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Perceptual similarities, or distances between sensory stimuli provide valuable 
information about the structure and geometry of sensory spaces, and typically are 
measured in humans but rarely in other species. However, understanding the 
neural computations responsible for sensory representations requires the 
monitoring and sometime manipulating of neural activity, which is more readily 
achieved in non-human experimental models. Here we develop a behavioral 
paradigm that allows for the quantifying of perceptual similarity between sensory 
stimuli in mice using olfaction as a model system. 

 
 
Perceptually similar objects are represented by similar patterns of neuronal activity in the brain [1]. 
Thus, for multiple sensory objects, both their relative perceptual distances and the structure of their 
perceptual space--its dimensionality and topology--should be reflected in the corresponding space 
of their neural representations. For example, the perceptual proximities between different spectral 
colors reveals the circular organization of hue in two-dimensional space [2, 3], and the perceptual 
similarity between different sounds led to the discovery of the helical organization of musical tone 
[4]. Such information about perceptual space is indispensable for the understanding of neural 
coding mechanisms underlying sensory perception.  
 
However, it is usually difficult to perform both perceptual and neural measurements in the same 
model organism. Most attempts to reveal the perceptual relationship between stimuli were 
performed in psychophysical studies with either human or monkey subjects (but see [5, 6]). Recent 
technological progress makes the mouse an attractive model for recording [7, 8] and manipulating 
[9-13] neural activity at different temporal and spatial scales. However, a lack of behavioral 
methods for measuring perceptual distances prevents the linking of neural activity with perceptual 
space in the same species. 
 
Here we develop a robust and high-throughput method for estimating perceptual distances 
between multiple pairs of sensory stimuli in mice using olfaction as a model system. The choice of 
olfaction is dictated by two main factors. First, olfaction is a highly relevant sensory modality for 
rodents, which makes it easier to train animals on demanding behavioral paradigms. Second, 
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olfaction is one of the least explored primary sensory systems, and our understanding of the 
structure of olfactory perceptual space is still limited [14-16]. Individual odorants (chemical 
molecules) are characterized by thousands of physicochemical features, and the majority of stimuli 
experienced by animals in the wild are complex odor mixtures. How multidimensional sensory 
space is represented in the brain remains unknown.  
 
In human psychophysics, odor perceptual space has been characterized using multiple 
approaches including semantic descriptors [17-19], analog ratings of perceptual qualities [20, 21], 
and analog ratings of perceptual similarity between odors pairs [22]. Among them, only similarity 
ratings between odors can be obtained in non-human model animals including rodents. Given a 
set of pairwise similarity (or distance) of perception across odors, dimensionality reduction 
algorithms lead to the interpretable low dimensional structure that represent perceptual quality of 
odors. In rodent experiments, the cross-habituation paradigm has been used to assess if pairs of 
odors are perceptually similar or not [23]. However, the paradigm is low-throughput and requires 
many animals for each of odor pair. Due to this limitation, it is challenging to collect sufficient 
pairwise similarity measurements to recover the structure of perceptual space.  
 
To overcome this limitation, we designed a behavioral paradigm that allows us to perform high-
throughput measurement of perceptual distances across many odor pairs. We used a delayed 
match-to-sample (DMTS) behavioral paradigm, where mice are trained to respond differently 
depending on whether two sequentially presented odors are the same or different. The probability 
that a trained mouse responds as if two odors within a trial are the same (or different) is taken to 
reflect odor pairwise perceptual similarities (or distances). 
 
The DMTS paradigm was originally developed for pigeons and monkeys [24, 25], and has been 
used to study short-term memory in primates and, more recently, visual perception [26]. The 
olfactory DMTS task was initially established for freely moving rodents [27] and recently used with 
head-fixed rodents to study short-term memory [28-30]. In these experiments, only a small number 
of stimuli (usually two odors) were used. Introducing every new odor pair would require new 
training and testing many odor pairs would be impractically time consuming [30]. 
 
Differently from previous studies, we trained mice to perform the task against many odors, thus 
preventing mice from forming behavioral strategies that are only applied to specific odors. This 
allows us to use the task for high-throughput measurement of pairwise odor perceptual distances-
-similar to that undertaken in human studies. We collected behavioral data for more than a hundred 
of odor pairs, and demonstrated the relationship between a newly proposed behavioral 
measurement and perceptual odor similarities. 
 
The behavior paradigm was designed to make animals compare two odors that are presented 
within the same trial. Mice received two sequential odor presentations (1 s duration each, and 5 s 
inter-stimulus interval) followed by a 1 s response window (Fig. 1a). If two odor stimuli were the 
same (a match trial), mice should respond by licking a center water spout during the response time 
window (go response). If not (a non-match trial), the correct response was to suppress licking (no-
go response) (Fig. 1b).  In non-match trials, mice were rewarded for no-go responses with a drop 
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of water from a side water spout. Although two water spouts are used, licking or not-licking the 
side water spout does not affect the reward contingency. Thus, we still consider this paradigm to 
be based on go/no-go decisions.  
 
Odors in each trial were pseudorandomly chosen from a panel of monomolecular odors and their 
binary mixtures (Table 1). To discourage mice from comparing two odors based on their intensity, 
we randomized odor concentrations at each trial for the same odor identity presenting either high 
or low concentrations with 5-fold differences.  
 
Trained mice exhibited differential lick responses between match and non-match trials (Fig. 1c) 
with the probability of a no-go response being 0.31 ± 0.02 and 0.65 ± 0.04 respectively (mean ± 
std, across all odor identities and all mice) (Fig. 1d).  
 
We collected data from 10 mice over 308 sessions (75195 total trials after excluding the first 5 
trials of each session) for a panel of 8 monomolecular odors and 16 binary mixtures (Fig. 2a). The 
probability of an error in non-match trials varied across different odor pairs, and we assumed it 
may be a measure of odor perceptual similarity. Thus, we propose a distance metric as the 
probability of correct responses in non-match trials (Pno-go) normalized by the probability of error 
responses on match trials for identical odors in a way similar to previous work [31]:  

𝐷(𝐴, 𝐵) = 1	 −	 !	#	$!"#$"(&,()

*(!	#	$!"#$"(&,&))(!	#	$!"#$"((,())
     (Eq. 1) 

The distance is equal to zero for identical odors, and increases as odors became less similar. The 
distribution of the distances for all measured odor pairs is presented in Fig. 2b. For data 
visualization purposes, we applied multidimensional scaling (MDS) [32-34] to the distance matrix 
and presented an odor-odor distance graph in the three-dimensional space (Fig. 2c).  
 
To test the assumption that our proposed distance metric reflects a perceptual distance between 
odors, we performed a series of experiments with binary mixtures. For humans, the most common 
outcome of perceiving a binary mixture is an average of the qualitative odor descriptors for the 
component molecules [35].  Thus, we first hypothesized that the distance between two odors 
should be greater than between one of them and their binary mixture: 𝐷(𝐴, 𝐴𝐵) < 𝐷(𝐴, 𝐵). Second, 
we assumed that the distance between two binary mixtures sharing a common component should 
be lesser than the distance between odors not sharing a common component: 𝐷(𝐴𝐶, 𝐵𝐶) <
𝐷(𝐴, 𝐵) (Fig. 2d). We find that both of these assumptions are satisfied, on average (Fig. 2d) and 
for each odor pair (Fig. 2e). (𝐷(𝐴, 𝐵) > 𝐷(𝐴, 𝐴𝐵): p = 0.0039,	𝐷(𝐴𝐶, 𝐵𝐶) < 𝐷(𝐴, 𝐵): p = 0.0039, n 
= 10 mice, Wilcoxon signed-rank test after Bonferroni correction of p-values.) 
 
From human studies we also know that chemically similarity, on average, correlates with 
perceptual similarity [22]. To test this in our data, we divided odors into two groups: acids and non-
acids. The average perceptual distance between acids was significantly smaller than for between 
acids and non-acids (median distance within acids (163 pairs): 0.47, median distance between 
acids and non-acids (220 pairs): 0.66 (p < 10–-33, Mann-Whitney U-test) (Fig. 2f). 
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Our analyses of binary mixtures and odors from different chemical groups provide encouraging 
evidence that our metric can be used to measure distances in perceptual space. We further 
performed a series of experiments and analyses to confirm that the behavioral responses primarily 
depend on odor identity rather than other aspects of the task including odor concentration, short-
term memory, long-term drift in performance, and odor presentation sequence. 
 
To investigate the influence of different variables on choice behavior, we fit logistic regression 
models, which was designed to predict choice based on the distance metric, 𝐷(𝐴, 𝐵), and other 
behavioral variables such as 1) concentrations of the 1st and 2nd odor in the trail: 𝑋+,-+!, 𝑋+,-+. =
0	𝑜𝑟	1 for the low or high concentrations; 2)  phase of data collection, 𝑋/01234 = 0	𝑜𝑟	1 for the  1st vs 
2nd half of total set of trials; and 3) a sequence of odor presentation, 𝑋456 = −1	𝑜𝑟	1 for A->B and  
B->A odor presentations in non-match trials and 𝑋456 = 0  for match trials. To compare the 
regression coefficients, we normalized the variances and subtracted the means of individual 
independent variables. The absolute value of regression coefficients in the model indicated that 
the distance metric had larger influence on choice behavior than other task variables: 𝐷(𝐴, 𝐵) vs 
𝑋+,-+!, 𝑝 < 0.001; 𝐷(𝐴, 𝐵) vs 𝑋+,-+., 𝑝 < 0.001; 𝐷(𝐴, 𝐵) vs 𝑋/02134, 𝑝 < 0.001;	𝐷(𝐴, 𝐵) vs 𝑋456, 𝑝 <
0.001 (Tukey’s honestly significant difference test) (Fig. 3a). As expected from the regression 
coefficient, logit9𝑃-,7,; (the left-hand side of (Eq.2)) increased as the distance metric 𝐷(𝐴, 𝐵) 
increases (Extended fig. 2a). In a separate experiment we vary the delay between odor 
presentations (𝑋85329 = 0 or 1, for 3 s and 5 s delays) and repeated regression analysis for a new 
data set adding the additional independent variable 𝑋85329 . Again, we found that the effect of 
distance metric is significantly large than that of the delay: 𝐷(𝐴, 𝐵) vs 𝑋85329, 𝑝 < 0.001 (Fig. 3b, 
Extended fig. 2b). 
 
All experiments indicate that the proposed metric reflects perceptual distances, similar to what is 
undertaken in human experiments. The critical question remains if the measurement is conserved 
across mice. Potentially, each mouse may exploit a single perceptual feature or subset of features 
to make judgements in the DMTS paradigm, and mice may not share the same criteria. We found 
that correlations across mice are relatively high: a median Pearson correlation coefficient equal to 
0.44, higher than values previously reported in humans [21]. Moreover, the correlation coefficient 
obtained from data was not significantly different from that calculated from simulated data 
assuming a common underlying perceptual distance matrix for all mice (Fig.3e, top, median 
correlation in data (45 pairs): 0.44, median correlation in simulated data (45 pairs) 0.51, p = 0.077, 
Wilcoxon signed-rank test). Finally, this coefficient also increases with the number of trials (Fig. 
3e, bottom), indicating that the correlation of perceptual distances across mice would increase 
with a greater number of trials.  
 
These experiments indicate that the behavioral readouts are consistent with what is expected from 
perceptual distances. Notably, we found that perceptual distances largely agree across different 
animals. This observation, along with the possibility of testing many odors, makes our paradigm a 
promising tool to investigate olfactory perceptual space. Robust psychophysical measurements of 
the perceptual distances in mice allows for capitalizing on all advances in mouse genetics and 
modern methods for recording and manipulating neural activity. In addition, these methods have a 
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lower implementation threshold in head-fixed animals. We expect our behavioral paradigm will 
contribute to the study of the neural coding of olfaction through direct comparison between 
perceptual evaluation of odors and corresponding neuronal activity. Beyond research into mouse 
olfaction, this paradigm allows sensory perception to be studied in generalized settings similarly to 
human psychophysics. 
 
Methods 
 
Animals. Both male and female Thy1-GCaMP6f (GP5.11) mice (Stock No: 024339) (Jackson 
laboratories) were used in the task. At the start of behavioral training, mice were at least two 
months old and had 20 g body weight. Mice were housed under a 12-hour inverted light/dark cycle. 
All procedures were approved under a New York University Langone Health institutional animal 
care and use committee (IACUC). 
 
Animal surgeries. Prior to behavioral training, mice were implanted with a 3D-printed head-bar 
for head fixation in the behavioral apparatus. Mice were anesthetized with isoflurane (2% for 
induction, 1.5% during surgery) and placed on a heated floor during surgery. Skin overlying the 
skull was sterilized with betadine and incised to expose the skull. The periosteum was gently 
scraped away and the surface of the skull was cleaned with hydrogen peroxide. The head-bar was 
fixed to the skull using C&B Metabond dental cement (Parkell). 
 
Odor delivery. A two-cassette air-dilution olfactometer was used to prepare and deliver odors with 
specific concentrations (Extended Fig. 1).  Each olfactometer cassette consisted of two mass flow 
controllers (MFCs), (Alicat, MC-100SCCM-D/5M/5IN and MC-1SLPM-D/5M/5IN), four inline teflon 
four-valve manifolds, (NReserach, 225T082), one on-off clean-air three port bypass valve 
(NResearch, TI1403270), and eight odor vials.  Odors were diluted in water and stored in amber 
volatile organic analysis vials (Restek, 21797). The total air flow (usually 1000 ml/min) and relative 
odor concentration were controlled by MFCs. To deliver the odor stimuli, specific odor valves were 
opened prior to the beginning of each trial and the odorized air flow was diverted to the exhaust 
line by a final valve (NResearch, SH360T042), while a controlled flow of clean air at the same flow 
rate was delivered to an odor port. After flow stabilized (~1 sec), the final valve switches between 
odorized flow and clean air flow, and odor is delivered to the odor port with <100 ms latency. At 
the end of stimulus presentation, the final valve switches again and delivers clean air to the odor 
port. The olfactometer enables the dilution of odors between 10- and 100-fold, as well as the 
delivery of binary mixtures by mixing two regulated flows from different cassettes. The binary 
mixture ratio was controlled by relative flows through odor vials, while total flow was kept constant. 
 
Odor stimulus. Eight or ten monomolecular odors and their binary mixtures were used for each 
experiment (Table 1). All monomolecular odors were diluted in deionized water with following 
dilutions in v/v and stored in vials during experiments. These odor dilutions were prepared daily 
and were placed in two different cassettes. Each olfactometer contained four or five odors to 
enable the generation of binary mixtures by mixing odors from different cassettes. The initial 
headspace concentration was estimated based on saturated vapor pressure from a given chemical 
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at a specific dilution. Following this, the odor was diluted between 10- and 100-fold using air dilution 
in the olfactometer. Specific dilutions for each experiment are presented in Table 1.    
 
Behavioral setup. Mice were head-fixed and placed on a wheel allowing free running and 
experienced minimal stress (Extended Fig. 2). A mouse snout was placed into a specially 
designed odor port (made of PTFE). The odor port was connected to the olfactometer, from which 
odorized air was delivered, and a vacuum line was present to quickly remove the odorized air 
during interstimulus intervals. Mice were trained to register their behavioral judgments by licking 
water spouts, and licking was detected using a capacitive touch sensor (Sparkfun, SEN-1204). 
Two water spouts were installed, one in the center and the other to the side of the position of a 
mouse snout in the odor port. Water delivery was controlled by a pinch valve (Valcor, SV74P61T). 
All behavioral events (stimulus delivery, water delivery, and lick detection) were monitored and 
controlled by custom programs written in Python interfacing with a custom behavioral control 
system (Janelia Research Campus) based on an Arduino Mega 2560 microcontroller.  
 
Behavioral paradigm. The behavioral paradigm aims to train mice to judge whether two odors 
presented in each trial are the same or not. In each trial, mice were presented with two sequential 
1 s odor stimuli, separated by a delay period of 5 s. The odor stimuli were either the same (match 
trails) or different (non-match trails). Mice were trained with a lick based go-nogo paradigm and 
instructed to report their behavioral judgment during a 1 s response window, which occurs 0.5 – 
1.5 s after the offset of the second odor presentation in each trial (Fig. 1a-b). Odor concentration 
for each presentation was randomized by adjusting the air flow. Only the center water spout was 
used to evaluate behavioral response, and licking the side water spout had no effect on trial 
outcome. Mice were trained to lick (go choice) the center water spout in match trials and to 
suppress licks (no-go choice) in non-match trials. At the end of a response window, correct 
responses were followed by reward delivery in the center spout (go choice in match trials) or in the 
side water spout (no-go choice in non-match trials).  
 
Behavioral training. The training procedure consisted of multiple steps outlined below:  
1. Water restriction and habituation. During the entire period of behavioral training, mice were kept 
under water deprivation, which began at least one week after surgery. Mice received a total of 1 
ml of water per day either as accumulated rewards for behavioral performance, or supplemented 
to the full amount at the end of the day. During the initial phase, mice were habituated to the 
handling by experimenters for 10 – 15 min per day. Once mice comfortably drink water drops on 
the glove of experimenter’s hand, mice began being habituated to the experimental setup. During 
the habituation to experimental setup, mice were head-fixed on the running wheel and placed in 
the behavioral box for 10-15 min per day. During this phase, mice were occasionally presented 
with water through a syringe. Once mice show reliable licking responses to water delivered through 
a syringe, mice began lick training. 
 
2. Lick training. The purpose of this phase was for mice to learn to lick water spouts to obtain a 
water reward. Mice were given a 1 – 1.5 ul water drop each time they licked water spouts. Both 
center and side water spouts were introduced and a water reward was provided alternately from 
them. In case mice did not lick the water spouts at all, multiple water drops were delivered by 
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experimenters until mice started licking water spouts. Mice proceeded to the next training step if 
they received 100 water drops within 30 minutes. Otherwise, lick training was repeated in the 
following days.  
 
3. Behavioral shaping step one – Pavlovian shaping. The purpose of this step is to get mice 
familiarized with the timing of behavioral events and water reward delivery. At each trial, mice were 
presented with the same odor twice with 3 s delay, which was followed by a 1 s response window 
(0.2 – 1.2 s from the second odor offset). At this step, only match trials were presented and two 
odor presentations in a given trial were always the same. 5 ul of water reward were delivered at 
the end of response window regardless of behavioral responses. Although licking behavior of mice 
had no consequence on reward delivery, mice started to show anticipatory licking during the 
response time window. If mice licked during the response window at >80% of trials across 80 trials, 
mice proceeded to the next step. In shaping steps one to three, all odors in odor set 2 in Table 1 
were used. 
 
4. Behavioral shaping step two – odor lick association. The purpose of this step was to make mice 
lick during the response window to receive a water reward. The trial structure was same as in step 
one, except mice had to lick a water spout during the response window (0.5 – 1.5 sec from the 
second odor offset) in order to trigger water delivery. No water was delivered if mice did not lick 
the water spout during the response time interval. If mice received a water reward for >80% of 
trials across 100 trials, they proceeded to the next step. 
 
5. Behavioral shaping step three – full task training. At this step, mice were presented with both 
match and non-match trials. The timing of the response window was set to 0.5 – 1.5 s from the 
second odor offset. The delay duration between two odor presentations was set to 3 s at the first 
session of this step. The delay duration was increased by 0.5 s if mice achieved 70% or more 
correct performance in the previous behavioral sessions.  
 
Trial type (match/non-match) for each trial was chosen pseudorandomly so that mice did not 
receive rewards from same trial types in four or more consecutive trials. We also implemented a 
bias correction strategy. If a choice bias could be predicted from the response history of the past 
three trials, the trial type of the coming trial was chosen so that the biased response would be 
incorrect. Otherwise, match and non-match trials were presented with equal probability. For this 
step, odor mixtures sharing a component (AC and BC) or an odor mixture and one of its component 
odors (AB and A) were not presented in the same trials to avoid confusing animals. Once mice 
showed >70% correct performance across 100 trials with 5 sec delay, they were ready to be used 
to test perceptual similarities between odors of interest. 
 
6. Testing of perceptual similarity. The task was performed as in shaping step three, except that 
all combinations of first and second odors were used. Delay duration was fixed at 5 s, unless the 
effect of delay duration was being investigated (Fig. 3b, 3 s and 5 s). The first five trials of each 
session were match trials to encourage mice to lick water spouts, and these trials were excluded 
from all analyses. The number of mice, sessions, and trials of each data set are summarized in 
Table 2. 
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Quantification of perceptual distances. The perceptual distance between a pair of odors was 
calculated based on the fraction of non-match trials where mice gave the correct response (no-go 
choice). The probability of a no-go choice for a given odor pair was normalized by the lapse rate 
for individual odors, i.e. the probabilities of a no-go choice for match trails (see Eq 1). For a reliable 
estimate of perceptual distances, it is desirable to have at least 100 trials for each odor pair. The 
transformation from no-go probabilities to the distance measure makes all diagonal elements of 
the distance matrix take a value of 0. Some non-match odor pairs may take a negative value due 
to a small number of trials. The negative values were replaced by 0.001 to keep all non-match 
odor pairs distinct from self-comparison (match trials), which correspond to zero distance. 
 
Multidimensional scaling. We used non-classical metric multidimensional scaling (MDS) to 
calculate a low-dimensional representation of odor perceptual space [32, 33]. MDS was performed 
using the Python scikit-learn package (sklearn.manifold.MDS). MDS takes a pairwise distance 
matrix as input and returns coordinates of data points in low dimensional space, such that pairwise 
distances in the input are maximally conserved. Non-classical metric MDS was applied to the 
matrix representing pairwise perceptual distance between odor pairs. We used a scaling 
dimension of three for visualization. 
 
Statistics. Perceptual distances between odor mixtures were compared (Fig. 2d) using Wilcoxon 
signed-rank test. First, the probability of a no-go choice was calculated for each trial type (match, 
A-B, AC-BC and A-AB) separately for individual mice. Comparisons were performed for pairs (A-
B, AC-BC) and (A-B, A-AB) by treating mice as repeated measures. p-values were corrected for 
multiple comparisons with the Bonferroni method. 
 
For the comparison of distances between acids and those between acids and non-acids (Fig. 2f), 
we first calculated perceptual distances across all odor pairs by pooling trials from all animals. 
Then, we classified the perceptual distances into two groups: distances between acids, and 
distances between acids and non-acids. Odor pairs including binary mixtures of both acids and 
non-acids were excluded from this analysis. The difference between these groups was tested with 
the Mann–Whitney U test. 
 
To quantify the effects of odor identity and other behavioral variables, we fit logistic regression 
model [36]: 
 
log < :

!#:
= = 𝛽; + 𝛽,8𝐷(𝐴, 𝐵) + 𝛽+,-+!𝑋+,-+! + 𝛽+,-+.𝑋+,-+. + 𝛽/01234𝑋/01234 + 𝛽456𝑋456, (Eq. 2) 

log < :
!#:

= = 𝛽; + 𝛽,8𝐷(𝐴, 𝐵) + 𝛽+,-+!𝑋+,-+! + 𝛽+,-+.𝑋+,-+. + 𝛽/01234𝑋/01234 + 𝛽456𝑋456   

           +𝛽85329𝑋85329 ,          (Eq. 3) 

where 𝑝 is probability of no-lick responses; 𝐷(𝐴, 𝐵)	is the distance between odors A and B defined 
in (Eq.1), and calculated separately for each mouse; 𝑋+,-+! and 𝑋+,-+. are concentrations of the 
1st and 2nd odor in the trail: 𝑋+,-+!, 𝑋+,-+! = 0	𝑜𝑟	1 for the low or high concentrations; 𝑋/01234 is a 
phase of data collection, 𝑋/01234 = 0	𝑜𝑟	1 for the  1st vs 2nd half of total set of trials; 𝑋456  is a 
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sequence of odor presentation, 𝑋456 = −1	𝑜𝑟	1 for A->B and  B->A odor presentations in non-
match trials and 𝑋456 = 0 for match trials. Assignment of values of A->B and B->A sequencies 
were randomized. 𝑋85329 is a delay between sequential odor presentation in one trial, 𝑋85329 =
0	𝑜𝑟	1, for 3 s and 5 s delays. Regression coefficients were calculated by averaging results from 
50 different random implementations of sequence assignments.  

 
To compare the amplitude of different independent variables, these were standardized so that 
mean and standard deviation of each variable becomes 0 and 1 respectively. We fit these 
regression models using statsmodels package in Python [37]. We compared absolute value of 
regression coefficients using One-way ANOVA and post hoc tests corrected for multiple 
comparisons (Tukey's Honestly Significant Difference test). 
 
To illustrate the relationship between the left-hand side of (Eq. 2) or (Eq. 3) and the distance metric, 
we grouped trials based on the range of values of 𝐷(𝐴, 𝐵) . For each range of 𝐷(𝐴, 𝐵) , we 
calculated the log < :

!#:
= that appears in (Eq. 2) and (Eq. 3). 

 
To calculate the Pearson correlation coefficients of perceptual distance matrices of mouse pairs 
(Fig. 3c), we first we calculated a distance matrix for each mouse as described above. Then, 
Pearson correlation coefficients between a pair of distance matrices was calculated using only the 
off-diagonal elements of each matrix. Simulated perceptual distance matrices were created as 
follows. First, we calculated a matrix of probabilities of no-go choices (𝑃233) by pooling trials from 
all mice. The simulated probability of a no-go choice 𝑃<(𝑖, 𝑗)	for an odor pair (i, j) in mouse-m was 
calculated using a sample from binomial distribution 𝐵(𝑛, 𝑝). 

𝑃<(𝑖, 𝑗) 	= 	
𝐵9𝑁<(𝑖, 𝑗), 𝑃233(𝑖, 𝑗);

𝑁<(𝑖, 𝑗)
 

where 𝑁<(𝑖, 𝑗) is the number of trials in which mouse m received an odor pair (i, j), 𝑃233(𝑖, 𝑗) is the 
probability of a no-go choice for an odor pair (i, j), calculated from data across all mice. The 
simulated probability of no-go choice was converted to perceptual distance (Eq. 1) and correlation 
coefficients between pairs of mice were calculated from simulated perceptual distance matrix for 
each mouse. The simulated perceptual distance was calculated 1000 times with different random 
seeds and the average Pearson correlation of these 1000 samples were used as the simulated 
correlation. 
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Figure 1 | Characterization of task performance. a, The sequence of events in a delayed match-to-sample 
task trial. b, Schematics of two trial types. Left panel: match trials - the correct behavior response is licking 
a center port (go), followed by a water reward provided from the same port. Right panel: non-match trials - 
the correct behavior response is not licking the center port (no-go), followed by a reward provided from a 
side lick port. Licking to the side port during the response window did not affect outcomes. c, Lick patterns 
in example trials. Each row represents a single trial. Licks are shown as black ticks. d, Probability of a no-
go choice by odor identity. Trials were assigned to a specific odor identity if that odor was presented either 
on first or second presentations. Circles correspond to individual mice, bars are averages across mice.   
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Figure2 | Validation of the behavioral readout as a measure of a perceptual distance. a, Matrix and 
distribution (insert) of probabilities of a no-go choice for each of odor pair. b, Perceptual distance matrix 
calculated from the matrix in a. c, MDS embedding of odors calculated from the distance matrix in b. d, Top: 
A schematic illustrating perceptual distances between binary mixtures and their component odors. Bottom: 
Average probabilities of a no-go choice for match trials and three types of non-match trials corresponding to 
different odor and binary mixture trials. e, Individual odor pair scatter plots corresponding to the relationship 
shown in d, top: D(A, AB) vs D(A, B), bottom: D(AC, BC) vs D(A, B). f, Distribution of the distances between 
acids (mean: Dmedian = 0.47) and between acids and non-acids (mean: Dmedian = 0.66). 
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Figure 3 | Odor pair dependence and across animal conservation of behavioral readouts. a, 
b, Absolute value of regression coefficients in the regression model (a) and relationship between 
distance metric and left-hand side of Eq.2 (b). c,d, Same as in a and b for regression model 
including variable delay. e, Comparison of perceptual distances across animals. Top: Distribution 
of correlation coefficients of perceptual distances between mouse pairs. Bottom: The relationship 
between the number of trials and the pairwise correlation of perceptual distances between mouse 
pairs. 
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Table 1 | Odors used in the experiments 
 

Set Odor name Abbreviation Liquid  
dilution 

Headspace 
concentration (M) 

Air dilution 
range 

1 

Cinnamaldehyde CinAld 0.0004 8.9 x 10-10 

0.01 – 0.05 

Ethyl butyrate EB 0.0008 9.1 x 10-7 

2-Methylbutyric acid 2MBAcd 0.0004 8.9 x 10-9 
2,2-Dimethylbutyric acid 22DMBAcd 0.0004 2.3 x 10-9 

Cyclopentanecarboxylic acid CPAcd 0.0012 1.1 x 10-8 
2-Heptanone 2Hep 0.0002 4.2 x 10-8 
Isobutyric acid IBAcd 0.0004 7.6 x 10-8 

Isovaleric acid IVAcd 0.0004 1.6 x 10-8 

2 

3-Heptanone 3Hep 0.001 1.8 x 10-7 

0.02 – 0.1 
 

Methylvalerate MVT 0.0002 1.6 x 10-7 
Ethyl butyrate EB 0.0018 2.0 x 10-6  

Propionic acid PpAcd 0.0063 2.0 x 10-7 
Butyric acid ButAcd 0.001 4.5 x 10-8 

(+)-α-Pinene Pinene 0.001 2.9 x 10-7 
Benzaldehyde BzAld 0.0004 4.9 x 10-8 
5-Methyl-2-Hexanone 5M2H 0.0002 6.9 x 10-8 

3 

3-Heptanone 3Hep 0.001 1.8 x 10-7 

0.01 – 0.05 
 

Ethyl butyrate EB 0.0018 2.0 x 10-6 

Valeric acid ValAcd 0.0002 3.5 x 10-9 
3-Methylvaleric acid 3MVAcd 0.0002 2.3 x 10-9 

3,3-Dimethylbutyric acid 33DMBAcd 0.0002 4.6 x 10-9 
(+)-alpha-Pinene Pinene 0.001 2.9 x 10-7 

Benzaldehyde BzAld 0.0004 4.9 x 10-8 
Isovaleric acid IVAcd 0.0002 7.8 x 10-9 
4-Methylvaleric acid 4MVAcd 0.0002 2.1 x 10-9 

Hexanoic acid HexAcd 0.0002 2.8 x 10-9 

 
 
Table 2 | Trial statistics of different odor sets 
 

Set # of mice # of trials # of sessions Trial # / session 
(mean ± std) 

1 10 75195 308 244.1 ± 73.2 
2 6 24295 107 227.1 ± 75.0 
3 12 58232 259 224.8 ± 80.3 
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Extended figure 1 | Experimental setup. Left: the odor delivery system. Odors are delivered 
using a two-cassette air dilution olfactometer. Each cassette has 8 odor vials and two Mass Flow 
Controllers (MFCs) for flow ranges of 0-1000 ml/min and 0-100 ml/min. To prepare an odor a pair 
of valves for a single odor vial is opened and an odorized air flow (1000 ml/min) is first directed to 
the exhaust via the final valve. Clean air of the same flow is delivered to the odor port. After 
approximately 1 sec of the flow stabilization, the final valve redirects the odorized flow to the odor 
port and the clean air to the exhaust. The concertation is controlled by a ratio of the MFC flows. 
To deliver a binary mixture, two vials from different cassettes are opened simultaneously. The air 
is continuously pumped away from the odor port with the same air flow rate. Right: behavioral 
setup. A mouse is positioned on a freely rotating running wheel with its head fixed. The mouse 
snout is placed in the odor port. The water delivery spout is positioned below the odor port opening. 
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Extended figure 2 | Relationship between distance metric and logit of probability of nogo 
choice. a.  plot showing the dependence of  logit9𝑃-,7,; (left-hand side of (Eq. 2)) on distance 
metric between odor pairs. x-axis represents percentile of distance metric across all odor pairs. b. 
same as in a for (Eq.3) 
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