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 23 

Abstract 24 

Proton pump inhibitors (PPIs) have been associated with an increased risk of fragility 25 

fractures in pharmaco-epidemiological studies. The mechanism is unclear but it has been 26 

speculated that by neutralising gastric acid, they may reduce intestinal calcium absorption, 27 

causing secondary hyperparathyroidism and bone loss. Here we investigated that hypothesis 28 

that the skeletal effects of PPI might be mediated by inhibitory effects on the bone-specific 29 

phosphatase PHOSPHO1. We found that the all PPI tested potential inhibited the activity of 30 

PHOSPHO1 with IC50 ranging between 0.73µM for esomeprazole to 19.27µM for 31 

pantoprazole. In contrast, these PPIs did not inhibit TNAP activity. We also found that 32 

mineralisation of bone matrix in primary osteoblast cultures inhibited by several PPI in a 33 

concentration dependent manner. In contrast, the histamine-2 receptor antagonists (H2RA) 34 

nizatidine, famotidine, cimetidine and ranitidine had no inhibitory effects on PHOSPHO1 35 

activity. Our experiments shown for the first time that PPI inhibit PHOSPHO1 activity and 36 

matrix mineralisation in vitro revealing a potential mechanism by which these widely used 37 

drugs are associated with the risk of fractures.  38 

Key words: PHOSPHO1, proton pump inhibitors, histamine-2 receptor antagonists, 39 

mineralisation, TNAP 40 

 41 

 42 

 43 

 44 

 45 

 46 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.29.441931doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.29.441931


3 
 

 47 

Introduction 48 

Proton pump inhibitors (PPIs) are amongst the most commonly prescribed drugs and are used 49 

in the treatment of gastroesophageal reflux disease (GORD), peptic ulcer disease and 50 

dyspepsia [1]. In the UK alone, more than 60 million PPI prescriptions were issued during 51 

2017 [2]. The safety records of PPI’s are generally favourable but pharmaco-epidemiological 52 

evidence has consistently shown a positive association between PPI use and bone fractures.  53 

For example, large scale studies conducted in Denmark, UK and Canada all reported an 54 

increased risk of osteoporosis related fractures including fractures to the hip and spine with 55 

chronic PPI therapy [3–5].  56 

The most commonly accepted explanation is that PPIs predispose to fractures by neutralising 57 

gastric acid. This in turn is thought to impair intestinal calcium absorption, secondary 58 

hyperparathyroidism and increased osteoclastic bone resorption with bone loss [6–8]. 59 

However, in healthy subjects, short term treatment with the PPI omeprazole was not found to 60 

have inhibitory effects on calcium absorption [9, 10]. Furthermore, epidemiological studies 61 

with histamine 2 receptor antagonists (H2RAs), which also supress gastric acid secretion, 62 

have not shown an association with fractures [3, 11–15]. Likewise, a recent meta-analysis 63 

reported that the use of PPIs, but not H2RAs, is associated with an increased risk of hip 64 

fracture [16]. These conflicting data suggest that PPI use may increase fracture incidence by a 65 

mechanism that distinct from effects on intestinal calcium absorption.  66 

PHOSPHO1, a member of the haloacid dehalogenase superfamily, is a cytosolic phosphatase 67 

highly expressed by osteoblasts which is essential for bone mineralisation [17].  It liberates 68 

inorganic phosphate (Pi) through the hydrolysis of phospholipid substrates within the matrix 69 

vesicle (MV) membrane [17–19]. Within this protected environment, Pi accumulates and 70 

chelates with Ca2+ which is enriched in MVs to form mineral crystals which subsequently 71 
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invade and mineralise the organic collagenous scaffold [17–22]. Deletion of PHOSPHO1 in 72 

mice results in bowed long bones and spontaneous greenstick fractures, decreased cortical 73 

BMD and accumulation of osteoid in trabecular bone [23]. Similarly, osteoblasts treated with 74 

a PHOSPHO1 specific inhibitor and cultures of Phospho1 deficient primary osteoblast both 75 

revealed reduced matrix mineralising ability, whereas matrix mineralisation was increased by 76 

osteoblasts overexpressing PHOSPHO1 [24, 25]. A critical role for PHOSPHO1 in the 77 

mineralisation process was confirmed in a comparison of the bone phenotype of; Alpl-/- ; 78 

Phospho1-/- double knockout mice to that of Alpl-/- and Phospho1-/- mice.  The skeleton of 79 

both single gene knockouts was impaired whereas the double ablation led to the complete 80 

absence of skeletal mineralisation and embryonic lethality. These experimental data are 81 

consistent with the notion that PHOSPHO1 and TNAP have independent, non-redundant 82 

roles during the mineralisation process [23]. 83 

We previously identified, through a screen of chemical libraries containing over 50,000 84 

compounds, the PPI, lansoprazole as a PHOSPHO1-specific inhibitor [18]. Indeed, 85 

lansoprazole non-competitively inhibited recombinant human PHOSPHO1 activity by over 86 

70% and caused a 57% inhibition of osteoblast MV calcification but had no effect on tissue 87 

non-specific alkaline phosphatase (TNAP) activity [18]. Furthermore, in vivo studies 88 

disclosed that lansoprazole administration to developing chick embryos completely inhibited 89 

mineralisation of all leg and wing long bones [26]. 90 

In view of the fact that PHOSPHO1 plays a critical role in bone mineralisation, we 91 

hypothesise that the association between PPI use and bone fractures is possibly due to their 92 

inhibitory effect on PHOSPHO1 activity.  To address this hypothesis, we used in vitro 93 

approaches to evaluate the potential of commonly prescribed PPIs and H2RAs to inhibit both 94 

PHOSPHO1 enzyme activity and osteoblast matrix mineralisation.   95 

Materials and Methods 96 
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PPI and H2RAs 97 

The PPIs lansoprazole, omeprazole, pantoprazole and esomeprazole (Cayman Chemicals, 98 

Michigan, USA) were used at varying concentrations (0-100µM) in the phosphatase activity 99 

and in vitro mineralisation assays detailed below.  Similarly, the H2RAs nizatidine, 100 

famotidine, cimetidine and ranitidine (Selleckchem, Munich, Germany) were also used at 0-101 

100µM. 102 

Primary osteoblast isolation 103 

Primary calvarial osteoblasts were obtained from 4-day-old wild-typeC57Bl/6 mice. All 104 

experimental protocols were approved by Roslin Institute's Animal Users Committee and the 105 

animals were maintained in accordance with UK Home Office guidelines for the care and use 106 

of laboratory animals. Primary osteoblasts were isolated by sequential enzyme digestion of 107 

excised calvarial bones using a four-step process as has previously been described [7,8] [1 108 

mg/ml collagenase type II in Hanks’ balanced salt solution (HBSS) for 10 min; 1 mg/ml 109 

collagenase type II in HBSS for 30 min; 4 mM EDTA for 10 min; 1 mg/ml collagenase type 110 

II in HBSS for 30 min]. The first digest was discarded and the cells were re-suspended in 111 

growth medium consisting of a-MEM (Invitrogen, Paisley, UK) supplemented with 10% 112 

(v/v) FBS and 1% gentamycin (Invitrogen). Osteoblasts were seeded at a density of 1 x 104 113 

cells/cm2 and grown to confluency at which point 2mM β-glycerophosphate and 50µg/ml 114 

ascorbic acid was added along with a PPI (0- 50µM) as described in results. Media was 115 

changed every 2-3 days for the duration of the 28-day experiments. 116 

Assessment of primary osteoblast matrix mineralisation 117 

After 28 days, primary cell cultures were fixed in 4% paraformaldehyde for 5 min at room 118 

temperature. Cell monolayers were stained with aqueous 2% (w/v) Alizarin red solution for 5 119 

min at room temperature. The bound stain was solubilised in 10% cetylpyridinium chloride 120 
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and the optical density of the resultant eluted solution measured by spectrophotometry at 121 

570nm.   122 

Phosphatase assays 123 

Recombinant human PHOSPHO1 (50ng) was generated as previously described [27] and 124 

incubated with varying concentrations of the aforementioned PPIs and H2RAs in 125 

experimental assay buffer (20mM Tris, 2mM MgCl2 & 25µg/ml BSA) at 37oC for 15 mins. 126 

Using the BIOMOL® Green assay (Enzo, Exeter, UK), standards (0-2nM) and samples were 127 

then incubated with 2.5mM β-glycerol phosphate for 30min at 37oC with gentle agitation 128 

[27]. The reaction was stopped using 100µl BIOMOL® Green and after being left for 30min 129 

at room temperature, the absorbance was read using spectrophotometry at 630nm. For TNAP, 130 

2ng recombinant human TNAP (R&D Systems, Abington, UK), was incubated with varying 131 

concentrations of the aforementioned PPIs and H2RAs in experimental assay buffer (1M 132 

diethylamine hydrochloride, 1mM MgCl2 and 20µM ZnCl2). Using the BIOMOL® Green 133 

assay, standards (0-2nM) and samples were then incubated with 0.5mM p-nitrophenyl 134 

phosphate (pNPP) for 30min at 37oC with gentle agitation. The reaction was stopped using 135 

100µl BIOMOL® Green and after being left for 30min at room temperature, the absorbance 136 

was read using spectrophotometry at 630nm. 137 

Statistical analysis 138 

Data are expressed as the mean ± standard error of the mean (S.E.M) of at least 3 replicates 139 

per experiment. Statistical analysis was performed by one-way analysis of variance 140 

(ANOVA). P<0.05 was considered to be significant and noted as *; P values of <0.01 and 141 

<0.001 were noted as ‘**’ and ‘***’ respectively. 142 

Results 143 

PPIs are potent inhibitors of PHOSPHO1 activity 144 
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In accordance with our previous results, lansoprazole inhibited PHOSPHO1 activity (IC50 = 145 

2.767µM; Fig. 1A). Similarly, here we show for the first time that the PPIs omeprazole (IC50 146 

= 2.803µM) and esomeprazole (IC50 = 0.726µM) are potent inhibitors of PHOSPHO1 activity 147 

(Figs. 1B & C). Whilst pantoprazole also inhibited PHOSPHO1 activity, its IC50 was 148 

19.27µM, suggesting that this PPI is the least potent PHOSPHO1 inhibitor tested (Fig. 1D).  149 

PHOSPHO1 activity is not inhibited by H2RAs 150 

We next sought to examine whether PHOSPHO1 activity is similarly inhibited by four 151 

commonly prescribed H2RAs. At all concentrations tested, there was no inhibition of 152 

PHOSPHO1 activity upon addition of nizatidine (Fig. 2A), famotidine (Fig. 2B), cimetidine 153 

(Fig. 2C) and ranitidine (Fig. 2D).  154 

PPIs and H2RAs have no effect on TNAP activity 155 

We next determined whether the aforementioned PPIs are able to inhibit TNAP activity.  At 156 

all concentrations tested, lansoprazole, omeprazole, esomeprazole and pantoprazole did not 157 

inhibit TNAP activity (Figs. 3A – D). Similarly, there was no inhibition of TNAP activity by 158 

the H2RAs (Fig. 4A – D). 159 

PP1s inhibit primary osteoblast matrix mineralisation 160 

To examine whether the inhibition of PHOSPHO1 by PPIs has an effect on matrix 161 

mineralisation, we cultured primary osteoblasts in the presence of different concentrations of 162 

lansoprazole, omeprazole, esomeprazole and pantoprazole. We found that whilst control 163 

cultures formed mineralised nodules after 28 days in culture, the addition of 5µM and 10µM 164 

lansoprazole significantly decreased matrix mineralisation (Figs. 5A, B & C). Despite this, 165 

nodules were clearly visible throughout the cultures suggestive that the effects seen are 166 

directly on mineralisation rather than the differentiation of the cells (Fig. 5A). Similarly, 167 

omeprazole and esomeprazole significantly inhibited matrix mineralisation at concentration 168 
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of 10µM (Figs. 5A, B & C). In concordance with the higher IC50 of pantoprazole, culture of 169 

primary osteoblasts with 5µM and 10µM pantoprazole was not sufficient to inhibit matrix 170 

mineralisation (Figs. 5A, B & C). We therefore cultured cells with 50µM pantoprazole and 171 

indeed saw a significant decrease in matrix mineralisation (Figs. 5D). 172 

Discussion 173 

In this study we report that all the PPIs tested were inhibitors of PHOSPHO1 activity whilst 174 

they had no effect on TNAP activity. The most potent inhibitor was esomeprazole which 175 

gave 50% inhibition in the sub micromolar range, followed by lansoprazole, omeprazole and 176 

pantoprazole   Consistent with this, the PPIs we tested inhibited mineralisation of bone matrix 177 

in vitro in low micromolar concentrations, except pantoprazole which did not have inhibitory 178 

effects until higher concentrations of 50uM were used. Conversely, we tested several H2RAs 179 

and these had no effect on PHOSPHO1 or TNAP phosphatase activity or on matrix 180 

mineralisation in vitro.   181 

Several studies have shown an association with between PPIs use and fractures. Indeed, a 182 

large scale meta-analysis has reported a significant increase in relative risk (RR) of fractures 183 

at the hip [RR=1.26, 95% CI = 1.16-1.36] spine [RR=1.58, 95% CI = 1.38-1.82] and any-site 184 

fractures [RR=1.33, 95% CI = 1.15-1.54] in PPI users as compared with controls [29] . 185 

The PPIs reduce gastric acid secretion through inhibition of H+/K+-ATPases located in 186 

stomach parietal cells [28].   In view of this it has been speculated that calcium malabsorption 187 

mediated by neutralisation of gastric acid may cause secondary hyperparathyroidism and 188 

bone loss [6–8].  Other potential mechanisms include (i) impaired bone resorption resulting in 189 

altered bone remodelling and (ii) hypergastrinemia resulting in parathyroid hyperplasia and 190 

decreased bone mineral density [30, 31]. The H2RAs are also widely used to suppress gastric 191 

acid production in the treatment of GORD, dyspepsia and peptic ulcers these have not been 192 

associated with fractures in epidemiological studies which calls into question the hypothesis 193 
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that the association between fractures and PPI used is mediated by reduced calcium 194 

absorption due to achlorhydria  [3, 11–15, 33]. The = data presented here is consistent with 195 

this and suggests that inhibition of PHOSPO1 may be an alternative mechanism by which 196 

PPIs, affect bone health. The PHOSPHO1 enzyme is a bone specific phosphatase that is 197 

highly expressed at sites of mineralization and essential for the formation of mechanically 198 

competent bone [17]. It is biochemically active within MVs [18] and it has been proposed 199 

that the accumulation of Pi within MVs is a consequence of PHOSPHO1s intravesicular 200 

activity and also intravesicular trafficking of TNAP�generated Pi via a Type III Na�Pi 201 

co�transporter, PiT1 [34–36].  We have previously shown that MV mineralisation is reduced 202 

in Phospho1-/- mice [35, 37] and that lansoprazole treatment of MVs isolated from osteoblasts 203 

impairs their mineralisation [26]. It is therefore possible that PPI inhibition of PHOSPHO1 204 

activity disrupts the biochemical machinery needed to establish the appropriate inorganic 205 

pyrophosphate to Pi ratio required to initiate the formation of HA mineral within MVs [36, 206 

38]. Our in vitro cell culture work is also consistent with a previous study in which 207 

lansoprazole, esomeprazole and omeprazole decreased the ability of osteoblasts to mineralise 208 

their matrix, whilst also inhibiting osteoblast gene expression [39]  These observations at the 209 

cell and MV level are consistent with, and explain, the reduced bone mineral content and 210 

BMD in rodents administered omeprazole [40, 41]. 211 

Interestingly, the data of this present study indicated no effect of PPIs on TNAP phosphatase 212 

activity; a result that is consistent with our previous study that reported lansoprazole and 213 

other small molecule inhibitors of PHOSPHO1 had no effect on TNAP activity [18]. The 214 

importance of TNAP in the mineralisation process is well accepted [42, 43]. Indeed, in 215 

patients with hypophosphatasia and also in Alpl-/- mice, extravesicular crystal propagation is 216 

retarded due to an accumulation of inorganic pyrophosphate in the extracellular matrix [46]. 217 

These data imply that the inhibition of osteoblast matrix mineralisation by the PPIs is via 218 
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their inhibition of PHOSPHO1, and not TNAP activity. A note of caution in the interpretation 219 

of these data is nevertheless warranted; other in vitro studies have reported that lansoprazole 220 

can inhibit porcine TNAP activity albeit with a Ki value of ~100 times higher than that 221 

reported for the inhibition of recombinant human PHOSPHO1 with lansoprazole [18, 50]. An 222 

explanation for these different results is unclear.   223 

The order of potency (based on our IC50 data) of PPI inhibition of PHOSPHO1 activity is 224 

esomeprazole > omeprazole = lansoprazole > pantoprazole (Fig. 2), which precisely mimics 225 

our data in mineralising primary osteoblasts, but also their ability (based on omeprazole 226 

equivalents) to inhibit acid production [51, 52]. Intriguingly, this suggests that the structure of 227 

the more potent acid suppressive PPIs accounts for their PHOSPHO1 inhibitory properties.  228 

Also, pantoprazole, the PPI least able to inhibit PHOSPHO1 enzyme activity was also a poor 229 

inhibitor of matrix mineralisation. Knowing the molecular model of PHOSPHO1 [21], it 230 

would be of interest to perform ligand docking studies to gain more information as to how the 231 

different PPIs associate with the enzyme and temper its biological activity. This has the 232 

potential to equip industry with the knowledge to generate modified and improved PPIs 233 

without the undesired off target bone effects. 234 

In summary we have shown that commonly prescribed PPIs, but not H2RAs, inhibit the 235 

activity of the bone specific phosphatase, PHOSPHO1 in vitro in a dose-dependent manner 236 

and at concentrations that are similar to those used clinically. We have also shown that 237 

different PPIs differ by more than 25-fold in their ability to inhibit PHOSPHO1 activity 238 

compared with a 7-fold difference in potency for inhibition of acid production [51]. This 239 

indicates that there is a >3-fold difference in the ability of PPIs to inhibit PHOSPHO1 240 

activity as compared with their ability to suppress gastric acid production.   241 

In view of the fact that PHOSPHO1 plays a critical role in bone mineralisation, we 242 

hypothesise that the association between PPI use and bone fractures is possibly due to their 243 
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inhibitory effect on PHOSPHO1 activity. While this remains to be confirmed by further 244 

research it could have clinical implications in allowing clinicians to select PPI’s with the least 245 

inhibitory effect on PHOSPHO1 activity as the preferred drug in this class in patients at high 246 

risk of fragility fractures.  247 
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Figure Legends 433 

Figure 1. The effects of proton pump inhibitors (PPIs) on PHOSPHO1 activity. PHOSPHO1 434 

activity was assessed by phosphatase assays in the presence of (A) lansoprazole (B) 435 

omeprazole (C) esomeprazole (D) pantoprazole.   436 

Figure 2. The effects of histamine-2 receptor antagonists (H2RAs) on PHOSPHO1 activity. 437 

PHOSPHO1 activity was assessed by phosphatase assays in the presence of (A) cimetidine 438 

(B) ranitidine (C) famitidine (D) nizatidine. 439 

Figure 3. The effects of proton pump inhibitors (PPIs) on TNAP activity. TNAP activity was 440 

assessed by phosphatase assays in the presence of the PPIs (A) lansoprazole (B) omeprazole 441 

(C) esomeprazole (D) pantoprazole 442 

Figure 4. The effects of histamine-2 receptor antagonists (H2RAs) on TNAP activity. TNAP 443 

activity was assessed by phosphatase assays in the presence of the H2RAs (A) cimetidine (B) 444 

ranitidine (C) famitidine (D) nizatidine.  445 

Figure 5. The effects of proton pump inhibitors (PPIs) on primary osteoblast matrix 446 

mineralisation. Primary osteoblasts were cultured for 28 days in the presence of 0-10µM 447 

lansoprazole, omeprazole, esomeprazole and pantoprazole. (A) Microscopic images of 448 

alizarin red stained mineral associated with nodule formation (B) Alizarin red staining (C) 449 

Quantification of alizarin red staining (D) Alizarin red staining of primary osteoblasts treated 450 

with 50µM pantoprazole. Data are represented as mean ± S.E.M. (n=3 wells/treatment) 451 

P<0.05*, P<0.01**, P<0.001***. 452 
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