on the path the

system has taken to be there. The trajectory of Molecular dynamics simulation follows the

same follows the same principle. According to the verlet algorithm, the evolution coordinate

and momenta of atoms in system only depends on the on the present state. Therefore, MD

trajectory can be assumed to be markovian and according to its nature, the probability

distribution of the protein conformational ensemble can be calculated from the transition

probability matrix between the states. Each element Tij of transition probability matrix

calculates the probability of transition using the equation Tij = Cij/
∑n

j=1Cij where Cij is

the count of jump between the i and j and Ci is the count of frame in state i. To make the

transition probability matrix statistically significant, states with conformation are clustered

together into microstates assuming there is no large energy barrier in the same microstate.

However, clustering of conformational space increases the memory of each state which can

invoke non-markovinity in our system. This issue can be overcome by increasing the lag time

(τ) such that it preseves the markov property and hence satisfies the equation p(t + τ) =

p(t)T (τ) where p(t+ τ) and p(t) are vectors representing the probability of the microstates.

Pyemma(54 ) package is used to construct MSM. We select 23 biologically important features

(Table S1) to capture the THC binding and protein conformational changes. Features are

transformed into time-lagged independent components (tics) (55 , 56 ) to find the slowest

components. Tic components are shown to correlate well with important features for THC

binding (Figures S12A, S12B, and S12C). The transformed data is clustered using k-means

clustering algorithm. For MSM building, lag time is chosen by finding out logarithmic

convergence of process timescales computed from MSM eigenvalues (process timescale t =
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− τ
logeλ

; λ is the eigenvalue) (Figure S13). To find out the optimal number of clusters

and optimal tic variance, MSM is subjected to VAMP2(55 ) scoring to measure the kinetic

variance (Figure S14). Based on Transition matrix, MSM predicts the population (stationary

probablity, πi) of each clustered state which is needed calculate thermodynamics (Gi =

−kbT logeπi) of the process.

Transition path theory

To obtain the kinetics for transition between MSM macrostates, transition path theory

(57 , 58 ) is implemented. TPT calculates the flux between two macrostates (which consists

of one or multiply MSM states) using MSM transition matrix (59 ). The Flux (FAB) is

given by the equation FAB =
∑

i∈A
∑

j /∈A πiTijq
+
j where q+j is probability that state j will

reach macrostate B before A (60 ). From the flux calculation, we can compute mean free

passage time (MFPT) using equation MFPT = τπA
FAB

. where πA is the probability the system

was in macrostate A. TPT calculation is performed with Pyemma (54 ) package. Here, the

macrostates are defined manually. Five MSM states with highest raw count inside area of

interest, is defined as a macrostate. For example, macrostate 4 in Figure 5A is consisted of

five MSM states with highest raw count inside the area where THC(C1’)-TYR2755.39(Cα)

distance is between 9 Å and 13 Å & THC didehral angle is between 60◦ and 120◦.

Trajectory analysis

All the feature calculation and data processing from the MD simulation was done CPPtraj(61 )

and MDtraj (62 ). For the trajectory visualization and analysis, VMD (63 ) and pymol v1.7

(Schrödinger, LLC) software package was used. To calculate ligand and protein residue

contact, GetContacts package (https://getcontacts.github.io/) was implemented.

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.29.441987doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.29.441987
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kinetic Monte Carlo simulation

Kinetic monte carlo (kMC) simulation is a stochastic method to visualize the evolution of a

system based on probability of the transition between different states. In this case, transition

probability of different states was obtained from MSM. There are few steps to implement

kMC in MSM weighted MD data. First, we generate a random number (R) between 0 to 1.

Second, we describe the possible transition event from i as discrete cumulation probability

distribution. Therefore, the cumulative transition probability between i to j can be written

as sij =
∑j

k=1 Tik. If R lies between si,j and si,j+1 then system transition happens from

ith to jth state. Time required for each transition is taken to be the lag time considered

for MSM. Same procedure is repeated desired number of steps. To build a trajectory from

kMC state evolution, we pick a random frame at each step from the chosen state. As we are

interested to observe the ligand binding dynamics, kMC simulation is started from a state

where THC was 25 Å away from TYR2755.39(Cα).

Docking Study

Docking study was performed using Auto dock vina (64 ) software. 3-D structures of partial

agonists are selected from PubChem in sdf format. Antechamber is used to convert the

ligands in mol2 format and add partial changes. Then, Auto dock is used to convert the

ligands into required pdbqt format. For the docking of the ligands in both agonist and

antagonist pose, the box size is calculated from THC binding structure in respective poses.

To dock the ligand in antagonist and agonist bound poses, MD predicted structures are used.

Error Analysis

To determine error in our thermodynamics (Free energy, Conditional probability) and kinet-

ics (TPT) calculations we perform bootstrap analysis on MD data (65 ). In each bootstrap

sample, we randomly pick N trajectories, where N is equal to 80% of total number of trajec-
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tories. We keep the state labeling same as the original MSM. For every bootstrap sample,

MSM is computed to determine thermodynamics and kinetics. Total 200 bootstrap samples

are generated for error calculations.
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56. Pérez-Hernández, G., Paul, F., Giorgino, T., De Fabritiis, G., and Noé, F. (2013) Identi-
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