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Abstract  

The electrophysiological basis of resting state networks (RSN) is still under debate. In 

particular, no principled mechanism has been determined that is capable of explaining all 

RSN equally well. While magnetoencephalography (MEG) and electroencephalography 

(EEG) are the methods of choice to determine the electrophysiological basis of RSN, no 

standard analysis pipeline of RSN yet exists. In this paper, we compare the two main existing 

data-driven analysis strategies for extracting resting state networks from MEG data. The first 

approach extracts RSN through an independent component analysis (ICA) of the Hilbert 

envelope in different frequency bands. The second approach uses phase –amplitude 

coupling to determine the RSN. To evaluate the performance of these approaches, we 

compare the MEG-RSN to the functional magnetic resonance imaging (fMRI)-RSN from the 

same subjects.  

Overall, it was possible to extract the canonical fMRI RSN with MEG. The approach based 

on phase-amplitude coupling yielded the best correspondence to the fMRI-RSN. The Hilbert 

envelope-ICA produced different dominant frequency-bands underlying RSN for different ICA 

runs, suggesting the absence of a single dominant frequency underlying the RSN. Our 

results also suggest that individual RSN are not characterized by one single dominant 

frequency. Instead, the resting state networks seem to be based on a combination of the 

delta/theta phase and gamma amplitude. 
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1. Introduction 

During the past decade, a well-reproducible connectivity map of brain activity during rest has 

been identified and thoroughly investigated in healthy humans using functional magnetic 

resonance imaging (fMRI) (Damoiseaux et al., 2006). Resting state analysis has gained 

increasing popularity in neuroscience because the data are relatively easy to acquire and do 

not depend on a task. Using MEG, recent studies have started investigating the temporal 

dynamics of resting state networks (Baker et al., 2014; Vidaurre et al., 2016). However, 

despite these advances, the electrophysiological underpinnings of the canonical fMRI RSNs 

are still not completely understood.  

In the present paper we aim at providing a rigorous comparison of different approaches to 

extract these canonical fMRI resting state networks from MEG data. We do so by comparing 

RSNs extracted from resting state recordings for the same subjects in the MEG and fMRI. 

Using RSNs from the same subjects allows us to eliminate potential biases stemming from 

individual variability in fMRI RSNs. Because the literature considers the networks extracted 

from fMRI as the gold-standard, we take those as the benchmark and evaluate the MEG 

approaches according to their ability to match the fMRI results in the same subjects. In our 

comparison, we restrict our attention to data-driven approaches. While seed-based 

approaches can also be found in the literature (Hillebrand et al., 2012; Hipp et al., 2012; 

Marzetti et al., 2013), the seed choice adds a degree of freedom into the analysis that is 

difficult to control for. The ultimate goal of our study is to provide researchers with guidelines 

on how to extract canonical resting state networks in a data-driven manner from MEG data. 

The MEG-RSN literature has provided conflicting findings on the main frequencies underlying 

individual RSN. For example, seed-based envelope correlation ascribes the dominant 

frequency ranges for the default mode network (DMN) to theta and alpha and for the dorsal 

attention network (DAN) the alpha and beta ranges (de Pasquale et al., 2010). In contrast, a 

data-driven approach based on independent component analysis (ICA) of frequency-specific 

envelopes (Envelope-ICA approach, Brookes et al. (2011)) obtained the best 

correspondence for the DMN within the alpha band and for the DAN within the beta band. In 

the present paper we investigate the role of RSN extraction techniques for potentially 

explaining some of these differences.  

The phase lag index has also been proposed to obtain MEG-RSN (Stam et al., 2007; 

Hillebrand et al., 2012; Marzetti et al., 2013). According to these studies, most of the 

functional connectivity in the tested RSNs is promoted through alpha and beta oscillations. 

Unfortunately, these phase-lag index studies have so far been limited to seed-based analysis 

and no purely data-driven approach exists for the purely phase-based resting state 
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extractions. On the other hand, it was demonstrated with a data-driven approach that phase-

amplitude coupling between a low-frequency phase and high-gamma amplitude can explain 

the formation of the fMRI resting state networks (Florin and Baillet, 2015) (megPAC 

approach) – thereby combining the information from amplitude and phase.  

Within the present paper we compare the two different data-driven approaches to extract the 

canonical resting state networks from MEG data based on resting state recordings from the 

same subjects in the MEG and fMRI. Their advantage is that they can be applied without any 

a-priori assumptions on particular seed locations. Insights on the correspondence to fMRI 

resting state networks from such data-driven approaches will be generalizable for future 

MEG studies and therefore might provide important insights on the electrophysiological 

underpinnings of fMRI resting state networks. 
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2. Materials and Methods 

We included 26 healthy right-handed, male subjects [age: 26.7+/-3.9 SD; Edinburgh 

Handedness index 88.6+/-20.7; mini mental status test: 29.8+/-0.5].  Three of these subjects 

had to be excluded due to movement artefacts or technical problems during data acquisition. 

Before data acquisition, all subjects gave their informed consent and were then included in 

the experiment in line with the ethical guidelines of the declaration of Helsinki (Ethics 

committee Cologne: 14-264, Ethics committee Düsseldorf: 5608R).  

In the following, we will first explain the MEG data pre-processing and the resting state 

network extraction, before describing the fMRI resting state network extraction and our 

approach for comparing the two. 

 

2.1 MEG data acquisition and pre-processing 

The MEG resting state data were acquired in a 306 channel MEG (Elekta-Neuromag) 

system with a sampling rate of 2400 Hz and a 800 Hz anti-aliasing filter. In total, 30 minutes 

of resting state activity in the MEG was recorded in a seated position for each subject. 

Subjects were asked to rest with eyes open and to look onto a fixation cross to reduce eye 

movement. The fixation cross was printed on paper and placed in front of the subject. This 

analogue setup was used to exclude the possibility that the projector’s refresh rate would 

lead to further extraneous frequency components (Logothetis et al., 2009). The MEG data 

were acquired in blocks of 10 minutes so that subjects could move in between the 10-minute 

blocks. Each 10-minute block should be long enough to capture the basic resting state 

fluctuations as was recently recommended for MEG measurements (Liuzzi et al., 2017). To 

monitor the subject’s head position 4 head-positioning coils were taped to the subject's scalp. 

The positions of the coils were measured relative to the subject's head using a 3-D digitizer 

system (Polhemus Isotrack). For anatomical co-registration with MRI, about 100 additional 

scalp points on the subject’s scalp were also digitized. In addition to the MEG, we 

simultaneously recorded an electrocardiogram (ECG) and electrooculogram (EOG).  

After data acquisition, the preprocessing of the MEG data was done with standard processes 

implemented in brainstorm ((Tadel et al., 2011), https://neuroimage.usc.edu/brainstorm/).  

After the recording the line noise and its harmonics were removed (50, 100, 150, 200, 250 

Hz) and sensors with high noise levels (based on their power-spectrum) were excluded. The 

ECG and EOG were used to automatically detect eye-blinks and heartbeats and to then 

remove them with signal space projectors. The data were then visually inspected for 

artefacts (muscle artefacts, head movements), with problematic time segments being 
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excluded from further analysis. The cleaned MEG data were down-sampled to 1000 Hz to 

reduce the amount of data.  

A 5-minute empty-room recording with the same sampling rate of 2400 Hz and an anti-

aliasing filter of 800 Hz, but with no subject present in the magnetically shielded room, was 

obtained on each recording day. The goal is capturing the sensor and environmental noise 

statistics. Based on these recordings the noise covariance matrices were calculated for use 

in the source estimation process. 

Forward modeling of neural magnetic fields was performed using the overlapping-sphere 

technique implemented in brainstorm (Huang et al., 1999). For the cortically-constrained 

weighted minimum norm estimate (wMNE) the lead-fields were computed from elementary 

current dipoles distributed perpendicularly to the individual cortical surface (Baillet et al., 

2001). The individual surfaces were extracted with Freesurfer (version 5.3.0) using a 

tessellation of 15,000 (https://surfer.mnr.mgh.harvard.edu). 

The MEG data preparation described in this section was common for the two compared 

approaches. 

 

2.1.1. Extracting the MEG resting state networks 

Once the source-level data had been constructed, we extracted the MEG resting state 

networks. We used the megPAC approach as described in Florin and Baillet (2015) and the 

Envelope-ICA approach by Brookes and colleagues (2011). Both RSN extraction approaches 

first operate on the individual source-reconstructed MEG-data. To project the data from the 

individual to the standard anatomy for the cortical source model Freesurfer’s coregistered 

spheres were used as implemented in brainstorm (Fischl et al., 1999).  

megPAC approach 

For the megPAC approach we used the exact same parameters as described in the paper 

(Florin and Baillet, 2015). First, for each source time series of each subject the low-frequency 

phase that couples most strongly to the high gamma amplitude from 80-150 Hz was 

determined based on a phase-amplitude coupling measure (Ozkurt and Schnitzler 2011). 

Figure 1 shows the average low-frequency across subjects that exhibited the maximal 

phase-amplitude coupling to the gamma amplitude in each subject. Similar to previous 

results, the low-frequency was in the delta/theta range with no clear spatial pattern (Florin 

and Baillet, 2015). Both the phase and amplitude were extracted with a chirplet transform 

(Mann and Haykin, 1995), with a chirp factor of 0. For the low frequency corresponding to the 

identified phase the peaks and troughs were identified and the gamma amplitude (80-150Hz) 

was interpolated between these events. Through this process, for each source a new time 
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series is obtained. These resulting time series were down-sampled to 10 Hz and then 

projected to the Colin27 brain. Within the Montreal Neurological Institute (MNI) space the 

cortical time-series from all subjects were first spatially smoothed (5mm Gaussian Kernel) 

and then concatenated. Subsequently, the spatial correlation matrix between all time-series 

was calculated. Finally, the resting state networks were determined as the principal spatial 

modes based on a singular value decomposition. These resting state networks were 

compared to the fMRI resting state networks obtained from the same subjects. 

 

Figure 1: Low frequency of the megPAC 

approach. 

The cortical distribution of the low-frequencies 

averaged across subjects is displayed. This is 

the frequency that exhibited the strongest 

coupling to the high gamma amplitude and was 

subsequently used to extract the resting state 

networks with the megPAC approach. 

 

 

Envelope-ICA approach 

For the Envelope-ICA approach by Brookes and colleagues (2011) the Hilbert envelope is 

calculated in the 5 most common electrophysiological frequency bands: delta (1-4 Hz), theta 

(4-8Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma (30-50 Hz). We restricted our analysis 

to the approach by Brookes et al. (2011), except for also testing the effect of variations in 

filter settings and the ICA approach. To extract the envelope data for these five frequency 

bands we tested 2 different variants of filtering the data to obtain the Hilbert envelope: 

1) Wide band: Filter width based on the pre-defined frequency bands (delta, theta, 

alpha, beta, and gamma). After filtering, the data were Hilbert transformed to obtain the 

envelope. This is the original approach described in Brookes et al. (2011). 

2) Small band: From 1-4 Hz we band-pass filtered the data in 1 Hz bins, from 4-30 Hz in 

2 Hz bins, and above 30 Hz in 5 Hz bins. The reason for this approach is that, based on the 

typical 1/f characteristics in wide frequency bands, the lower frequencies will dominate the 

envelope estimation. The resulting filtered time-series were Hilbert transformed to obtain the 

envelope. To obtain a single time series for the whole frequency band, we standardized the 

envelope data by z-scoring for each frequency bin and then averaged across the frequency 

bins within the respective band. 
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For each of the two binning approaches to obtain the Hilbert envelope we tested two different 

filter types: an infinite impulse response (IIR) filter and a finite impulse response (FIR) filter, 

both as implemented in the brainstorm function bst_bandpass_filtfilt. Both the IIR and the FIR 

filter were tested with the wide band and small band, resulting in four different filter 

combinations: small band FIR, small band IIR, wide band FIR, and wide band IIR filter. 

Once the Hilbert envelope data at the individual level were obtained for each of the 4 filtering 

combinations, they were down-sampled to 1 Hz and projected onto the Colin27 brain. On the 

template brain the individual cortically-constrained data were spatially smoothed with a 5 mm 

Gaussian Kernel and then z-scored in the time-domain. The data from all subjects were 

subsequently concatenated in each frequency band. To extract the RSN, we follow Brookes 

et al. (2011) and employ the fastICA on the pre-whitened data based on a dimensionality 

reduction to 30 principal components. Because the reliability and numerical stability of one 

single ICA-run is usually not known, we performed an additional analysis using the ICASSO 

algorithm to extract the temporal independent components of each frequency band (Himberg 

et al., 2004). In the ICASSO algorithm the fastICA was run 50 times on the pre-whitened 

data. For the pre-whitening a principal component analysis was used to reduce the 

dimensionality to 30 components. The resulting independent components from each ICASSO 

run were then clustered based on the absolute value of the linear correlation coefficient 

between components. For these clusters the centrotype, which is the estimate that best 

represents all other estimates in the same cluster, was estimated and used for further 

calculations. To obtain spatial resting state networks the temporal independent components 

(the centrotype in case of ICASSO) were correlated with the envelope data. These 

correlation maps for each of the analyzed frequency bands were compared to the resting 

state maps based on the fMRI data. 

 

2.2. MRI data acquisition and extraction of resting state networks. 

All magnetic resonance imaging data were obtained using a Siemens 3T PRISMA 

scanner using a 64-channel head coil. The high-resolution T1-weighted images were 

acquired by applying a 3D MPRAGE sequence (TR = 2300ms, TE = 2.32ms, ES = 7.2 ms, 

FA= 8°, FOV = 230mm x 230mm, isotropic pixel resolution of 0.9 x 0.9 x 0.9 mm, slice 

thickness of 0.9 mm, 192 slices). Resting fMRI data were recorded with echo-planar-imaging 

(EPI) acquisition, (TR= 776 ms, TE = 37,4 ms, flipangle = 55°, resolution 2.0 x 2.0 x 2.0 mm, 

slice thickness of 2.0 mm, 72 slices). The resting fMRI scan lasted 30 minutes. Subjects 

were also asked to rest with eyes open and to fixate on a paper cross to reduce eye 

movement.  
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T1-weighted images were automatically pre-processed with Freesurfer version 5.3.0 (recon-

all) in order to extract the brain and cortex surface; brain extraction performed with 

Freesurfer yielded better results in the differentiation of cortical areas from the skull than 

FSL-BET. The resulting skull-stripped T1-weighted datasets were used as reference images 

in MELODIC 3.0 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC) after affine registration to 

standard MNI 2 mm space via FLIRT, a registration tool in FSL 5.0 (Jenkinson and Smith, 

2001).  

Data pre-processing of the fMRI 4D images was further carried out with FSL tools and the 

results were visually inspected. The following pre-processing was applied for each subject 

using MELODIC’s Pre-Stats feature: head motion correction via MCFLIRT(Jenkinson and 

Smith, 2001); removal of non-brain areas using BET (Smith, 2002), spatial smoothing with a 

Gaussian kernel of full width at half maximum (FWHM) 4 mm; grand-mean intensity 

normalisation of the entire 4D dataset by a single multiplicative factor; 100s high-pass 

temporal filtering.  

Registration of each subject’s fMRI data to that subject’s high-resolution structural image was 

carried out by using 6 degrees of freedom registration with FLIRT (Jenkinson and Smith, 

2001). Registration to the high-resolution structural MNI-152-2-mm standard space was 

achieved by using FLIRT affine registration   

For the cortically-constrained analysis, we used the binarized cortical mask obtained from 

Freesurfer for the MEG case to restrict the fMRI ICA analysis to those cortical areas. We 

chose to variance-normalise time courses to make sure that mere differences in the voxel-

wise standard deviations do not bias the PCA step and ICA cost function. Consistent with our 

MEG analysis, 20 ICA components were computed on data temporally concatenated across 

subjects.  

After ICA decomposition, we chose the standard threshold of 0.5 for the IC maps following 

the recommendations in FSL Melodic. A threshold level of 0.5 in the case of alternative 

hypothesis testing means that a voxel 'survives' thresholding as soon as the probability of 

being in the 'active' class (as modelled by the Gamma densities) exceeds the probability of 

being in the 'background' noise class (see https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC).  

In order to compare the fMRI resting state networks with MEG resting state networks we 

finally registered IC components, located in the MNI-152-2mm standard space, to the 

Colin27 brain. 
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2.3 Comparison of the fMRI and MEG resting state networks 

In accordance with the previous literature, we consider the fMRI RSNs to be the benchmark 

and judge the success of the MEG RSN identification approaches based on their ability to 

reproduce these fMRI networks. We use two different procedures to measure the spatial 

correspondence of fMRI and MEG RSN.  

Our first approach for the identification of the best-matching MEG maps for both the megPAC 

and Envelope-ICA approach as compared to the fMRI maps relies on the spatial correlation 

between the MEG and fMRI RSN. For each fMRI RSN we selected the best matching MEG 

component with the highest spatial correlation.  

In our second approach, we instead rely on a binary measure by first thresholding the data. 

For this calculation, the MEG maps were thresholded at an absolute value of 0.3. The fMRI 

outputs were thresholded using the probability maps produced by FSL. A threshold value of 

0.85 was used. We used D, which evaluates the spatial overlap (cortical sources) between 

one MEG map and one fMRI map (Mesmoudi et al., 2013): 

𝐷൫𝑀𝐸𝐺௜ ,𝑓𝑀𝑅𝐼௝൯ ൌ
ொீ೔ ∩௙ெோூೕ
ொீ೔ ∪௙ெோூೕ

 , 

The overlap is calculated for each cortical source.  If there is a perfect spatial overlap 

between a MEG map i and an fMRI map j, D will be 1. This is done for all MEG maps 

(i=1,...,20) and all fMRI maps (j=1,…, 20).  For each fMRI-map the MEG-map with the 

highest D was selected. 

 

2.4 Statistics for the comparison of the MEG approaches 

To statistically compare the different approaches to extract the resting state networks we 

bootstrapped the envelope time series of each frequency 100 times across subjects for the 

Envelope-ICA approach and the megPAC time series 100 times for the megPAC approach. 

Afterwards the networks were extracted for each method as described above and the two 

metrics (spatial correlation and D) were computed for each of those repetitions. This provides 

a statistical distribution that captures sampling variability and allows for statistical inference. 

We first used a 2-way ANOVA to determine whether the bandwidth of the filter or the chosen 

filter type have a significant influence on the network estimation when employing the 

Envelope-ICA. Using post-hoc tests we then identified significant differences based on the 

filter choice. To compare the Envelope-ICA and the megPAC we used the best filter setting 

for the Envelope-ICA and performed a one-way ANOVA with a post-hoc test to determine the 

method with the highest spatial correlation / D for each network. 
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3. Results 

In total, we extracted 20 ICs from the fMRI and MEG data. From the fMRI data we used 7 

resting state networks for the further comparison: the frontal, parietal, left and right front-

parietal, motor, visual, and default mode network. As an example, we show 4 of those 

networks along the rows of figure 2. The left column depicts the fMRI network, the right 

column the best corresponding MEG network according to spatial correlation. As can be 

seen from this figure, the MEG networks resemble the fMRI networks, but usually have a 

higher spatial spread than the fMRI networks. In the following, we will quantify in more detail 

the correspondence as well as several crucial choices for the Envelope-ICA implementation. 

 

Figure 2: Highest correspondence resting state networks obtained from MEG and fMRI 

recordings. 

Note: The MEG resting state network with the best correspondence to the fMRI network 

according to the spatial correlation is shown. The motor network is based on the alpha 

envelope, DMN on the theta envelope, and the visual and fronto-parietal network on 

megPAC. 
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3.1 Method comparison for resting state network extraction 

When extracting the Hilbert envelope for the Envelope-ICA approach different choices for the 

filter settings can be made. As described in the methods section, four different filter settings 

were tested. Using an ANOVA we identified that the filter type had a significant influence on 

the spatial correlation for the DMN, motor, visual, and frontal network (p<0.001). This was 

accompanied by a significant interaction with the chosen frequency band. Post-hoc analysis 

revealed that the narrow band filter yielded significantly better correspondence to the fMRI 

resting state maps for 1 network, while the wide band one yielded significantly better 

correspondence for 1 network (p<0.05). For the remaining networks 4 had a better, but not 

significantly better, correspondence with the wide band filter. Concerning the use of an IIR or 

FIR filter, the FIR filter led to significantly better results for 6 out of 7 networks, although the 

improved correspondence was only significant in one case (p<0.05). In the case of one 

network the IIR filter yielded significantly better results (p<0.05). Therefore, all following 

results will be presented for a wide band FIR filter. 

 

 

Figure 3: Spatial Correlation between fMRI and MEG RSN. 

The Envelope-ICA based results were obtained with the optimal filter setting of a wide band 

FIR filter. The different frequency bands for the Envelope-ICA approach as well as the 

megPAC approach (last value) are plotted on the x-axis. On the y-axis the spatial correlation 

is plotted between the fMRI resting state network and the corresponding MEG resting state 

network for the method provided on the x-axis. The error bars indicate the standard 

deviation. 
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When using the filter setting that uniformly performed best across frequencies (wide band 

FIR filter) for the Envelope-ICA approach the megPAC approach showed significantly higher 

correspondence in 4 out of the 7 cases to the fMRI networks (p<0.05). The Envelope-ICA 

approach had a significantly higher overlap for the parietal network in the beta band, the 

motor network in the alpha band, and the default mode network in the theta band (p<0.05). 

The spatial correlation values are plotted in figure 3.  

In Figure 4 the D measure is used to compare the different MEG resting state approaches 

(for details see methods). There was a significant influence of filter type for all 7 networks 

(p<0.0001). Post-hoc tests revealed that the wide band filter showed significantly better 

correspondence between fMRI and MEG RSNs for 4 out of 7 networks and the FIR filter was 

better for 7 out of 7 networks (p<0.05). Comparing the RSN extraction methods using D, the 

megPAC performed best for all 7 networks (see Figure 4).  

 

Figure 4: D between fMRI and MEG RSN.  

The Envelope-ICA based results were obtained with the optimal filter setting of a wide band 

FIR filter. The different frequency bands for the Envelope-ICA approach as well as the 

megPAC approach (last value) are plotted on the x-axis. On the y-axis D is plotted between 

the fMRI resting state network and the corresponding MEG resting state network for the 

method provided on the x-axis. The error bars indicate the standard deviation. 
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3.2 ICASSO for Envelope-ICA 

 

Figure 5: ICA-induced variability of spatial correlation for the Envelope-ICA approach 

for 4 resting state networks (colour coded).  

Within each frequency band, four repetitions of the ICASSO algorithm were conducted. The 

spatial correlation between the fMRI and MEG map is displayed. Note the variability across 

repetitions (black: DMN, yellow: motor, blue: fronto-parietal left, red: visual). The different 

frequency bands for the Envelope-ICA approach are plotted on the x-axis. On the y-axis the 

spatial correlation between the fMRI resting state network and the corresponding MEG 

resting state network is plotted. 

 

The Envelope-ICA requires identifying Independent Components for each frequency band. 

However, as ICA is a high-dimensional optimization problem, the reliability of a single ICA 

run is not known (Eriksson and Koivunen, 2004; Hyvarinen, 2013). Therefore, to stabilize the 

results, we ran the ICASSO algorithm four times for each frequency band. Computationally, 

this is very expensive. One ICASSO run required two weeks of computation for each 

frequency band on a High-performance cluster with 200 GB RAM and 2 cores. Parallelization 

is complicated due to the large amount of RAM required. We then investigated whether the 

frequency components characterizing the individual networks are consistently the same 

across repetitions. When determining the IC map best matching the fMRI map, the spatial 

correlation value varied, resulting in ICs from different frequency bands showing the best 

correspondence to a particular fMRI resting state network. An example is provided in Figure 
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5 for 4 RSNs when using the wide band FIR filter settings. Within this figure, the spatial 

correlation between the fMRI RSNs and these 4 RSNs obtained with Envelope-ICA for the 5 

frequency bands are plotted. For each RSN, the spatial correlation values for the four 

ICASSO repetitions are provided. As can be seen from the figure, these are highly variable 

across repetitions. Given these variable results, assigning the best match to a particular 

frequency band seems arbitrary.  

 

4. Discussion 

Within the present paper, we compared data-driven approaches to extract resting state 

networks as similar as possible to fMRI from MEG data. In order to minimize distortions 

introduced by RSN variability at the individual level, the comparison was made on recordings 

of the same subject once in the MEG and once in the fMRI. This is in contrast to previous 

studies employing standard fMRI maps for their comparison (Brookes et al., 2011; Florin and 

Baillet, 2015). The performance of MEG-RSN approaches was evaluated based on the 

spatial correspondence to the fMRI RSN maps. Concerning the use of a method  the 

correspondence between fMRI RSN maps and MEG RSN maps was significantly better with 

the megPAC approach for 4 (7 in the case of D) of the 7 tested networks. Furthermore, when 

employing the Envelope-ICA approach the filter settings also affected the results: A FIR 

band-pass filter provided the best results. Concerning the physiological underpinnings of the 

fMRI RSN, we demonstrate that the frequency-specificity of the resting state networks 

proposed in the previous literature is not a given based on the Envelope-ICA approach. 

Frequency-specificity of the Envelope-ICA results 

In the previous literature on Envelope-ICA-based resting state network extraction from EEG 

or MEG, the activity of each RSN network was ascribed to a particular frequency band within 

each study – with findings not always converging across studies. For example, the default 

mode network has been ascribed to both alpha and theta frequencies (de Pasquale et al., 

2010; Brookes et al., 2011).  When looking at the bootstrapped results in figure 3 and 4, it 

was not the case that there was a single dominant frequency band for each RSN considered. 

When we investigated this variability across repeated runs on the same subjects, such 

frequency-specific networks were not reproducible across different runs of the ICA algorithm 

with the same data. Thus, conflicting previous findings reporting different frequency 

components for one RSN may at least partially be explained by the variability in the ICA due 

to the dependence on the initial seed for optimization (Hyvarinen, 1999). Even using a 

stabilization procedure such as ICASSO (Himberg et al., 2004) did not improve the 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.29.441916doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.29.441916
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 
 

reproducibility across ICASSO runs. For ICASSO, our chosen number of resampling cycles 

of 50 might seem low. However, based on the recommendations for ICASSO and 

considering computational limitations of the current ICASSO implementation, 50 resampling 

cycles with 20 independent components produces 1000 estimates. It is quite unlikely that 

increasing the number of repetitions further would yield one dominant frequency band that 

did not appear in the 1000 repetitions before. This could also be an indication that each 

resting state contains information across a number of bands. This interpretation would also 

allow to reconcile previous heterogeneous results on frequency-specificity of the resting state 

networks (de Pasquale et al., 2010; Brookes et al., 2011; Hipp et al., 2012). Our results 

indicate that different frequency components can be identified as the best match for a RSN 

just because i) there was a different initial seed for the ICA and ii) the RSNs obtained from 

different frequency bands do not differ too much. 

In addition, one has to keep in mind that the current ICA approach enforces independence in 

the temporal domain but not in the frequency domain. Therefore, this approach may be ill-

suited to identify frequency-specific resting state networks. To obtain frequency-specific 

information one should aim for independence in the frequency domain and factorize 

appropriate matrices to yield spectro-spatial components (Hyvarinen et al., 2010). Future 

work should investigate in this conjecture. 

Choice of filter for Hilbert envelope  

Before calculating the Hilbert transform for the Envelope-ICA, the data have to be band-pass 

filtered within the frequency bands of interest. When doing so the question arises whether 

the band-pass is chosen in small enough frequency bands to correct for the natural 1/f power 

decrease in MEG data. Within our tests, using a wide band filter provided better results. 

Moreover, the use of a FIR filter provided better results than an IIR filter in almost all cases, 

although the difference was only significant in one case. 

megPAC and comparison to previous studies 

Recently, it was shown that phase and amplitude both contain information relevant for 

understanding the resting brain (Siems and Siegel, 2020). These findings could explain why 

the megPAC approach yielded better correspondence to the fMRI resting state networks 

than the Envelope-ICA approach. Using the Envelope-ICA approach it became apparent that 

one network cannot be easily ascribed to one dominant frequency band, suggesting that the 

other frequency bands may contain important information for their identification. Moreover, 

the envelope-ICA only relies on amplitude information. This might explain why the 

combination of phase and amplitude with the megPAC approach provided a better 
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correspondence to the fMRI networks: the canonical resting state networks seem to be 

shaped by a low-frequency phase as well as the gamma amplitude. It is also worth pointing 

out that the Envelope-ICA approach only focuses on frequency bands up to beta.  

A further advantage of the megPAC approach could be the computation time. Running 

ICASSO required two weeks of computation time on a high performance computing cluster 

for each frequency band. In contrast, running the RSN extraction with the megPAC approach 

only takes 1-2 hours on a standard computer. Therefore, from a computational and 

reproducibility point of view the megPAC approach seems more favourable. 

There have been several studies that investigated the test-retest reliability of different 

estimates of resting state connectivity (Colclough et al., 2016; Garces et al., 2016; Dimitriadis 

et al., 2018). These studies have provided important guidelines on the choice of connectivity 

measures. Overall, amplitude-correlation based methods were more reliable than purely 

phase-based methods. Compared to our study a direct comparison to the fMRI resting state 

networks has been missing, i.e. the aim of those older studies was not to identify networks as 

similar as possible to the fMRI resting state networks but to provide guidelines on 

connectivity measures in general. This is also the reason why we had to limit our comparison 

to envelope-ICA and megPAC.  

At the same time, the focus of our study was on data-driven methods as seed-based 

approaches necessarily involve a human element that is impossible to control for.  Additional 

data-driven approaches involve finding time-resolved networks (Cribben et al., 2012; Baker 

et al., 2014; Yaesoubi et al., 2015; Vidaurre et al., 2018; Yaesoubi et al., 2018; Shappell et 

al., 2019). The methods used to study time-resolved activity vary widely in their underlying 

statistical assumptions as well as biological details (Lurie et al., 2020). Furthermore, source 

level network estimation using the time-resolved methods employs a limited number of 

regions of interest based on atlases. Both the spatial reduction and statistical assumptions of 

the time-resolved methods make them difficult to compare with ICA-based fMRI networks. 

Moreover, as the extraction of the canonical fMRI networks is not time-resolved, our aim here 

was to identify first markers of these resting state networks before investigating the time-

resolution. 

Conclusion 

In summary, it is possible to extract MEG resting state networks that correspond to the 

known canonical fMRI resting state networks. Of note here is that the spatial extent of the 

MEG resting state networks was larger than that of the fMRI networks. This was independent 

of the resting state approach used. Moreover, our results indicate one advantage of the 
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megPAC approach compared to the Envelope-ICA approach. As the numerical estimation of 

ICA on real data introduces considerable variability, different ICA runs produced different 

dominant frequency-bands underlying RSN networks. This low frequency-specificity of the 

RSN when using the Envelope-ICA approach suggests that it may be problematic to ascribe 

activity within a given RSN to one particular frequency band. This finding may also hint at a 

way of reconciling conflicting findings in the literature on the main frequency components 

underlying individual RSN. This combination of different frequencies could also be the reason 

that the megPAC approach yielded the best correspondence for most networks. 
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