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Abstract 

During the past decade, whole-genome sequencing of tumor biopsies and individuals with 
congenital disorders highlighted the phenomenon of chromoanagenesis, a single chaotic event 
of chromosomal rearrangement. Chromoanagenesis was shown to be frequent in many types 
of cancers, to occur in early stages of cancer development, and significantly impact the tumor’s 
nature. However, an in-depth, cancer-type dependent analysis has been somewhat incomplete 
due to the shortage in whole genome sequencing of cancerous samples. In this study, we 
extracted data from The Pan-Cancer Analysis of Whole Genome (PCAWG) and The Cancer 
Genome Atlas (TCGA) to construct a machine learning algorithm that can detect 
chromoanagenesis with high accuracy (86%). The algorithm was applied to ~10,000 TCGA 
cancer patients. We utilize the chromoanagenesis assignment results, to analyze cancer-type 
specific chromoanagenesis characteristics in 20 TCGA cancer types. Our results unveil 
prominent genes affected in either chromoanagenesis or non-chromoanagenesis 
tumorigenesis. The analysis reveals a mutual exclusivity relationship between the genes 
impaired in chromoanagenesis versus non-chromoanagenesis cases. We offer the discovered 
characteristics as possible targets for cancer diagnostic and therapeutic purposes. 

Introduction 

Over the past decade, the term chromoanagenesis (for chromosome rebirth) was coined to 
describe a catastrophic cellular event in which large numbers of complex rearrangements 
occur at one or a few chromosomal loci. A chromoanagenesis event consists of multiple 
chromosomal breakage and results in a variety of chromosomal abnormalities, including copy 
number alterations (CNA), inversions, and inter-and intra-chromosomal translocations. There 
are three subtypes of chromoanagenesis: chromothripsis, chromoplexy and 
chromoanasynthesis1,2. The three subtypes differ in the presumed underlying mechanism and 
rearrangement patterns. Chromoanagenesis was originally discovered in tumor cells and in 
individuals with congenital disorders3. It was also found in healthy individuals4. The full extent 
and impact of the different types of chromoanagenesis remain unknown. Most commonly, 
whole genome sequencing is applied in order to identify the phenomenon. 

The most exhaustive research on chromoanagenesis was performed as a part of The Pan-
Cancer Analysis of Whole Genomes (PCAWG) study5. The analysis included 2,658 cancer 
genomes and their matching normal tissues across 38 tumor types. The study confirmed that 
chromoanagenesis is common in many cancer types. There is an overlap of 799 of the examined 
genomes (from 22 tumor types), with The Cancer Genome Atlas (TCGA) project. We utilized this 
overlap in order to curate a data set with TCGA genic CNA data, and PCAWG chromoanagenesis 
labeling. We utilized the data set to create a highly accurate machine learning model that 
identifies chromoanagenesis and employed it on ~10,000 cancerous samples from TCGA. 

In this study we performed an in-depth analysis of chromoanagenesis somatic, cancer-type 
specific characteristics while focusing on coding genes. Many of the found somatic single 
nucleotide variants (SNV) and CNA patterns match previous studies, as we concur on 
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chromoanagenesis related genes. Additionally, we identified CNA and cancer-type specific 
mutual-exclusivity patterns matching established observations that were reported regardless of 
chromoanagenesis. We offer our TCGA samples classification and novel discoveries as the basis 
for further investigating chromoanagenesis. 

Results  

Chromoanagenesis status for 799 cancer samples from 22 cancer types in the TCGA cohort was 
collected via PCAWG (see Methods). Overall, 371 of the samples (46.4%) had 
chromoanagenesis. The chromoanagenesis samples can be further divided: 64 have 
chromothripsis, 143 have both chromothripsis and other complex chromosomal events, and 
164 with only other, non-chromothripsis, complex chromosomal events.  

Chromoanagenesis frequency varied greatly between cancer types, ranging from 3% in thyroid 
carcinoma (THCA) to 88% in glioblastoma (GBM). Chromoanagenesis subtype distributions also 
varied among cancer types. For example, 75% of Kidney renal clear cell carcinoma (KIRC) 
chromoanagenesis samples had chromothripsis while 57% of Liver hepatocellular carcinoma 
(LIHC) chromoanagenesis samples had strictly non-chromothripsis events (Fig. 1a).  

 

Figure 1. Chromoanagenesis in PCAWG-TCGA joint samples 

The PCAWG cohort includes chromoanagenesis status for 799 individuals with 22 types of cancer. Notably, TCGA 

samples normally only have CNA data rather than whole genome sequencing. (a) Cancer type and 

chromoanagenesis subtypes distribution for the 799 individuals. (b) A schematic depicting the common 

chromosomal abnormalities caused by chromoanagenesis, and presents which of the abnormalities can be 

captured when using genic CNA data. 
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Cancer type impacts genic CNA frequency  

We collected masked genic CNA from TCGA for the 799 samples. Namely, for each sample and 
for 19,729 known coding genes, we know whether the number of copies in the somatic sample 
is higher, identical or smaller than in the matching germline sample (see Methods). We chose to 
use genic CNA (derived from GISTIC6 results) and not whole genome CNA to reduce noise and 
limit data dimensionality. Notably, genic CNA cannot capture all key chromoanagenesis 
features. Specifically, we cannot detect inter-chromosomal and intra-chromosomal 
translocations or inversions. Similarly, deletions or insertions in intergenic regions are not 
recorded. Accordingly, chromoplexy, which has less CNA than other types of 
chromoanagenesis, might be missed (Fig. 1b).  

We examined the total number of genes with CNA for each of the four chromoanagenesis 
states: (i) no chromoanagenesis; (ii) chromothripsis; (iii) chromothripsis and other complex 
chromosomal events; (iv) non-chromothripsis complex chromosomal events. In all three 
chromoanagenesis groups, the number of genes with CNA was significantly higher. The mean 
number of genes with altered copy number is 559.2 for the no chromoanagenesis group, 701.2 
for chromothripsis, 1268.5 for samples with both chromoanagenesis and other complex events 
and 964.1 for non-chromothripsis complex events. One-way Anova test yields a p-value of 1.5e-
24 (Fig. 2a). Similar results and trends were observed when examining separately CNA for 
deletion or amplification events (Fig. S1).  

The variability in the total number of CNAs is heavily influenced by cancer type, as different 
cancer types have wildly distinct somatic characteristics. The TCGA-PCAWG samples are 
distributed unevenly among cancer types and chromoanagenesis status. Therefore, the total 
number of genic CNA will not suffice to identify a sample’s chromoanagenesis status. For 
example, for BRCA (Breast invasive carcinoma) and LUSC (Lung squamous cell carcinoma), a 
one-way Anova test on chromoanagenesis number of genic CNA yields non-significant p-values 
of 0.42 and 0.88, respectively (Fig. 2b). The genic CNA distribution among all 33 cancer types in 
TCGA is presented in Fig. 2c. The different cancer-type samples exhibit huge variability in the 
number of altered genes. The mean number of altered genes per cancer type range over 2-3 
orders of magnitude with minimal number in thyroid carcinoma (THCA) and maximal in ovarian 
serous cystadenocarcinoma (OV). 
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Figure 2. Genic CNA frequency in PCAWG-TCGA 

(a) Boxplots for the number of genes with altered copy number for each chromoanagenesis subtype. (b) Boxplots 

for the number of genes with altered copy number for BRCA and LUSC patients. (c) Genic CNA number 

distribution in each of the 33 types of cancer included in TCGA. The cancer types are sorted by the median 

number of copy-altered genes (marked by an orange bar). 

 

Predicting chromoanagenesis at high accuracy 

To overcome the variation in somatic background and chromoanagenesis proportions between 
cancer types, we examined more complex genic CNA attributes as chromoanagenesis status 
predictors. When examining adjacent genes on the same chromosomal arm, it is likely that a 
similar CNA status (i.e., amplification or deletion) is attributed to the same CNA event. The 
alternative possibility of having unrelated similar CNA events in adjacent genes is less probable. 
We used this assessment to measure different CNA features for each chromosomal arm. For 
example, the number of genes affected by the same CNA or the number of gene-affecting CNA 
per chromosomal arm.  

A key indicator for chromoanagenesis is CNA oscillations along the affected chromosomes. We 
calculated the number and length (in genes) of oscillations per chromosomal arm. Interestingly, 
the chromoanagenesis samples include one or few chromosomal arms with exceptionally high 
number of oscillations. Contrastingly, the non-chromoanagenesis samples (with many 
oscillations) include many chromosomal arms with a high number of oscillations (Fig. 3). This 
attribute is exactly what is expected in the context of chromoanagenesis. Consequently, some 
features were engineered to express the difference between maximal number of oscillations (in 
a chromosomal arm) and the average number of oscillations (across all chromosomal arms). 
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Figure 3. Chromoanagenesis samples present chromosome-specific CNA oscillations 
CNA patterns for 4 representative PCAWG-TCGA samples. For each chromosome, gene amplification and gene 

deletion are depicted by blue and red, respectively. Centromeres are signified by a white gap, separating the p-arm 

(left) from the q-arm (right). (a) TCGA-QG-A5YW, a COAD patient without chromoanagenesis with a total of 7 

oscillations. (b) TCGA-AO-A124, a BRCA patient without chromoanagenesis with a total of 118 oscillations. (c) 

TCGA-GN-A26A, a SKCM patient with chromoanagenesis with a total of 35 oscillations (primarily in chromosomes 1 

and 15). (d) TCGA-66-2756, a LUSC patient with chromoanagenesis with a total of 122 oscillations (primarily in 

chromosome 3).   
 
We trained a decision tree on 85% of the data to identify whether a sample has 
chromoanagenesis (see Methods). We reached an 85.7% accuracy rate, with 88.9% accuracy, 
83.6% specificity, and 78.4% sensitivity for having chromoanagenesis. This generic somatic 
chromoanagenesis detection module is applicable to any cancer type. However, due to limited 
sample size and previously discussed data limitations, we were not able to distinguish between 
different chromoanagenesis subtypes (i.e., chromothripsis and other chromosomal events).  

The machine learning model was applied on all remaining 9,929 TCGA samples from all 33 
cancer types reported in TCGA (Fig. 4a, Table S1). Overall, we classified 3,892 individuals 
(39.2%) as having chromoanagenesis. Figure 4b describes the predicted percentage of 
chromoanagenesis for each cancer type. We also marked 10 cancer types that were not 
examined by PCAWG and therefore were not a part of the model training. When comparing our 
results to PCAWG verified chromoanagenesis identification (of samples from TCGA and the 
International Cancer Genome Consortium), we observed that the chromoanagenesis rate is 
very similar for most cancer types, with �� of 0.7461 (Fig. 4c). Notably, the high correlation was 
evident across all cancer types, despite the limited sample size for some cancer types in 
PCAWG.  
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Figure 4. Chromoanagenesis prediction 
PCAWG and TCGA data were integrated and processed to train a machine learning (ML) model (a) The selected 

model has an accuracy rate of 85.7%. It was applied to predict chromoanagenesis status for the remaining 9,929 

TCGA individuals. (b) Predicted chromoanagenesis rate for all 33 cancer types in TCGA. Bars of the histogram 

representing chromoanagenesis percentage estimates for cancer types not included in the training set are 

colored red. (c) Correlation between predicted chromoanagenesis rate and the PCAWG reported 

chromoanagenesis rate for shared cancer types. 

Chromoanagenesis cancer specific CNA patterns 

An in-depth analysis was performed to uncover cancer type specific chromoanagenesis CNA 
patterns. For each gene, we tested whether the frequency of CNA in each sample type 
(chromoanagenesis and non-chromoanagenesis), was significantly different (see Methods). We 
limited the analysis to the 20 cancer types with at least 50 chromoanagenesis samples and 50 
non-chromoanagenesis samples: BLCA (Bladder Urothelial Carcinoma), BRCA (Breast invasive 
carcinoma), CESC (Cervical squamous cell carcinoma and endocervical adenocarcinoma), COAD 
(Colon adenocarcinoma), ESCA (Esophageal carcinoma), GBM (Glioblastoma multiforme), HNSC 
(Head and Neck squamous cell carcinoma), KIRC (Kidney renal clear cell carcinoma), LGG (Brain 
Lower Grade Glioma), LIHC (Liver hepatocellular carcinoma), LUAD (Lung adenocarcinoma), 
LUSC (Lung squamous cell carcinoma), OV (Ovarian serous cystadenocarcinoma), PAAD 
(Pancreatic adenocarcinoma), PRAD (Prostate adenocarcinoma), READ (Rectum 
adenocarcinoma), SARC (Sarcoma), SKCM (Skin Cutaneous Melanoma), STAD (Stomach 
adenocarcinoma), and UCEC (Uterine Corpus Endometrial Carcinoma).  

The emerging patterns were mostly consisting of numerous adjacent genes and often included 
more than one chromosomal region. Some CNA regions showed clear distinction between copy 
number deletion and amplification, while other regions were significantly altered, but not 
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specifically enriched with either deletions or amplifications (Fig. 5, Supplementary Figs S2-S20, 
Supplementary Tables S2-S4). Unsurprisingly, the vast majority of the significantly altered 
chromosomal regions are associated with chromoanagenesis samples, while in the non-
chromoanagenesis samples, the copy number of the chromosomal regions is maintained. 
Namely, the presented associations mostly indicate of high CNA frequency in 
chromoanagenesis samples and very low CNA frequency in non-chromoanagenesis samples. 
The number of significant association regions varies greatly between cancer types; UCEC is 
extremely abundant in statistically significant regions for any CNA (Table 1).  

 

Figure 5. LGG (Brain lower grade glioma) Manhattan plots 

Genic Manhattan plot over Fisher’s exact test p-values between LGG chromoanagenesis samples and non-

chromoanagenesis samples. (a) LGG Manhattan CNA (combined deletion or amplification) plot. (b) LGG 

Manhattan plot of deletion events. (c) LGG Manhattan plot for amplification events. The sequential 

chromosomes are colored differently for visualization purposes. The conservative significance statistical 

threshold is set to 5e-7.   
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Various CNA association patterns are linked to the different cancer types. Notably, 
amplifications are more common than deletions (Table 1). Despite differences between cancer 
types, some CNA regions display the same phenomenon in chromoanagenesis in several cancer 
types (Table S5). For instance, both BRCA and COAD have deletions in region 8p11.21, that 
occur around the same set of genes, and include the known driver gene HOOK37. Additional 
examples include STAD and UCEC that exhibit similar deletion patterns in the 4q34-4q35 region, 
which includes tumor suppressor gene FAT1. The deletion of FAT1 promotes malignant 
progression8. BRCA, STAD and UCEC have similar large amplifications in regions 17q12-17q21, 
previously observed in breast and gastric cancers9,10. This gene rich large region includes several 
known cancer genes. An amplification in the gene ERBB2 was shown to occur in breast cancer 
with a high rate of proliferation11,12. 

Three of the examined cancer types: ESCA, PAAD, and READ, did not have any statistically 
significant copy number alterations, in either chromosomal region or gene level. The lack of 
significant results is mostly explained by the relatively small number of samples for either 
chromoanagenesis or non-chromoanagenesis samples. Applying a more relaxed significance 
threshold will likely reveal additional results, for all tested cancer types. Fig. 5 and 

Supplementary Figs S2-S20 depict Manhattan plots for deleted, amplified and altered regions 
for each of the 20 cancer types. Supplementary Table S5 details the significantly altered 
chromosomal region per cancer type. The gene-level p-values are summarized in 
Supplementary Tables S2-S4.  

Table 1. Number of significant CNA regions per cancer type 

Cancer Type 
  

 # Amplified 

Regions 

# Deleted 

Regions 

# Additional 

Altered Regions 

BLCA Bladder Urothelial Carcinoma 4   3 

BRCA Breast invasive carcinoma 20 3 14 

CESC 
Cervical squamous cell carcinoma and 

endocervical adenocarcinoma 
    2 

COAD Colon adenocarcinoma 1 1   

GBM Glioblastoma multiforme 1   1 

HNSC 
Head and Neck squamous cell 

carcinoma   5 

LGG Brain Lower Grade Glioma   1 5 

LUAD Lung adenocarcinoma 1 6 

LUSC Lung squamous cell carcinoma 1     

OV Ovarian serous cystadenocarcinoma  2 

PRAD Prostate adenocarcinoma     1 

SARC Sarcoma  1 

SKCM Skin Cutaneous Melanoma 3   3 

STAD Stomach adenocarcinoma 16 4 38 
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UCEC Uterine Corpus Endometrial Carcinoma 166 57 74 

 

Chromoanagenesis single gene focal alterations 

Some prominent and significant CNA consist only of a single gene. We considered a gene as a 
distinct CNA gene if the Fisher's Exact test p-value passes the predefined significance threshold 
of 5e-7, and is at least ×2.5 orders-of-magnitude more significant than its adjacent genes. For 
UCEC we applied a threshold of ×4 orders-of-magnitude, to mitigate the extreme results in this 
cancer type. The analysis revealed several deleted genes: LRP1B, PDE4D, DLG2, ANKS1B, WWOX 
and DMD. LRP1B (a known tumor suppressor) deletion was associated with chemotherapy 
resistance in high-grade cancers13. The amplified genes are PARK2, MECOM, RAD51B, THSD4 
and SKAP1 (Table 2).  Some of the prominently altered genes display gene-specific CNA in 
several cancer types, but often fail to meet the significance threshold.  

Table 2. Significant CNA genes 

Gene Gene full name Amplified in Deleted in Altered in Is driver 

ANKS1B 
Ankyrin Repeat And Sterile Alpha 

Motif Domain Containing 1B 
UCEC 

  - 

CSMD1 CUB And Sushi Multiple Domains 1  BRCA - 

DLG2 
Discs Large MAGUK Scaffold  

Protein 2 
UCEC 

  - 

DMD Dystrophin 
UCEC, ESCA*, 

STAD*   - 

ELAVL1 ELAV Like RNA Binding Protein 1  UCEC - 

ESR1 Estrogen Receptor 1  UCEC + 

FGF14 Fibroblast Growth Factor 14 PRAD - 

KAZN 
Kazrin, Periplakin Interacting  

Protein   UCEC - 

LRP1B LDL Receptor Related Protein 1B UCEC, OV*  + 

LSAMP 
Limbic System Associated 

Membrane Protein   
UCEC, 

STAD* 
- 

MACROD2 Mono-ADP Ribosylhydrolase 2 STAD - 

MECOM MDS1 And EVI1 Complex Locus UCEC + 

PARK2 
Parkin RBR E3 Ubiquitin Protein  

Ligase  
COAD 

 
- 

PDE4D Phosphodiesterase 4D 
STAD, UCEC,  

ESCA*  
BLCA - 

PGM5 
Phosphoglucomutase-Related  

Protein   UCEC - 

RAD51B RAD51 Paralog B UCEC + 

SKAP1 
Src Kinase Associated  

Phosphoprotein 1  
UCEC 

 
- 
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THSD4 
Thrombospondin Type 1 Domain  

Containing 4  
UCEC 

 
- 

WWOX 
WW Domain Containing  

Oxidoreductase 
UCEC 

  - 

ZMAT4 Zinc Finger Matrin-Type 4  BRCA - 

* Prominently altered but fail to meet the significance threshold 

It is unclear whether these altered genes drive the chromoanagenesis and tumorigenesis 
processes forward, or simply accompany them. The different chromoanagenesis processes are 
less likely to alter the copy number of a single gene, and are more likely to affect a 
chromosomal region. Nevertheless, the chromoanagenesis process is likely to abrupt fragile 
sites (i.e., chromosomal regions with increased frequency of breaks). Previous studies have 
identified some of the altered genes as fragile sites: DMD, WWOX, PARK2 and LRP1B14–16. Other 
altered genes include known oncogenes and tumor suppressors: MECOM, RAD51B, ESR1 and 
also LRP1B (based on the COSMIC catalog gene census17). 

Chromoanagenesis CNA pattern overlaps with existing knowledge  

Many of the described tumor specific CNA were previously detected and characterized in 
tumorigenesis studies. However, some of these CNA patterns were analyzed prior to the 
depiction of chromoanagenesis, and were not considered associated with the phenomenon. In 
BLCA, one of the four significantly amplified regions for chromoanagenesis is 6p22. There are 
four consecutive genes which pass the significance threshold, the most significant being E2F3 
with a p-value of 7.9e-9. E2F3 is a transcription factor that interacts directly with the 
retinoblastoma protein (RB1) to regulate the expression of genes involved in the cell cycle. The 
amplification of this region, and specifically E2F3 in bladder cancer, was associated with tumor 
cell proliferation18. The other three amplified regions in chromoanagenesis BLCA were also 
previously linked to bladder cancer; 1q2319, 3p2520 and 8q2221. 

BRCA chromoanagenesis samples have three deleted regions, deleted 17q21 includes the 
oncogene BRCA1. Lettesier et al22 analyzed samples of breast cancer with copy number 
amplifications in 8p12, 8q24, 11q13, 12p13, 17q12 and 20q13. We found that amplification in 4 
of those 6 chromosomal regions is also significantly associated with chromoanagenesis. The 
gene CSMD1, frequently altered in chromoanagenesis, is a known breast cancer tumor 
suppressor, associated with high tumor grade and poor survival23,24. 

GBM chromoanagenesis has a small amplification of three consecutive genes in 12q15, 
including the gene MDM2. MDM2 is transcriptionally regulated by p53. It promotes tumor 
formation by targeting p53 protein for degradation. Overexpression or amplification of this 
locus is detected in a variety of different cancers. Amplification of MDM2 without TP53 
mutations was observed in gliomas25,26, this matches our observation, as GBM 
chromoanagenesis is not enriched for classic chromoanagenesis signature of TP53. Similarly, 
the CNA at 12q15 that includes MDM2  is associated with alteration in SARC27. 

Somatic SNV reveal chromoanagenesis gene differentiation 
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We further analyzed somatic SNV in chromoanagenesis samples for each of the 20 examined 
cancer types (see Methods). We tested the total number of somatic exome SNV, the number of 
affected genes, how many occurrences of loss of functions (LOF), missense and synonymous 
mutations occurred, as well as the number of affected driver genes (based on the COSMIC 
catalog gene census17). For the most part, the total number of somatic SNV was mostly similar 
between chromoanagenesis and non-chromoanagenesis samples. None of the groups had 
exceedingly more SNV across all cancer types. A notable exception was UCEC, in which the non-
chromoanagenesis samples had at least 5 times more SNV in all measured aspects. Aggregated 
SNV level-effects in chromoanagenesis are available in Supplemental Table S6.   

For each gene, in each cancer type, we calculated separately the number of individuals with 
LOF, missense, non-synonymous (either LOF or missense), and synonymous mutations, in 
chromoanagenesis and non-chromoanagenesis samples. We tested the differences for each 
gene and each mutation type using the conservative Fisher's Exact test. Detailed results for 
genes with p-value smaller than 5e-3 are available in Supplemental Table S7. This comparison 
enabled us to identify cancer driver genes related to chromoanagenesis and also, driver genes 
that specify non-chromoanagenesis tumorigenesis. The rate of the synonymous mutations for a 
specific gene can be considered as the mutation rate background. 

The top four genes detected as likely chromoanagenesis inducing genes are TP53, ATRX and to 
a lesser extent: PPP2R1A and ST6GAL2. TP53 and ATRX are two prominent, known 
chromoanagenesis causing genes28–30. In 10 out of the 20 tested cancer (BLCA, BRCA, COAD, 
HNSC, LGG, LUAD, PAAD, PRAD, STAD and UCEC), there were significantly more TP53 LOF or 
missense mutations in chromoanagenesis than in non-chromoanagenesis. In UCEC, 79.4% of 
chromoanagenesis classified samples had either a missense or LOF mutation in TP53, in 
comparison to only 17% in the non-chromoanagenesis samples (p-value: 1.22e-36). ATRX had 
significantly more missense or LOF in chromoanagenesis samples in both LGG and SARC. In LGG, 
53% of chromoanagenesis samples were mutated while only 27.1% of non-chromoanagenesis 
samples were mutated (p-value: 5.32e-7). ATRX inactivation was linked to TP53 mutations and 
altered telomeres31,32. PPP2R1A was significantly more mutated in chromoanagenesis in UCEC 
(p-value: 1.33e-5), and ST6GAL2 in LUAD (p-value: 1.12e-6). 

Many prominent oncogenes are SNV impaired at a higher rate in non-chromoanagenesis 
samples. The most substantial non-chromoanagenesis genes are PTEN, CIC, CASP8, KMT2D, 
ARID1A, RNF213 and PIK3CA. PTEN, an established tumor suppressor33, is associated with many 
cancer types. In UCEC, the gene has missense or LOF in 72.5% of the non-chromoanagenesis 
samples, and in only 18.25% of the chromoanagenesis samples (p-value: 6.02e-27). CIC has 
more damaging mutations in non-chromoanagenesis samples in STAD, LGG, COAD and UCEC. In 
LGG it is damaged in 25.2% of non chromoanagenesis samples and is not damaged at all in 
chromoanagenesis samples (p-value: 3.65e-13). KMT2D, ARID1A, RNF213 and PIK3CA present 
similar trends in both UCEC and STAD. CASP8 is commonly mutated in HNSC non-
chromoanagenesis samples (p-value: 6.91e-6).  
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Mutual Exclusivity imply on distinct tumorigenesis pathways   

Some of the examined cancer types include both genes frequently impaired (i.e., accumulated 
missense or LOF mutations) in chromoanagenesis samples, and genes frequently impaired in 
non-chromoanagenesis samples. We performed a mutual exclusivity analysis for the 
differentially impaired genes in each cancer type using cBioPortal34,35. The analysis tests 
whether we see less simultaneous mutations occur in a gene pair in the same patients than is 
expected by chance.  We included several different research cohorts for each cancer type, 
derived from both TCGA and a number of additional resources. Only genes with mutual 
exclusivity q-value of <0.005 are presented. TP53, a top chromoanagenesis gene (and ATRX in 
LGG) is mutually exclusive from other cancer driver genes (Fig. 6). Reoccurring genes in the non-
chromoanagenesis samples include CIC, KMT2D, ARID1A and RPL22. 

 

Figure 6. Mutually Exclusive Genes 

A schematic presenting mutual exclusivity analysis for chromoanagenesis differentially impaired genes. TP53 and 

ATRX (in LGG) are significantly more impaired in chromoanagenesis, and are also mutually exclusive from genes 

significantly more impaired in non-chromoanagenesis individuals. Only genes with mutual exclusivity q-value 

<0.005 are shown. Genes that appear in more than one cancer types are indicated by the same background color. 

Paralogous genes are marked with red font and colored with a similar background. For cancer types with more 

differentially-impaired, mutually-exclusive genes (marked by asterisk), only the top 10 genes are shown. 

 

Many of these mutually exclusive relationships were previously detected and studied. In LGG, 
the genes TP53 and ATRX are impaired in chromoanagenesis samples, while CIC and FUBP1 are 
impaired in non-chromoanagenesis samples, these mutually exclusive genes were connected to 
specific pathological and clinical characteristics31. In HNSC, the genes TP53 and HRAS 
impairment are mutually exclusive. Specifically, individuals with TP53 mutated HNSC have 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.29.441937doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.29.441937


reduced immune activity while individuals with HRAS mutated HNSC have an increased immune 
activity36. In BLCA,  mutations in FGFR3 (mutually exclusive to TP53) are correlated with bladder 
tumors of lower grade and stage37. 

Among the genes mutually exclusive with TP53, are several members of the ARID family (i.e., 
ARID1A, ARID1B and ARID5B. Fig. 6). The human ARID family contains 15 coding genes whose 
main function is in cell differentiation and proliferation, specifically in cancer-related signaling 
pathways. Mutations in ARID family members are common in many tumor tissues, and it is a 
sensitive marker for cancer prognosis or therapeutic outcome38. It was observed that 
mutations in ARID1A and TP53 are typically mutually exclusive in Epithelial ovarian cancer39. In 
many of the gynecological cancers, the lack of ARID1A predicts early recurrence. Moreover, 
somatic ARID1A in these cancer types consist mostly of frameshift or nonsense mutations 
leading to LOF. It is likely that the mutual exclusivity between ARID1A and TP53 is explained 
by epigenetic signaling in gynecological cancers40. A proposed mechanism underlying the 
mutual exclusivity suggests that mutations in ARID1A contribute to the inactivation of p53- 
induced apoptosis. Naturally, ARID1A suppresses the expression of the HDAC6 gene. However, 
in cancer samples with LOF of ARID1A, HDAC6 is elevated which in turn, represses apoptotic 
function of p5339. 

The differences in SNV impaired genes across chromoanagenesis states is likely to imply on two 
distinct pathways in cancer development. A chromoanagenesis-TP53 pathway, driven by DNA 
instability and DNA breaks, and a more diverse, cancer-type dependent, non-chromoanagenesis 
pathway that cover multiple processes as depicted by the major cancer hallmarks. 

Chromoanagenesis samples are mostly not signified by distinct clinical characteristics 

We compared all available clinical attributes between chromoanagenesis and non-
chromoanagenesis samples for the 20 types of cancer. The analysis included demographic 
characteristics such as age, gender, race and ethnicity, tumor specific characteristics such as 
morphology, prior treatment and tumor stage. Exposure features, such as BMI, smoking and 
alcohol use history were also examined. In addition, we performed Cox-regression analysis for 
the 20 cancer types (Supplemental Figs S21-S40). For the most part, there were no distinct 
differences in the many variables tested between chromoanagenesis and non-
chromoanagenesis samples. There were also no prominent differential survival trends favoring 
either chromoanagenesis or non-chromoanagenesis samples. The analysis results are available 
in Supplemental Table S8.  

Notably, there were three cancer types with varied morphology distribution between 
chromoanagenesis and non-chromoanagenesis samples: ESCA, SARC and UCEC (Fig. 7). In UCEC, 
90.1% of the non-chromoanagenesis patients had endometrioid carcinoma, while 61.9% of the 
chromoanagenesis patients had serous cystadenocarcinoma. The distribution in morphology 
matches the molecular subtypes distribution41–43 for these three cancer types. Interestingly, the 
integrated genomic characterizations for ESCA, SARC, and UCEC, highlights genes detected in 
this study as chromoanagenesis-related genes, such as TP53, ATRX, PPP2R1A and MDM2.  
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Figure 7. Chromoanagenesis morphological distribution  

Pie charts representing the morphology distribution in chromoanagenesis and non-chromoanagenesis samples for 

(a) ESCA, (b) SARC and (c) UCEC. 

Chromoanagenesis does not correlate with HPV  

It was postulated that human papillomavirus (HPV) causes certain chromoanagenesis effects in 
infected individuals1. We collected HPV status for HNSC samples44, and tested whether there is 
an enrichment for HPV infections within our classified chromoanagenesis samples. Out of the 
171 non-chromoanagenesis samples, 13 (7.6%) were positive for HPV, and 7 out of the 63 
chromoanagenesis samples (11.1%) were positive for HPV.  These results suggest that HPV does 
not seem to induce chromoanagenesis-like patterns during tumorigenesis.  

Discussion  

Our computational approach for identifying chromoanagenesis generated a machine learning 
protocol with a very high accuracy of 86%. Such machine learning protocol is applicable for any 
cancer type. Our methodology enabled a comprehensive, large-scale, analysis for ~10,000 TCGA 
patients for the understudied phenomenon of chromoanagenesis. We estimated the 
chromoanagenesis rate in 33 types of cancer presented in TCGA. The chromoanagenesis rate 
detected by whole genome sequencing and the rate from the machine learning algorithm are 
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highly correlated. We classified 39.2% of the examined 9,929 TCGA patients as having some 
form of chromoanagenesis. Furthermore, for some cancer types, we provide the first 
chromoanagenesis rate estimation. 

We performed CNA, somatic SNV and clinical data chromoanagenesis analyses for 20 cancer 
types. Chromoanagenesis samples presented distinct CNA patterns, mostly cancer-type specific. 
The somatic SNV analysis, however, revealed similar genic phenoms. Many of the observed CNA 
and somatic SNV patterns were previously independently reported, but some were not 
associated with chromoanagenesis. We offer these reported patterns as further evidence to the 
validity of our methodology and discoveries and suggest chromoanagenesis as a possible 
driving force for known oncogenic CNA phenoms. Providing this additional context can aid in 
better defining subtypes of cancer, as well as revealing underlying shared tumorigenesis 
mechanisms. Surprisingly, we hardly found any distinguishing clinical features between the two 
main possible tumorigenesis routes, despite existing reports on a diminished survival rate in 
chromoanagenesis29. It is still possible that the different subtypes of chromoanagenesis 
underlie the mostly homogeneous results. In this case, there might be clinical properties 
obscured by considering all individuals with chromoanagenesis as a unified group.  

The most common gene damaged in many chromoanagenesis samples is TP53. TP53 has a 
much higher rate of missense or LOF mutations in chromoanagenesis29, while some other 
known driver genes are often damaged in non-chromoanagenesis individuals. There is a pattern 
of mutual exclusivity between genes damaged in chromoanagenesis and non-
chromoanagenesis samples. As some types of chromoanagenesis are considered to occur in an 
early stage of tumorigenesis5, it is possible that there are two main distinct pathways in the 
observed samples: one driven by a single dramatic chromosomal rearrangement event and the 
other process relies on accumulated point mutations in crucial cancer genes. Each process is 
propelled by its own driver genes and a distinct primary tumorigenesis process. 

The high frequency of the chromoanagenesis phenomenon in cancer became evident in recent 
years5. It was also detected as a possible cause for other serious conditions, such as congenital 
disorders45–47. As chromoanagenesis was only defined with the advances in technologies in 
recent years, the extent of the phenomenon is widely unknown. Quite surprisingly, several 
cases of chromoanagenesis were reported from germline of healthy individuals48. The 
abundance and variety of cancerous chromoanagenesis samples provides an ideal resource to 
investigate the chromoanagenesis phenomenon, that is probably understudied in other non-
cancerous context.  

Materials and Methods 

Study population 

Masked CNA data at the gene level for 10,728 TCGA individuals was downloaded from the 
GDC portal (https://portal.gdc.cancer.gov/). The data does not include genes in the Y 
chromosome. The PCAWG project performed a whole genome analysis of 799 of those 
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individuals. PCAWG thoroughly described each individual chromosomal state. The data was 
downloaded from the Chromothripsis Explorer site 
(http://compbio.med.harvard.edu/chromothripsis/). We reduced the description to include 
only whether an individual had chromothripsis, other complex chromosomal events or not. For 
more advanced analysis, we considered an individual with chromothripsis and/or other 
complex chromosomal events as having chromoanagenesis. We also extracted from TCGA 
masked SNV data (from the MuTect2 pipeline variant data, including variant annotation) and 
clinical and exposure data. HNSC HPV status was extracted from the Lawrence, M. et al. study44. 

Machine learning pipeline 

We used the data of the 799 individuals examined by PCAWG as the basis for our ML model 
selection and training. We used 70% of the data as training samples, 15% as model and feature 
selection testing data (development testing data), and another 15% of the data as final test set, 
only used after the model was finalized and feature selection was completed. The selected 
model, presenting the best results on the development testing data was sklearn’s 
DecisionTreeClassifier49.  

We tested multiple features designed to capture copy number oscillation patterns in the data. 
We considered an oscillation to be an adjacent collection of genes from the same chromosomal 
arm with the same CNA. The examined features included; overall number of amplifications, 
overall number of deletions, maximal and mean CNA length (in genes), number of CNA in highly 
varied chromosomes, maximal number of oscillations (in all chromosomal arms) and several 
features designed to reflect the relations between the maximal number of oscillations in 
chromosomal arm to the mean number of oscillations in all chromosomal arms. After careful 
consideration of the different features, we manually chose features with both relatively high 
correlation to chromoanagenesis status and small overlap with other chosen features. 

We represented each individual with the chosen features. The optimal model used only 
features concerning the distribution of oscillation number in the chromosomal arms. The model 
selected to use only the two most informative features: (i) max number of oscillations in 
chromosomal arm -3*mean number of oscillations in all chromosomal arms. (ii) standard 
deviation of the number of oscillations across all chromosomal arms. This model presented the 
best results for the development testing data, and reached 85.7% accuracy on the final testing 
data. 

Statistical analysis 

We applied Fisher's exact test (using scipy stats module50) when testing differences in 
chromoanagenesis genic CNA. We applied the same methodology when comparing the number 
of per-gene somatic mutation types across chromoanagenesis and non-chromoanagenesis 
samples. We chose a significance threshold of 5e-7; which is based on performing a Bonferroni 
correction for 20,000 genes, with a conservative threshold of 0.01. 
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Visualization 

Matplotlib51 and seaborn52 were used to generate the boxplot visualization representing 
interquartile range (IQR) including, 25th percentile, median, 75th percentile and 1.5*IQR for the 
whiskers. Matplotlib was also used to create Fig. 2, Fig. 3 and all Manhattan and Kaplan-Meier 
plots.  
 
Ethical approval  

Ethical approval for this study was obtained from the committee for ethics in research involving 
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Data availability  

The data supporting the findings of this study are publicly available in the PCAWG and GDC 
cancer portal.  
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