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Abstract

High dimensional, small sample size (HDSS) scRNA-seq data presents a challenge to the
gene selection task in single cell. Conventional gene selection techniques are unstable
and less reliable due to the fewer number of available samples which affects cell
clustering and annotation. Here, we present an improved version of generative
adversarial network (GAN) called LSH-GAN to address this issue by producing new
realistic samples and combining this with the original scRNA-seq data. We update the
training procedure of the generator of GAN using locality sensitive hashing which
speeds up the sample generation, thus maintains the feasibility of applying gene
selection procedures in high dimension scRNA-seq data. Experimental results show a
significant improvement in the performance of benchmark feature (gene) selection
techniques on generated samples of one synthetic and four HDSS scRNA-seq data.
Comprehensive simulation study ensures the applicability of the model in the feature
(gene) selection domain of HDSS scRNA-seq data.

Availability: The corresponding software is available at
https://github.com/Snehalikalall/LSH-GAN

1 Introduction 1

Identifying essential features is a persistent problem in machine learning, which is 2

generally known as the feature selection problem [1]. Recently, the emergence of high 3

dimensional biological data such as single cell RNA sequence (scRNA-seq) data has 4

posed a significant challenge to the machine learning researchers [2, 3]. Handling the 5

high dimension, and small sample size (HDSS) data is difficult for feature selection (FS) 6

which posed a problem in classification techniques. Particularly, it affects both the 7

accuracy of the classification and increases the risk of overfitting. A few outliers can 8

drastically affect the FS techniques, and the selected feature sets may not be adequate 9

to discriminate the classes [4]. Moreover, high dimensionality increases the 10

computational time beyond acceptablity. So, feature selection is essential to reduce the 11

dimensionality of the data for further processing. 12

HDSS data is prevalent in the single cell domain due to the budgetary constraint of 13

single cell experiments. The general pipeline of scRNA-seq downstream analysis starts 14

with pre-processing (normalization, quality control) of the raw count matrix and then 15

going through several steps which include identification of relevant genes, clustering of 16

cells, and annotating cell clusters with marker genes [5–9]. Each step has a profound 17
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effect on the next stage of analysis. The gene selection step identifies the most relevant 18

features/genes from the normalized/preprocessed data and has an immense impact on 19

the cell clustering. The general procedure for selecting relevant genes which are 20

primarily based on high variation (highly variable genes) [10,11] or significantly high 21

expression (highly expressed genes) [5] suffers from a small sample effect. The general 22

FS techniques also failed to provide a stable and predictive feature set in this case due 23

to an ultra large size of feature (gene). One way to solve this issue is to go for a robust 24

and stable technique that does not overfit the data. A few attempts [12–14] were 25

observed recently which embed statistical and information-theoretic approach. 26

Although these methods result in stable features, however, these are not performed well 27

in small sample scRNA-seq data. 28

In this paper, we propose a generative model to sort out the problem of feature 29

(gene) selection in HDSS scRNA-seq data. It can be noted that if the sample size is 30

sufficiently large, the selected feature sets have a high probability of containing the most 31

relevant and discriminating features. We use generative adversarial model to generate 32

more samples to balance between feature and sample size. Generative Adversarial 33

Network (GAN) [15] has already been shown to be a powerful technique for learning 34

and generating complex distributions [16,17]. However, the training procedure of GAN 35

is difficult and unstable. The training suffers from instability because both the 36

generator and the discriminator model are trained simultaneously in a game that 37

requires a Nash equilibrium to complete the procedure. Gradient descent does this, but 38

sometimes it doesn’t, which results in a costly time consuming training procedure. The 39

main contribution here is in modifying the generator input that results in a fast training 40

procedure. We create a subsample of original data based on locality sensitive hashing 41

(LSH) technique and augment this with noise distribution, which is given as input to 42

the generator. Thus, the generator does not take pure noise as input, instead, we 43

introduce a bias in it by augmenting a subsample of data with the noise distribution. 44

Researchers are still trying to find improved versions of the generative adversarial 45

network (GAN) to use in different domains. Most of the variations such as progressive 46

GAN (PGAN) [18], Wasserstein GAN (WGAN) [16] try to train the model quicker than 47

the conventional GAN. Unlike PGAN and WGAN, conditional GAN (CGAN) [19] 48

operates by conditioning the conventional model on additional data sources (maybe 49

class label or data from different modalities) to dictate the data generation. In our 50

model, we direct our attention to the additional sample generation from HDSS data. 51

However, the generated sample size becomes increasingly large with more features, the 52

generation of which may not be feasible for conventional generative models. 53

Augmenting subsample of real data distribution (pdata(x)) with the prior noise (pz(z)) 54

makes the training procedure of our model faster than the conventional GAN. We 55

theoretically proved that the global minimum value of the virtual training criterion of 56

the generator is less than the traditional GAN (< −log4). 57

Summary of contributions: Here, we provide the following novelties: 58

– The proposed model is the first one to address the problem of gene selection in 59

HDSS scRNA-seq data using generative model. 60

– LSH-GAN can able to generate realistic samples in a faster way than the 61

traditional GAN. This makes LSH-GAN more feasible to use in the feature (gene) 62

selection problem of scRNA-seq data. 63

– Here we derive a new way of training a generator that combines subsamples of 64

original data with pure noise and takes this as input. 65

April 23, 2021 2/14

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.29.441920doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.29.441920
http://creativecommons.org/licenses/by/4.0/


small sample data

sc
RN

A-
se

q 
da

ta

Cells(n)

G
en

es
(p

)

1.cell filtering
2.gene filtering
3.log-normalization

pre-processed data

LSH-GAN

generated data

1.Gene Selection
   i. Gini-clust
   ii. Variable gene
       selection
   iii. Fano index

pre-processed data

LSH Sampling

sampled data

pdata(x)

X

pz(Z)

Z

pXs(Xs)

XS

Generator

G

Noise

D

Discriminator

G(Z')
output
pd(0/1)

A

B

Fig 1. Panel-A: Figure shows the workflow for gene selection in HDSS scRNA-seq data
using generated samples with LSH-GAN model. Panel-B shows the general architecture
of LSH-GAN.

– For a fixed number of iteration LSH-GAN performed better than the traditional 66

GAN in generating realistic samples. 67

– Gene selection on the generated samples of LSH-GAN provides excellent results 68

for small-sample and large-feature sized single cell data. 69

2 Method 70

In this section, we first provide a short description of Generative Adversarial Network 71

(GAN) and then describe our proposed LSH-GAN model. Later, we explain the 72

theoretical foundation of LSH-GAN model, and finally provide its application in the 73

gene selection task of scRNA-seq HDSS data. 74

2.1 Generative adversarial network 75

Generative adversarial network (GAN) is introduced in [15] which was proposed to train 76

a generative model. GAN consists of two blocks: a generative model (G) that learn the 77

data distribution (p(x)), and a discriminative model (D) that estimates the probability 78

that a sample came from the training data (X) rather than from the generator (G). 79

These two models can be non-linear mapping functions such as two neural networks. To 80

learn the generator distribution pg over data x, a differentiable mapping function is 81

built by generator G to map a prior noise distribution pz(z) to the data space as 82

G(z; θg). The discriminator function D(x; θd) returns a single scalar that represents the 83

probability of x coming from the real data rather than from generator distribution pg. 84

The goal of the generator is to fool the discriminator, which tries to distinguish between 85

true and generated data. Training of D ensures that the discriminator can properly 86

distinguish samples coming from both training samples and the generator. G and D are 87

simultaneously trained to minimize log(1−D(G(z)) for G and maximize log(D(x)) for 88

D. It forms a two-player min-max game with value function V (G,D) 89

min
G

max
D

V (G,D) = Ex∼px(x)[log(D(x))]

+Ez∼pz(z)[1− log(D(G(z)))]
(1)

In the following, we will describe the workflow of our analysis pipeline. 90
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2.2 Proposed model: LSH-GAN 91

The figure 1 describes the workflow of our analysis pipeline. Figure 1, panel-A, 92

describes the application of the proposed LSH-GAN model in feature selection task of 93

the HDSS scRNA-seq data data, while Panel-B depicts basic building blocks of the 94

model. The following subsections describe in brief. 95

LSH step: sampling of input data Locality Sensitive Hashing (LSH) [13, 20, 21] is 96

widely used in nearest neighbor searching to reduce the dimensionality of data. LSH 97

utilizes locality-sensitive hash functions which hash similar objects into the same bucket 98

with a high probability. The number of buckets is much lesser than the universe of 99

possible items, thus reduces the search space of the query objects (see supplement for 100

detailed description of LSH technique). 101

In this work first, the unique hash codes which depict the local regions or 102

neighborhood of each data point are produced. For this, we utilized python sklearn 103

implementation of LSHForest module with default parameters.An approximate 104

neighborhood graph (k-nn graph) is constructed by using k = 5 for each data point. 105

This step computes the euclidean distances between the query point and its candidate 106

neighbors. Sampling is carried out in a ‘greedy’ fashion where each data point is 107

traversed sequentially and its corresponding five nearest neighbors are flagged out which 108

never visited again. Thus after one traversing a sub-set of samples is obtained which is 109

further down-sampled by performing the same step iteratively. 110

Generator of LSH-GAN The generator function (G) is modified by augmenting its 111

taken input data. Instead of giving the pure noise (pz(z)) as input we augment a 112

subsample of real data distribution (pdata(x)) with it. The sampling of the input data is 113

done in the LSH step. Thus the Generator (G) function builds a mapping function from 114

ẑ to data space (x) as G(ẑ; θg) and is defined as: G(.) : ẑ → x. Modifying the generator 115

in this way we claim that it can increase the probability of generating samples of real 116

data in lesser time. 117

Discriminator of LSH-GAN Here discriminator (D) takes both the real data 118

pdata(x) and generated data coming from generator (G(ẑ)), with probability density 119

(pẑ(ẑ)) and returns the scalar value, D(x) that represents the probability that the data 120

x is coming form the real data: D(.) : x→ [0, 1]. 121

So, the value function can be written as:

L(D,G) = min
G

max
D

(Ex∼pdata(x) log(D(x)) + Eẑ∼pẑ(ẑ) log(1 − D(G(ẑ)))) (2)

D and G forms a two-player minimax game with value function L(G,D). We train D to 122

maximize the probability of correctly validate the real data and generated data. We 123

simultaneously train G to minimize log(1−D(G(ẑ))), where G(ẑ) represents the 124

generated data from the generator by taking the noise (pz) and the sampled data 125

pxs
(xs) as input. 126

Feature/gene selection using LSH-GAN The generated cell samples are utilized 127

for gene selection task. We have employed three feature selection methods (CV 2 Index, 128

pca-loading and Fano Factor), widely used for the gene selection task in scRNA-seq 129

data. Single cell clustering method (SC3) technique is utilized to validate the selected 130

genes from the generated samples. 131

The whole algorithm and the sampling procedure is described in the ’LSH-GAN 132

algorithm’. 133
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Algorithm LSH-GAN Algorithm

Input: Data Matrix (x), number of Training iterations, number of nearest neighbor
(k), number of iterations for sub-sampling (t)

Output: Generated data (Gout).
1: for number of training iterations do
2: xs=LSH-SAMPLING(x,k,t)
3: augment pxs(xs) with prior noise pz(z) and give this (pẑ(ẑ)) to the generator, G.
4: real data pdata(x) and generated data pg(x) is given to discriminator D.

Update the Discriminator, D
5: ∆d =

∑n
i=1 log(D(xi)) + log(1−D(G(ẑ)i)))

Update the Generator, G
6: ∆g =

∑n
i=1 log(1−D(G(ẑ)i)))

7: end for
{The adaptive momentum gradient decent rule is used in our experiment.}

8: procedure LSH-sampling(x, k, t)
9: Execute Locality Sensitive Hashing (LSH) on x and prepare a k-Nearest Neighbour

list for each data point.
10: for number of iteration of sub-sampling t do
11: visit each data point sequentially in the order as it appears in data.
12: if the data point is not visited earlier, select the data point and discard all its k

neighbors from its nearest-neighbour list.
13: end for
14: end procedure

2.3 Theoretical Analysis of LSH-GAN 134

Following the above section, a sub-sampling of real data pxs
(xs) is augmented with the 135

prior noise distribution, pz(z). Due to this additional information in generator, we 136

assume that the probability D(G(ẑ)) will increase by a factor, ζ. 137

Proposition. L(D,G) is maximized with respect to Discriminator (D), for a fixed 138

Generator (G), when 139

D∗G(x) =
pdata(x)(1− ζ)

pdata(x) + pg(x)
(3)

Proof. Equation 2 can be written as:

L(D,G) =

∫
x

pdata(x) log(D(x))dx+

∫
ẑ

pẑ(ẑ) log(1− {D(G(ẑ)) + ζ})dẑ

=

∫
x

pdata(x) log(D(x)) + pg(x) log(1− {D(x) + ζ})dx

[As the range of D(G(ẑ) is within
the domain of real data x so we can
write this]

(4)

We know that, the function y = a log x+ b log(1− (x+ ζ)) will have maximum value, at 140

x = a(1−ζ)
a+b , for any (a, b) ∈ R2{0, 0} and ζ ∈ (0, 1). So, the optimum value of D for a 141

fixed generator, G is: 142

D∗G(x) =
pdata(x)(1− ζ)

pdata(x) + pg(x)
(5)

The training objective for discriminator D is to maximize the log-likelihood of the
conditional probability P (Y = y|x), where Y signify whether x is coming from real data
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distribution(y = 1) or coming from the generator(y = 0). Now the equation 2 can be
written as:

C(G) = max
D

L(G,D)

= (Ex∼pdata(x) log(D∗G(x)) + Eẑ∼pg(ẑ) log(1−D∗G(G(ẑ)))

= (Ex∼pdata(x) log(D∗G(x)) + Ex∼pg(x) log(1−D∗G(x)))

= Ex∼pdata(x) log
pdata(x)(1− ζ)

pdata(x) + pg(x)

+ Ex∼pg(x) log(1− pdata(x)(1− ζ)

pdata(x) + pg(x)
) (6)

Theorem At pg(x) = pdata(x) (global minimum criterion of value function L(G,D)), 143

the value of C(G) is less than (− log 4) . 144

proof From equation 6 we get

C(G) = Ex∼pdata(x) log

(
pdata(x)(1− ζ)

pdata(x) + pg(x)

)
+ Ex∼pg(x) log

(
1− pdata(x)(1− ζ)

pdata(x) + pg(x)

)
= Ex∼pdata(x) log

(
pdata(x)(1− ζ)

pdata(x) + pg(x)

)
+ Ex∼pg(x) log

(
ζpdata(x) + pg(x)

pdata(x) + pg(x)

)
=

[
log(1− ζ) + Ex∼pdata(x) log

(
pdata(x)

pdata(x) + pg(x)

)]
+

[
Ex∼pg(x) log

(
1 +

ζpdata(x)

pg(x)

)
+

Ex∼pg(x) log

(
pg(x)

pdata(x) + pg(x)

)]
=

[
log(1− ζ) + Ex∼pg(x) log

(
1 +

ζpdata(x)

pg(x)

)]
+

[
Ex∼pdata(x) log

(
pdata(x)

pdata(x) + pg(x)

)
+

Ex∼pg(x) log

(
pg(x)

pdata(x) + pg(x)

)]
=

[
log(1− ζ) + Ex∼pg(x) log

(
1 +

ζpdata(x)

pg(x)

)]
+ [(− log 4) + 2JSD(pdata(x)||pg(x))] (7)

where, JSD(pdata(x)||pg(x)) represents Jensen–Shannon divergence between two 145

distributions pdata and pg. Now, if the two distribution are equal, Jensen–Shannon 146

divergence (JSD) will be zero. Thus, for global minimum criterion of the value function 147

(pg = pdata) the Equation 7 is reduces to, 148

C(G) = log(1− ζ) + log(1 + ζ) + (− log 4) = log
(1− ζ2)

4
≤ (− log 4) (8)

This completes the proof. 149
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Fig 2. Generation of two dimensional synthetic data using traditional GAN (upper
row, Panel-A) and LSH-GAN (lower row, Panel-B) model for different epochs.

3 Results 150

For experimental validation first, we validate our proposed model in synthetic data. 151

The aim is to see the performance of LSH-GAN in generating realistic samples. Next, 152

we validate whether the generated samples can be used in the feature selection task. 153

Finally, we apply the proposed model on HDSS scRNA-seq data and use benchmark 154

gene selection methods on the generated samples. In both datasets, we compare the 155

performance of LSH-GAN with the traditional GAN. 156

3.1 Dataset 157

We have used four public benchmark scRNA-seq datasets: Pollen [22], Darmanis [23], 158

Yan [24] and Klein [25], downloaded from Gene Expression Omnibus (GEO) 159

https://www.ncbi.nlm.nih.gov/geo/. Table 1 shows a detailed summary of the used 160

datasets (see supplement for description). The sample:feature ratio for all the datasets 161

are less than 0.012. 162

3.2 Experimental settings 163

The number of nearest neighbor (k) and the number of iteration (t) are two main 164

parameters of the LSH-step (see Algorithm), tuning of which affects the amount of 165

sampling given to the generator for training the LSH-GAN model. We vary k and t in 166

the range {5, 10, 15, 20} and {1, 2}, respectively, and choose that value for which the 167

Wasserstein distance [16] between generated and real samples is reported to be 168

minimum. We fixed the amount of sampling using k = 5, t = 1 for Pollen, Yan, 169

Darmanis datasets and k = 5, t = 2 for Klein dataset. For generating hash code from 170

LSH sampling, LSHForest of scikit-learn version 0.19.2 is utilized. 171

Tuning of another parameter, Sgen which represents the size of generated samples is 172

required for the feature selection step. Here Sgen is set within the range 173

{0.25p, 0.5p, 0.75p, 1p, 1.25p, 1.5p}, where p is the feature number. We take the adaptive 174

learning rate optimization algorithm implemented in ADAM optimizer in python 175

Tensorflow version 1.9.2. Generator (G) and Discriminator (D) uses 2-layer multilayer 176

perceptrons with hidden layer dimension as (16, 16). For traditional GAN, we retain the 177

same settings as LSH-GAN for G and D networks. 178

Three well known gene selection methods (with default parameters) of scRNA-seq 179

data are adopted for validation: PCA Loading [26], CV 2 Index [27] and Fano 180

Factor [28]. We select top 100 features (genes) using all three feature selection methods 181
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Fig 3. Figure shows Wasserstein metric between real and generated data distribution
across different epochs for scRNA-seq datasets.

on synthetic and scRNA-seq datasets. For validation purposes, Wasserstein metric [16] 182

is utilized to estimate the quality of the generated data. Clustering of scRNA-seq data 183

is performed using SC3 [29] technique with default parameters. Clustering performance 184

is evaluated using the Adjusted Rand Index (ARI). 185

Table 1. A brief summary of the datasets used in the experiments.

# Serial Dataset Name Features Instances Class

1 Yan [24] 20214 90 7
2 Klein [25] 24175 2717 4
3 Darmanis [23] 22088 466 9
4 Pollen [22] 23794 299 11

3.3 Data Preprocessing 186

The raw count matrix M ∈ Rc×g, where c and g represents the number of cells and 187

genes, respectively, is normalized using Linnorm [30] Bioconductor package of R. We 188

select cells having more than a thousand expressed genes (non zero values) and choose 189

genes having a minimum read count more than 5 in at least 10% of the cells. log2 190

normalization is performed on the transformed matrix by adding one as a pseudo count. 191

3.4 LSH-GAN generates samples faster than traditional GAN 192

on HDSS synthetic data 193

We train the LSH-GAN on HDSS synthetic data and generate realistic samples to 194

compare against the traditional GAN model. For this, we create a 2-class 195

non-overlapping Gaussian mixture data consisting 100 samples and 1000 features by 196

taking the mean (µ) of the data in the range of 5 to 15 for class-1 and −15 to −5 for 197

class-2. The covariance matrix (Σ) is taken for all the samples using the formula 198

Σ = (ρ|i−j|), where i, j are row and column index, and ρ is equal to 0.5. We calculate 199

Wasserstein distance between the real data distribution (pdata) and the generated data 200

distribution (pg) to estimate the quality of the generated data. 201

We use different settings of kth (k=5, 10, 15, 20) nearest neighbor to generate 202

sub-sample of data from LSH sampling procedure. In each case, the sampled data (pxs) 203
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Table 2. Wasserstein distance between generated and real data distribution. Model is
trained on synthetic data of size 100× 1000 Gaussian mixture data with 2
non-overlapping classes.

Nearest Neighbour Model Epoch

10000 15000 20000 25000
k = 5 LSH-GAN 0.46 0.35 0.33 0.45

k = 10 LSH-GAN 1.09 0.89 0.83 0.82

k = 15 LSH-GAN 1.36 0.89 1.45 0.87

k = 20 LSH-GAN 1.53 1.35 1.19 0.83

GAN 1.71 1.73 1.75 1.70
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Fig 4. Figure shows the line plots signifying the variation of ARI values of clustering
results with different sizes of generated samples. SC3 clustering is performed using the
selected genes with three different gene selection techniques. Gene selection is
performed on the generated data with sample:feature ratio as 0.25, 0.5, 0.75, 1, 1,25 and
1.5. Higher ARI values are marked as encircled points in each line plot.

is augmented with prior noise (pz) and given to the generator of LSH-GAN for model 204

training. 205

For comparison with the traditional GAN model, we use the data with train: test 206

split of 80:20 and calculate the Wasserstein metric between the test sample and the 207

generated sample. Table 2 shows the values of the metric for LSH-GAN and traditional 208

GAN model in different range of epochs and nearest neighbors k. A closer look into the 209

table 2 reveals that the performance of LSH-GAN (at 10000 epoch and k = 5) is far 210

better than the traditional GAN model with 25000 epochs. Notably, for less amount of 211

sampling (larger k), LSH-GAN needs more iterations for training. As for particular 212

example, the performance of LSH-GAN achieved on 20000 epoch and k = 20 is rivaled 213

only at 10000 epoch for k = 10. Thus it is evident from the results that reducing the 214

amount of sampling needs more epochs and thus needs more training time for the 215

LSH-GAN model to converge. Figure 2 also supports this statement. Here, the two 216

models (LSH-GAN, and traditional GAN) are trained to simulate a two dimensional 217

synthetic data of known distribution, for which the LSH-GAN can able to generate 218

samples that are more real than the traditional GAN, in a lesser number of iteration. 219
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Table 3. Table shows the comparison (ARI values) between GAN and LSH-GAN for
feature selection in HDSS scRNA-seq data.

Data epoch
(eopt)

FS method Sample size(Sopt) LSH-GAN GAN without
model

PCA Loading 1.25p 0.589 0.129 0.4
Darmanis 10k Fano Factor 1.5p 0.435 0.27 0.34

CV 2 index 1.5p 0.598 0.461 0.457
PCA Loading 1.5p 0.895 0.62 0.66

Yan 30k Fano Factor 1.25p 0.821 0.8 0.793
CV 2 index 1.25p 0.891 0.719 0.80
PCA Loading 1.5p 0.835 0.788 0.80

Pollen 10k Fano Factor 1.25p 0.933 0.915 0.712
CV 2 index 1.25p 0.94 0.906 0.81
PCA Loading 1.5p 0.815 0.581 0.66

Klein 15k Fano Factor 1.25p 0.8 0.466 0.796
CV 2 index 1.5p 0.82 0.48 0.68

A Pollen

B Yan

Fig 5. Figure shows the clustering results of Pollen and Yan data sets. Panel-A shows
the t-SNE visualization of clustering results (original and predicted labels), whereas
panel-B shows the consensus clustering plots of obtained clusters.

3.5 Gene selection in HDSS scRNA-seq data using LSH-GAN 220

We trained the LSH-GAN model in four small sample scRNA-seq data (see table 1). 221

Here, a sub-sample of real data distribution is augmented with prior noise and used as 222

the input to the generator network. The generated data using LSH-GAN (with k=5) is 223

validated by computing the Wasserstein metric between the real and generated data 224

distribution for different epochs (see figure 3). For each data, we note the epoch (eopt), 225

which results in the lowest Wasserstein metric. For example, we take eopt as 10k, 30k, 226

10k, and 15k for the dataset Darmanis, Yan, Pollen, and Klein, respectively. 227

Here, we have employed three feature selection methods (CV 2 Index, pca-loading 228

and Fano Factor), widely used for the gene selection task in scRNA-seq data and one 229

single cell clustering method (SC3) technique to validate the selected genes from the 230

generated data. To know the correct amount sampling, we select the optimal sample 231

size Sopt by observing the ARI values of cell clustering results for different sample sizes 232

Sgen={0.25p, 0.5p, 0.75p, 1p, 1.5p}. Figure 4 shows the results of clustering using the 233

features selected with the three gene selection techniques on four scRNA-seq datasets. A 234

closer look in the figure 4 reveals that, for most of the gene selection techniques, sample 235
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size (Sopt) 1.25p and 1.5p (p denotes number of features) results best ARI values. 236

LSH-GAN is compared with traditional GAN in the gene selection problem of HDSS 237

scRNA-seq datasets. LSH-GAN is trained with the selected epoch (eopt) and optimal 238

sample size (Sopt) for generating samples from the scRNA-seq data. The aim is to know 239

whether the selected features/genes from the generated combined data can lead to a 240

pure clustering of cells. Table 3 shows the comparisons of the ARI values resulting from 241

the cell clustering. It is evident from the table that features/genes selected from the 242

generated combined data of the LSH-GAN model (with eopt and Sopt) produces better 243

clustering results than the traditional GAN model. Here, two models are trained with 244

the same number of epochs. 245

3.6 Selected genes using LSH-GAN can effectively predict cell 246

clusters 247

Here we provide the detailed results of clustering on four used datasets using the genes 248

selected from the generated samples. For this, we adopted a widely used single cell 249

clustering method SC3 [29]. Figure 5 panel- A, depicts the t-SNE visualization of 250

predicted clusters and their original labels for Yan and Pollen datasets (see 251

supplementary figure-1 for the results of other two datasets). Panel-B of figure 5 252

represents heatmaps of cell × cell consensus matrix. Each heatmap signifies the number 253

of times a pair of cells is appearing in the same cluster [29]. Here two cells are said to 254

be in different clusters if the score is zero (blue color). Similarly, a score ‘1’ (red) 255

signifies two cells are belonging to the same class. Thus a completely red diagonals and 256

blue off-diagonals represent a perfect clustering. A careful notice on the figure 5, 257

panel-A and -B reveals a perfect match between the original and predicted labels for 258

YAN and Pollen datasets. 259

4 Discussions 260

In this paper, we present a novel and faster way of generating cell sample of HDSS 261

single cell RNA-seq data using a generative model called LSH-GAN. We update the 262

training procedure of generative adversarial network (GAN) using locality sensitive 263

hashing which can produce realistic samples in a lesser number of iteration than the 264

traditional GAN model. We utilized this in a valid problem of gene selection in HDSS 265

single cell data. Our preliminary simulation experiment suggests that for a fixed 266

number of training iteration the proposed model can generate more realistic samples 267

than the traditional GAN model. This observation is also established theoretically by 268

proving that the cost of value function is less than −log4 which is the cost for 269

traditional GAN at the global minimum of virtual training criterion (pg = pdata). 270

We demonstrated that the generated samples of LSH-GAN is useful for gene 271

selection in HDSS scRNA-seq data. For validation of the generated cell samples, we use 272

the conventional steps of downstream analysis for scRNA-seq data. We employ three 273

widely used gene selection techniques and one single cell clustering technique for gene 274

selection and grouping of cells using the selected genes. The precise clustering of cells 275

demonstrates the quality of generated cell samples using the LSH-GAN model. 276

One limitation of our method is that for feature selection we hardly found any linear 277

relationship between the clustering results with the sample size of generated scRNA-seq 278

data. The correct sample size should be selected by using a different range of values 279

between 0.25p to 1.5p, where p is the feature size. There may be some effects of 280

different parameters related to single cell clustering (SC3 method) and feature selection 281

(e.g. different FS method, number of selected features, etc.) which may play a critical 282

role in the clustering performance. However, we found clustering results are always 283
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better for the generated data with more than 1p (p is the feature size) sample size. This 284

observation suggests that for feature selection in HDSS data, whenever we produce 285

samples larger than the feature size we will end up with a better clustering. The 286

feasibility of generating such samples is justified by the faster training procedure of 287

LSH-GAN model. 288

Taken together, the proposed model can generate good quality cell samples from 289

HDSS scRNA-seq data in a lesser number of iteration than the traditional GAN model. 290

Results show that LSH-GAN not only leads in the cell sample generation of scRNA-seq 291

data but also accelerates the way of gene selection and cell clustering in the downstream 292

analysis. We believe that LSH-GAN may be an important tool for computational 293

biologists to explore the realistic cell samples of HDSS scRNA-seq data and its 294

application in the downstream analysis. 295
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