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Abstract 

 
Genetically identical cells growing in the same environment can have large differences 
in gene expression. Both locally acting cis-regulatory sequences (CRS) and the regional 
properties of chromosomal environments influence the noisiness of a gene’s expression. 
Whether or not local CRS and regional chromosomal environments act independently 
on noise, or whether they interact in complex ways is unknown. To address this 
question, we measured the expression mean and noise of reporter genes driven by 
different CRS at multiple chromosomal locations. While a strong power law relationship 
between mean expression and noise explains ~60% of noise for diverse promoters 
across chromosomal locations, modeling the residual mean-independent noise 
suggests that chromosomal environments have strong effects on expression noise by 
influencing how quickly genes transition from their inactive states to their active states 
and that the effects of local CRS and regional chromatin on noise are largely 
independent. Our results support a modular genome in which regional chromatin 
modifies the inherent relationship between the mean and noise of expression regardless 
of the identity of the promoter sequence. 
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Introduction 

Genetically identical cells growing in the same environment can display large 
differences in the mRNA levels of expressed genes(Elowitz et al., 2002; Raj et al., 2006; 
Zenklusen et al., 2008). This cell-to-cell variance in mRNA abundance among isogenic 
cells is called noise in gene expression and drives important aspects of biology. Cell 
fate decisions for olfactory sensory neurons(Chess et al., 1994), retinal pigment 
cells(Wernet et al., 2006), intestinal crypt cells(Tóth et al., 2017), neural precursors in 
the spinal cord(Dasen et al., 2003, 2005), and hematopoiesis(Chang et al., 2008) are 
governed by the noisy expression of lineage-determining transcription factors. Random 
fluctuations in gene expression also affect how individual melanoma cells respond to 
chemotherapy(Shaffer et al., 2017). Single-cell transcriptome profiles from scRNA-seq 
suggest that expression noise is universal for many cell types(Cembrowski and Menon, 
2018; Grün et al., 2015; Villani et al., 2017) and likely accounts for different cell states 
within the same cell type(Adler et al., 2019). Noise in gene expression is thus an 
important component of both development and disease. 
  
Noise in gene expression results from random fluctuations in the molecular processes 
that control transcription. Single-cell studies show that transcription is not continuous, 
but instead occurs in discrete bursts of activity(Lenstra et al., 2016; Zoller et al., 2018). 
A gene’s promoter sequences(Sharon et al., 2014; Tunnacliffe et al., 2018), its 
epigenetic modifications(Nicolas et al., 2018), or its patterns of DNA looping(Fukaya et 
al., 2016) can all influence the burst size and frequency of genes. For different genes, 
the burst frequency can range from just a few minutes to tens of hours(Lenstra et al., 
2016; Rodriguez et al., 2018). Consequently, cells in the midst of bursting will have 
higher mRNA counts than cells waiting for their next burst of expression. The bursty 
dynamics of mammalian transcription is an important source of expression noise. 
 
Two types of regulatory information can influence expression noise: locally acting CRS, 
such as promoters and proximal enhancers, and more distally acting factors, such as 
long-range enhancers and sequences that control the regional chromatin state. In this 
study, we define the regional “chromosomal environment” as the combination of a 
gene’s distally acting enhancers and its broader chromatin landscape. Classic studies of 
Position Effect Variegation (PEV) show that different chromosomal environments can 
have large effects on noise(Wallrath and Elgin, 1995). More recent work has shown how 
features associated with local cis-regulatory sequences (CRS), such as the TATA-
box(Hornung et al., 2012), the number of transcription factor binding sites(Soltani et al., 
2015), the local nucleosome occupancy(Dey et al., 2015), and local epigenetic 
modifications(Nicolas et al., 2018) can all affect expression noise. Two studies used 
randomly integrated reporter genes to show that different chromatin environments can 
affect expression noise (Dar et al., 2012; Dey et al., 2015). However, how the effects of 
regional chromosomal environments combine with the effects of local regulatory 
features to control noise remains an open question. 
 
Local and regional cis-regulatory information may act independently to control noise in 
expression, or there may be complex interactions between local CRS and their regional 
chromosomal environments. If these two sources of cis-regulatory information act 
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independently on noise, then the effects of chromosomal environments should be the 
same for different classes of local CRS. Alternatively, a gene’s noise may depend on 
complex interactions between local CRS and their chromosomal environments: certain 
locally acting cis-elements may only increase noise in certain chromosomal 
environments. We previously showed that local and regional cis-regulatory information 
act independently to control mean levels of expression(Maricque et al., 2018). In this 
study we sought to determine whether the modularity between local and regional cis-
regulatory information extends to the control of noise in expression. 
  
To address this question, we constructed a series of reporter genes driven by different 
promoters and integrated them into several defined genomic locations in the K562 cell 
line. We measured both the mean and noise of each reporter gene at each genomic 
location with single molecule Fluorescence in situ Hybridization (smFISH). Our results 
show that across all reporters at all locations, ~60% of expression noise depends only 
on the mean level of the reporter gene and is captured by a power law. The residual 
mean-independent noise is mainly associated with the epigenetic signature of the 
regional chromosomal environment. Given the same mean level of expression, more 
active chromatin environments generally result in less expression noise than more 
repressive environments. By comparing diverse reporter genes integrated at the same 
chromosomal locations we found that the effects of different chromosomal environments 
on expression noise were independent of the specific promoter. Taken together our 
results support the notion of a modular genome in which local and regional cis-
regulatory information act independently to control both mean levels of expression and 
noise in expression. 

Results 

An experimental system to quantify noise at diverse chromosomal locations 
 
We constructed a system to separate the contributions of locally acting CRS and 
regional chromosomal environments to expression noise. We used a set of previously 
generated landing pad cell lines that contain reporter genes integrated in defined 
chromosomal locations across the K562 genome (Maricque et al., 2018). Each landing 
pad cell line has an identical reporter gene cassette in a different mapped genomic 
location (Fig. 1 A, B). In this study, we used landing pads integrated at twenty-two 
different genomic locations, with different epigenetic marks (Fig.S1).  
 
 

Each landing pad carries a common reporter gene consisting of a locally acting cis-
regulatory sequence (CRS) driving the expression of Enhanced Green Fluorescent 
Protein (eGFP) and flanked by a pair of asymmetric Lox sites allowing us to easily 
exchange the reporter gene cassette.  (Fig. 1A). For all twenty-two locations, we 
integrated an eGFP reporter driven by the cytomegalovirus (CMV) promoter. To explore 
the dependence of noise on local CRS, we integrated three other reporter cassettes 
with tdTomato reporter gene driven by PSMP2, HBZ, and CHMP2A promoters at four 
locations (Fig. 1B).  To simplify the system, we intentionally chose not to include an 
intron in the reporter cassette to avoid potential confounding effects of different genomic 
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locations on the efficiency of splicing(Mikl et al., 2019). With this system, we can 
systematically probe how different chromosomal environments affect the activities of 
different local CRS. 
 
One of the challenges of studying the effect of transcriptional regulation is to exclude 
the confounding effects of post-transcriptional regulation. Hence, for each reporter gene 
at each chromosomal location we performed clampFISH, a smFISH method, to 
measure the absolute mRNA counts in individual cells (Rouhanifard et al., 2018). To 
accurately quantify both expression mean and noise, we quantified mRNA molecules 
from more than 8x105 cells and obtained more than 1000 single-cell mRNA 
measurements per cell line per replicate. The experimental measurements are highly 
reproducible for both mean and noise at each genomic location (R2 = 0.947 for mean, 
R2 = 0.88 for noise, Fig.1 D, E). The absolute measurements of mRNA molecules using 
smFISH allowed us to use computational modeling to infer transcriptional dynamics.  
 
 
The mean and noise of gene expression are linked by a power-law relationship 
 
We observe dramatic changes in the mean and noise of expression that depend on 
genomic locations. We observed a 6-fold difference in mRNA mean and a 7-fold 
difference in noise among the genomic locations we sampled (Fig. 1C). This dynamic 
range of mean and noise is consistent with the range observed in a previous study 
where the investigators measured mRNA in cell lines with random integrations in a 
mammalian cell line (Dey et al., 2015). Thus, our data is consistent with both classic 
work on PEV and more recent single-cell studies, which show that changing the 
genomic location of a gene has large effects on its expression mean and noise.  
 
We first established the general relationship between the mean and noise of expression 
in our data. In all stochastic processes there is a strong dependency of noise on the 
mean output levels. Because changing the genomic location of a gene affects its mean 
expression, its noise will also necessarily change due to the dependency of the noise on 
the mean. Therefore, it is important to establish the general relationship between 
expression mean and noise in our experiments so that we can decompose the effects of 
genomic location on noise into effects that are due solely to changes in mean 
expression levels and those that are independent of mean level changes.   
  
To characterize the general relationship between the mean and noise in our data we 
performed a log-log regression of expression noise on mean expression levels across 
all CRS at all genomic locations. Consistent with previous findings, this analysis 
revealed a power law relating expression noise to mean expression levels. Differing 
from studies using fluorescence-based single-cell quantification of genome-wide protein 
abundance, which report a degree of 1.96, we observed a smaller degree of 1.15 (noise 
= mean1.15, R2 = 0.6) (Fig. 1F) (Das et al., 2017; Dey et al., 2015; Vallania et al., 2014). 
To determine the significance of the fitted degree for the power law relation between 
expression mean and noise, we performed 105 bootstrap simulations and obtained a p-
value of 9*10-5 for the fit to the actual data (Fig. 1G). We interpret the higher degree for 
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the power law relationship for the protein distribution to represent additional noise 
introduced by post-transcriptional steps in gene expression (Paulsson, 2005). In our 
experiments, 60% of the noise in mRNA levels is explained solely by the effects of 
different chromosomal locations on mean levels. The same power law relation holds 
regardless of the local CRS identity: there are no promoter specific mean-noise 
relationships in our data. When we plot the mean-noise relationship for different 
promoters alone, the power law relation remains largely the same (Fig. S2A-D). This 
result suggests that a general aspect of the transcriptional mechanism accounts for a 
significant fraction of observed noise, regardless of the specific sequence context. 
 
The power law’s degree of ~1.15 reflects the bursty nature of mammalian gene 
expression. If the reporter genes were constitutively producing mRNA, then we would 
expect Poisson dynamics where the degree for scaling is 1.0 (Bar-Even et al., 2006; 
Paulsson, 2005). The non-Poisson relationship in our data suggests the existence of 
“ON” and “OFF” states for transcription activation (Raj et al., 2006), which agrees with 
the bursty dynamics observed in mammalian cell systems and Drosophila melanogaster 
(Fukaya et al., 2016; Zoller et al., 2018). Consistent with the existence of an OFF state, 
for each reporter gene at each location there was always a subpopulation of cells with 
no mRNA (Fig. S2E). This suggests that in some cells, transcripts are degraded 
completely before the reporter gene transitions to the ON state. To confirm that this 
observation is not due to false negative labeling of mRNAs, we performed smFISH on 
the introns of the constitutively expressed gene Actb, which encodes the beta actin 
protein. For Actb, less than 1% of the cells have no labeled transcript (Fig. S2E), which 
suggests that the larger fraction of cells with no reporter gene mRNAs are not false 
negatives resulting from experimental artifacts such as poor fixation or permeabilization. 
Both the observation of a non-Poisson dynamics and the existence of cells with no 
mRNA present suggests that there are regulated, slow steps in transcription that 
generate noise in gene expression. We sought to explore the mechanism behind the 
difference in transcriptional dynamics at different genomic locations. 
 
 
Mean Independent Noise (MIN) describes expression noise without the mean 
effect. 
 
The power law relation shows that mean expression levels explain 60% of expression 
noise. We define the residual 40% of expression noise that is not explained by mean 
levels as Mean Independent Noise (MIN). In all subsequent analyses we use MIN as 
the metric of noise because it shows no dependence on mean levels (Fig. 2A), while 
other commonly used metrics of noise, such as the Fano Factor (σ2/μ) or CV2 (σ2/μ2), 
still show some dependence on mean levels (Fig. S3 A, B).  Because MIN is based on 
the power law fit to our data (MIN ~ σ2/μ1.15) it more naturally expresses the relationship 
between mean expression levels and noise. In all subsequent analyses we use MIN as 
a measure of the effects of chromosomal environments on expression noise.  
 
Chromatin states explain Mean Independent Noise at different chromosomal 
locations 
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What mechanisms control MIN? We hypothesized that regional chromatin environments 
have direct effects on MIN. Before analyzing whether regional chromatin environments 
affect MIN, we addressed whether the reporter gene causes gross alterations in the 
chromatin environment. We performed 4C (Zhao et al., 2006) on two cell lines 
containing reporter genes and found that the contact maps agree with the contact 
frequencies derived from the Hi-C data on cells without reporter genes (Fig. S3 E,F) 
(ENCODE Project Consortium, 2012; Rao et al., 2014). We then asked whether the 
different epigenetic properties of genomic locations explain the differences in 
expression mean and MIN at different genomic locations (ENCODE Project Consortium, 
2012). We first examined individual epigenetic marks and found some active chromatin 
marks are enriched in active regions 5kb around the insertion site (Fig. S4 A-F). 
However, due to the sparseness of the peaks of histone modifications within 500 bp 
around our insertion sites, we decided to look at the aggregated epigenetic information 
(Fig. S4G). We then plotted the MIN from cell lines with CMV promoters against the 
genomic annotations of the 100 bp flanking the reporter genes. Genomic locations 
labeled as Transcribed by the chromHMM and Segway (Hoffman et al., 2012, 2013) 
combined annotations have lower MIN than regions labeled as Repressed (Fig. 2B,C). 
We observed similar results using either the Fano Factor or CV2 as the noise metric 
(Fig. S3C, D). We hence classified our genomic locations as active (Transcribed, Weak 
Enhancer, and CTCF site based on ChromHMM segmentations) and repressed (Ernst 
and Kellis, 2012; Hoffman et al., 2012, 2013), which combine diverse epigenetic 
regulatory information into annotations of chromosomal locations (Supp. Table 1).  
 
Interestingly, we did not find strong differences in mean expression levels between 
active and repressed locations (Fig. 2D). Previous studies of the genomic location effect 
on expression mean have shown that reporters integrated into the active locations have 
statistically higher mean expression (Akhtar et al., 2013). However, those statistically 
higher expression mean levels are often driven by a small number of genomic locations. 
To illustrate this fact, we used a previously published dataset containing the mean 
measurement of a reporter gene integrated in thousands of genomic locations. We then 
subsampled the data and compared the z-score of the expression mean level at active 
and initiative locations. We found that there are no significant differences in mean 
expression levels when we randomly sample 22 locations from the whole dataset (Fig. 
2E). Taken together, our results suggest that the epigenetic differences between 
chromosomal locations have larger effects on the noise of gene expression than on 
mean levels of expression. 
 
 
Computational model reveals the dynamics that changes cell-to-cell variability at 
different genomic locations 
To explore the underlying mechanisms that explain the observed difference in MIN at 
different genomic locations, we studied how different genomic locations control the 
bursting dynamics of expression. Recent studies suggest that the control of 
transcriptional bursts directly affects expression noise (Rodriguez et al., 2018). 
Theoretical and experimental works show that the bursty dynamics of single-cell gene 
expression can be described by the two-state ON/OFF model (Fig. 3A) (Bar-Even et al., 
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2006; Paulsson, 2005; Raj et al., 2006). At the same time, this framework has 
successfully been used to connect single-cell variability with transcriptional dynamics 
experimentally (Das et al., 2017; Dey et al., 2015; Lammers et al., 2020; Nicolas et al., 
2018; Raj et al., 2006). The ON/OFF model abstracts gene expression into four 
macroscopic processes, each with a corresponding rate constant. Kon and Koff describe 
the transition of chromatin between the ON and OFF states, Km describes the rate of 
mRNA production (which only occurs when the chromatin is in the ON state), and Kd 
describes the rate of RNA degradation. These rate constants set the burst size (Km/Koff) 
and burst frequency (Kon/Koff) of a gene (Dar et al., 2012, 2016).  
 
We employed an exhaustive fitting strategy for the ON/OFF model to identify parameter 
sets that might explain the differences in MIN between different genomic locations. We 
found a median of 23 sets of parameters that fit each of our experimental distributions 
and those sets of parameters cluster distinctively based on different genomic locations 
(fig. 3B). Compared to the thousands of sets of parameters obtained from fitting those 
parameters with protein distribution data, our fitted result is 100-fold less degenerative, 
this allows us to infer the differences in dynamics at different genomic locations. 
 
We first examined the general trend for how different parameters in the ON/OFF model 
correlate with mean expression levels. We found that only the transition to the ON state 
is positively correlated with the increase of expression mean (Fig. 3C); there is no 
change for the rate for transitioning to the OFF state (Fig. 3D). This suggests that the 
genomic location effect on mean is mainly associated with the opening of the chromatin, 
and there is a constant process controlling the transition to the OFF state. This result 
agrees with the recent study showing that the inactivation of chromatin is a constant, 
and active process (Falk et al., 2019). We also found a weak correlation between 
expression mean and Km, the rate of transcription (Fig. 2E). Overall, the computational 
modeling agrees with experimental observations of how mammalian chromatin 
environments affect the mean of gene expression.  
 
We next asked how the different parameters of the ON/OFF model correlate with MIN. 
Surprisingly, we found that the transition to the ON state is negatively correlated with 
MIN (Fig. 2F). This suggests that the faster the transition to the ON state, the lower the 
MIN. Thus, Kon appears to have opposing effects on mean and MIN, which suggests 
that expression mean and noise can be orthogonally controlled. We found that Km is 
also positively correlated with MIN (Fig. 2H), suggesting that the rate of transcription 
increases both the mean and MIN of expression.  
 
Overall, the ON/OFF model revealed that chromosomal environments mainly affect Km, 
the macroscopic parameter describing the rate of transcription, and Kon, the parameter 
describing the rate of activation. However, we discovered that MIN decreases as Kon 
increases, suggesting faster activation is a potential mechanism for suppressing 
expression noise. Moreover, the orthogonal effect of Kon on expression mean and MIN 
suggests that mean and MIN can be decoupled by tuning different macroscopic steps of 
gene expression.  
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Active chromosomal environment produces less expression noise by creating 
frequent but small transcriptional bursts 
 
We then asked if the ON/OFF model explains the difference in MIN at active and 
repressed genomic locations. We found that reporter genes driven by the CMV 
promoter tend to have faster Kon when integrated in active locations compared to 
repressed locations, while Koff is not distinguishable for the transcribed and repressed 
locations (Fig. 3 I, J). This suggests that at active locations, reporter genes transition 
faster to the ON state than at repressed locations. However, repressed locations have 
slightly higher transcription rates (Km) compared to active locations (Fig. 3K). To 
achieve the same mean level at a repressed location with slower ON rate, the 
transcription rate must be higher to compensate for the lower activity of the chromatin 
transition.  
 
We then estimated the transcriptional burst size and frequency from the fitted 
parameters (Fig. 4C). Intuitively, we found positive correlations between burst size and 
frequency with expression mean (Fig. 4A, B), increasing either burst frequency or burst 
size can lead to the increase of mean expression, and different chromatin environments 
can modulate both burst size and burst frequency. Interestingly, while burst size still is 
positively correlated with MIN, burst frequency is negatively correlated with MIN (Fig. 
4D, E). We also found that active locations have higher burst frequencies and lower 
burst sizes, while repressed locations have lower burst frequencies and higher burst 
sizes (Fig. 4F, G). This suggests that faster burst dynamics reduce MIN without 
reducing expression mean level. This finding provides a potential mechanism for 
reducing expression noise without lowering the mean expression through controlling the 
transcriptional dynamics.  
 
Overall, we found that expression mean and MIN are decoupled through differential 
control of different steps of transcription. We found that active genomic locations have 
MIN through faster burst dynamics, but slightly smaller burst sizes compared to 
repressed locations. Moreover, the faster dynamics is due to faster transitions to the ON 
state, and not to slower transitions to the OFF state. These results suggest that 
expression mean and MIN can be decoupled through increasing the ON transition, but 
not by increasing the rate of transcription.   
 
  
Independence of the effects of genome location and local CRS on noise in gene 
expression 
 
To determine whether the effect of chromatin environments on MIN depends on the 
specific local CRSs, we analyzed the expression distribution of reporter genes with 
three other promoters (CHMP2A, PSMB2, and HBZ) at the same two active and two 
repressed genomic locations. Interestingly, the resulting mean-noise relationship still 
falls on the same power-law relationship (Fig. S2A). While the promoter identity 
determines the mean level of expression all four locations (Fig. 5A), we found that 
chromatin environments have a strong effect on MIN, regardless of the specific 
promoter identity (Fig. 5B). To quantify the contribution of local CRSs and chromatin 
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environment on MIN, we performed a two-way ANOVA, and found that genomic location 
explains ~51% of the variance of the MIN (p = 0.039), while promoter identity is not a 
significant predictor of the observed variance of the MIN. In contrast, promoter identity 
explains ~65% of the variance of the mean (p = 0.0012), and the genomic location 
explains ~20% of variance of the mean (p = 0.046) (Fig. 5E). The ANOVA analysis 
affirms the observation that the regional chromatin environment of a gene has a strong 
effect on the MIN.  
 
Agreeing with the data from CMV promoters, reporter genes with the other promoters 
integrated in the active locations also have smaller burst sizes and higher burst 
frequencies compared to those integrated in the repressed locations (Fig. 5C, D). The 
same trends also hold for the individual macroscopic parameters for the ON/OFF model; 
we observe a higher Kon but similar Koff at active locations regardless of the promoter 
identity (Fig. S5A, B).  
 
In summary, we found that the regional chromatin environment and the local promoter 
identity independently control expression. While promoter identity has a large effect on 
expression mean, the activeness of the chromatin environment has a large effect on 
MIN.   
 

Discussion  

Taken together, our results suggest that there is a strong, inherent relationship between 
mean mRNA levels and expression noise, but that this relationship can be modified by 
the epigenetic properties of different chromosomal environments. About sixty percent of 
all noise in mRNA expression is set solely by a gene’s mean level of mRNA production 
through a power law relationship, regardless of the identity or genomic location of the 
local CRSs. This observation suggests strong mechanistic constraints on noise that 
originate from fundamental properties of the transcriptional machinery. However, our 
data also show that the different properties of chromosomal environments can, in part, 
uncouple expression noise from mean levels of expression. We found that changing the 
dynamics of the transitions between ON/OFF states has an orthogonal effect on mean 
and mean-independent noise. This mechanism could allow natural selection to select 
for noisy expression without changing a gene’s mean expression level. 

Our data also suggest that local and regional sources of cis-regulatory information act 
independently on a gene’s expression noise. Reporter genes have lower noise when 
integrated at active regions of the genome than at repressed regions, and this is true 
regardless of the identities of their promoters. Local and regional cis-regulatory 
information also control different aspects of transcriptional dynamics. The local cis-
regulatory information controls the basic rates of transcription, regardless of its 
chromosomal environment, whereas the chromosomal environment has a large effect 
on the activation and inactivation dynamics of the gene, and consequently has a larger 
effect on mean-independent expression noise. We speculate that more active 
chromosomal environments have higher local concentrations of the components of the 
transcriptional machinery available, resulting in less heterogeneous transcription among 
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individual cells. Meanwhile at more repressed genomic regions, the binding of the 
transcriptional machinery is a rarer event, increasing time intervals between 
transcriptional bursts and promoting heterogeneous expression in the population. This 
model suggests the possibility for predicting the noise in gene expression based on 
genomic location.  
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was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.29.441875doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.29.441875


KEY RESOURCES TABLE 
 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Recombinant DNA  

pBS185 CMV-Cre Addgene  11916 
pGL4.23  Promega E8411 
Experimental Models: Cell Lines   
K562 Cells ATCC ATCC CCL-243 

Chemicals, peptides, and recombinant proteins   

BTTAA Jena Bioscience CLK-067-25 
Oligonucleotides 

eGFP clampFISH probe Rouhanifard et al., 
2018 

N/A 

tdTomato clampFISH probe This study N/A 
Software and algorithms   
python 3.7.1 Van Rossum, G. & 

Drake, F.L., 2009 
www.python.org 

Mathematica 12 Wolfram research  www.wolfram.com/m
athamtica/ 

Matlab 2018a Mathworks N/A 
Raj Lab Image Tools https://github.com/arju

nrajlaboratory/rajlabim
agetools/ 

N/A 

Raj Lab Probe Design Tools https://rajlab.seas.upe
nn.edu/ 

N/A 

zplib Zhang et al (2016) https://github.com/zp
lab/zplib 

Numba  Lam, S.K., Pitrou, 
A., and Seibert, S. 
(2015).  

www.numba.pydata.
org 

Cell Profiler 3.0 McQuin, C. et al 
(2018) 

www.cellprofiler.org 

 
EXPERIMENTAL MODELS AND SUBJECT DETAILS 
 
Landing Pad Design and Cell Line Maintenance. K562 cell lines carrying landing 
pads constructions were taken from our previously published work (Maricque et al., 
2018). There are several important features of the landing pad cassette: First, a pair of 
asymmetric Lox sites is in the cassette, allowing integration of different DNA sequences 
into the same location. Second, a 12-bp DNA sequence barcode was cloned 
downstream of one of the Lox sites, allowing the mapping of the genomic location of 
each landing pad. Those locations were mapped individually to the Human hg19 
genome. Twenty-two different landing pads were chosen for the experiments presented 
in this work.  

Landing pad K562 cells were cultured using a medium consisting of Iscove’s Modified 
Dulbecco’s Medium (IMDM) + 10% Fetal Bovine Serum (FBS) + 1% non-essential 
amino acids + 1% pen/strep.  
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Plasmid Design and Construction. The transfer vectors containing promoter cassette 
were subcloned with the following steps: First, the sequence of each promoter (PSMB2, 
CHMP2A, and HBZ) was extracted from the Ensembl genome browser (Yates et al., 
2020). The 700 bp sequence before the TSS for each promoter was synthesized by 
Twist Bioscience. Second, the synthesized fragment was cloned into a pGL4.23 transfer 
vector backbone driving a tdTomato reporter using NEB HIFI assembly.  

Cre-mediated promoter integration. Promoter swap was achieved using Cre-
mediated recombination using the asymmetrical loxP, loxFAS sites in the landing pad. 
The transfer vector with different promoters (PSMB2, CHMP2A, HBZ) and the plasmid 
encoding Cre recombinase (pBS185 CMV-Cre, Addgene 11916) were transfected using 
Invitrogen Neon Transfection System (Life Technologies). For each transfection, we 
electroporated 4 ug of transfer vector containing different promoters with 4 ug of 
plasmid encoding Cre recombinase into 1.2 million K562 cells from a landing pad cell 
line. After transfection, we grew the cells for seven days, and we used FACS to sort 
single tdTomato-positive K562 cells into 96-well plates. Individual clones were 
expanded in culture medium for 1-21 days. 

clampFISH Probe Design and Generation. ClampFISH probes for the reporter genes 
were designed using the Raj Lab Probe Design Tool (rajlab.penn.edu)(Rouhanifard et 
al., 2018). Each probe was broken into three arms to be synthesized by IDT. The 5’ of 
the left arm is labeled by a hexynyl group, and the 3’ of the right arm is labeled by NHS-
azide. The right arm fragment was purified by HPLC. All three components were 
resuspended in nuclease-free H2O to a concentration of 400 uM. The three arms were 
ligated by T7 ligase (NEB, Cat# M0318L), at 25 C overnight. then purified using the 
Monarch PCR and DNA cleanup Kit (NEB, Cat# T1030S) and eluted with 40 ul of 
nuclease-free water. After the ligation, each probe is stored at -20 C. The list of oligos 
used in this paper can be found in Supplemental Table S2.  

clampFISH Experimental Procedure. ClampFISH was performed according to the 
suspension cell line protocol of clampFISH (Rouhanifard et al., 2018). 1.2 million cells 
were collected and fixed in 2 mL of fixing buffer containing 4% formaldehyde for 10 min, 
then permeabilized in 70% EtOH at 4 C for 24 hours. The primary ClampFISH probes 
were then hybridized for 4 hours at 37 C in the hybridization buffer (10% Dextran 
Sulfate, 10% Formamide, 2X SSC, 0.25% Triton X). After hybridization, cells were spun 
down gently at 1000 rcf for 2 min. Cells were washed twice with the washing buffer (20% 
formamide, 2X SSC, 0.25% Triton X) for 30 min at 37 C. The secondary probes were 
then hybridized to cells at 37 C for 2 hours and the cells were then washed twice with 
washing buffer for 30 min at 37 C. The primary and secondary probes are “clamped” in 
place through a click reaction (CuSO4 75 uM, BTTAA 150 uM, Sodium Ascorbate 2.5 
mM in 2X SSC) for 20 min at 37 C. The cells were then washed twice in the washing 
buffer at 37C for 30 min each wash. Then, the cells were hybridized with the 
hybridization buffer with tertiary probes for 2 hours at 37C. We complete 6 cycles of 
hybridization for all our experiments.  After the final washes, cells were incubated at 37 
C with 100mM DAPI for 20 min, washed twice with PBS, resuspend in the anti-fade 
buffer, spun onto a #1.5 coverslip (part number) using a Cytospin cytocentrifuge 
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(Thermo Scientific), mounted onto a glass slide, sealed in antifade buffer with sealant, 
and stored at 4C.  
 
Imaging. All images were taken within 72 hours of mounting of the slides. All images 
were captured by a 63X oil-immersion inverted wide field scope (Leica DMi8) with 
customized stage, camera (Andor Zyla 5.5) and filter sets (Chroma VCGR-SPX-P01). 
Automated image acquisition script was achieved through a custom imaging system 
developed in the previous publication (Zhang et al., 2016). We acquired z-stacks (1.2 
μm between stacks) of stained cells.  
  
 
QUANTIFICATION AND STATISTICAL ANALYSIS  
 
Image Processing. Once the images were collected, we perform a maximum z-
projection to reduce the z-stacks into 2D images. We then used CellProfiler 3.0 for 
segmenting cells (Carpenter et al., 2006; McQuin et al., 2018). Briefly, trans images 
were first preprocessed to enhance the edges of the cells using the Prewitt algorithm. 
Then nuclei were identified with global minimum cross-entropy thresholding from DAPI 
images. Relying on the size and location of the nucleus, cell boundaries were 
segmented with a Watershed Algorithm. Once the cells were segmented, we then used 
the rajlabimagetools to quantify RNA FISH spots 
(https://github.com/arjunrajlaboratory/rajlabimagetools/). At this step we manually 
inspected each segmented cell and removed poorly segmented cells and adjusted the 
threshold for signal detection. 
 
Gillespie Simulation for the ON/OFF Model. To investigate possible explanations for 
the observed differences in mean-independent noise associated between different 
chromosomal environments, we employed a two-state stochastic model for 
extrapolating the transcriptional dynamics. A parameter sweep of a stochastic model is 
computationally expensive but makes the least assumptions of the relationships among 
the kinetic parameters. To set up the simulation using the previously established 
framework, we first constructed the Chemical Master Equation (CME) for the ON/OFF 
model (Paulsson, 2005; Raj et al., 2006; Sherman and Cohen, 2014; Sherman et al., 
2015), and by convention, we separate the Chemical Master Equation into two equation: 
 
������
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�	��� and �
��� denote the probabilities of having m molecules in the system in the ON 
and OFF states. 
 
After establishing the CME for the ON/OFF model, we used the Gillespie Algorithm to 
simulate 8.8 million sets of parameters (Gillespie, 1976). We chose the estimated 
physiological range of the rates of activation, transcription, and mRNA degradation (Kon: 
0.00001 - 50 s-1, Koff: 0.00001-50 s-1, Km: 0.002-1 s-1, Kd:0.0002 - 0.003 s-1) (Chubb et 
al., 2006; Rodriguez et al., 2018; Suter et al., 2011). Kon and Koff were first broken down 
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into intervals (0.00001- 0.001 s-1 and 0.001-50 s-1). For the first interval, 37 values for 
each parameter were chosen logarithmically to ensure finer sampling for the smaller 
values. For the second interval, 50 values for each parameter were chosen 
logarithmically. Each set of parameters was simulated for 1X103 individual trajectories 
till reaching stationary distribution, and the final distribution was recorded. The 
simulation was done on the Washington University High Throughput Computing Facility 
at Center for Genome Sciences (https://htcf.wustl.edu) with 200 cores with 2 Gb of RAM 
per core.  
 
Fitting experimental data to simulated results. To fit our experimentally measured 
mRNA distribution with the ON/OFF model, Kolmogorov-Smirnov test was employed to 
determine the closest simulated distributions to the experimentally measured 
distribution. All sets of parameters that accept the null hypothesis for the K-S test (p > 
1x10-2) are reported for subsequent analyses.  
 
Epigenome data analysis. For the epigenetic data analyses at different integration 
sites, we considered the boundaries of interest as the 2500 bps flanking the integrated 
site. We then downloaded various K562 epigenome datasets (full list of sources in 
Table S5). For H3K9ac, H3K27ac, H3K9me3, H3K4me3, H3K27me3, DNase-seq we 
used pyranges (Stovner and Sætrom, 2020) module to overlay the signal with the 
integration sites. The ChromHMM and Segway combined segmentations for K562 cells 
were downloaded from UCSC genome browser and overlaid with the integrated sites.  
 
TRIP data analysis. We downloaded TRIP data for mouse embryonic stem cells (mES 
cells) from Akhtar et al. (Akhtar et al., 2013) and the ChromHMM segmentation for mES 
cells from Pintachuda et al. (Pintacuda et al., 2017)  (full list of sources in Table S5). We 
lifted the TRIP data from mm9 to mm10 using the UCSC Liftover Tool (Kent et al., 2002). 
We then overlaid the TRIP expression data with the ChromHMM segmentation using 
pyranges (Stovner and Sætrom, 2020).  
 
DATA AND SOFTWARE AVAILABILITY 
 
The data for the raw mRNA counts is provided in the Supplemental Table 3. The data 
for fitted rates is provided in the Supplemental 4.  Raw images will be available upon 
request.  The code will be stored on Github after the peer review process. 
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Fig 1. Experimental design for studying the cell-to-cell variability associated with 
different genomic locations. (A) Strategy for integrating the same reporter cassette into 
mapped genomic locations. In each K562 cell line, a construct containing a pair of LoxP and 
LoxFAS sites is integrated and mapped. The sequence between the pair of lox sites contains a 
reporter cassette of eGFP driven by a CMV promoter. Three other reporter cassettes containing 
PSMB2, HBZ, and CHMP2A promoters replace the CMV promoter through cre recombination.  
(B) Schematics for selecting K562 cell lines. 8 active locations and 14 repressed locations were 
selected based on the ChromHMM+Segway combine segmentation (see Methods). (C) 
Heatmap of single-cell mRNA expression of 22 cell lines with CMV promoter, ordered from 
highest mean expression level to lowest. Each position in the matrix represents the mRNA 
counts of a single cell, and the color represents the percentage of cells. (D, E) Scatter plots 
showing the reproducibility derived from two replicates for mean (D) and noise (E) of the 
measured single-cell expression distributions. (F) Linear regression of mean against noise in the 
log scale revealed a power-law dependence. Mean expression level explains about 59% of the 
observed noise, with the power of 1.15. (G) Histogram of the bootstrap of the power of the 
power-law relationship between mean and noise. The red line shows the fitted power from 
experimental data.  
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Fig 2. Active genomic locations have lower expression noise. (A) Expression mean and 
MIN are plotted for each genomic location expressing eGFP driven by the CMV promoter. (B) 
Residual noises from the power-law fitting are plotted with the order from highest residual to the 
lowest. Each bar corresponds with the combined ChromHMM+Segway segmentation 
annotations. (C) Violin plot for MIN at active and repressed locations. (D) Violin plot for mean at 
repressed and active locations. (E) Histogram of trip mean expression differences from Ahktar 
et al (2013) for 105 times using the number of observations from our experimental data (n=22), 
red vertical line indicates the actual mean difference observed from our data. 
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Fig 3. The ON/OFF model reveals the dynamics that drive different MIN at active and 
repressed locations. (A) Schematics for stochastic simulation for the two-state ON/OFF model. 
(B) Number of fitted sets of parameters for each experimentally measured distribution (n = 34, 
median = 23). (C–E) Scatter plots of mean against Kon (C) (R2 = 0.03, p = 1.7x10-6), Koff (D) (R2 
= 0.0001, p = 0.73), and Km (E) (R2 = 0.02, p = 0.00015),). Error bar indicates all fitted values 
from the stochastic simulation. Shadow shows the 95% C.I. of the linear fit. (F–H) Scatter plots 
of MIN against Kon (F) (R2 = 0.1, p = 5.2x10-17), Koff (G) (R2 < 1x10-5, p = 0.8), and Km (H) (R2 = 
0.3, p = 3.38x10-52). Error bar indicates all fitted values from the stochastic simulation. Shadow 
shows the 95% C.I. of the linear fit. (I-K) Violin plots of all fitted Kon (I), Koff (J), and Km (K) at 
active and repressed locations. 
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Fig 4. Active transcriptional locations have higher burst frequency but lower burst size. 
(A, B) Scatter plots of mean against burst size (R2 = 0.17, p = 0.0001) and burst frequency (R2 = 
0.19, p = 5x10-32). Error bar indicates all fitted values from the stochastic simulation. Shadow 
shows the 95% C.I. of the linear fit. (C) Derivation of average burst size and burst frequency 
based on the ON/OFF model. (D, E) Scatter plots of MIN against burst size (R2 = 0.34, p = 7x10-

61) and burst frequency (R2 = 0.43, p = 2x10-81). Error bar indicates all fitted values from the 
stochastic simulation. Shadow shows the 95% C.I. of the linear fit. (F) Violin plot for burst 
frequency at active and repressed locations. (G) Violin plot for burst size at active and 
repressed locations.  
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Fig 5. Active transcriptional locations have higher burst frequency but lower burst size. 
(A, B) Bar plots showing the mean and MIN of different promoters at two active and two 
initiative genomic locations. (C, D) Bar plots showing the burst size (C) and burst frequency (D) 
of different promoters at two active and two initiative genomic locations. (E) Two-way ANOVA 
analysis for promoter identity and genomic location contribution to expression mean and MIN.   
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Figure S1. Landing pad locations have diverse epigenetic landscapes, related to Figure 1. 
UCSC genome browser view of the investigated locations with ChIP-seq data for several 
transcription factors and epigenetic modifications.  
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Fig S2. The Power-law relationship for different promoters at different genomic locations 
are largely the same and suggests a slow dynamics, related to Figure 1, 5. (A) Power-law 
relations for expression mean and noise for different promoters at different genomic locations in 
K562 cells. (B) The fraction of cells with no mRNA molecule labeled, compared to ACTB intron 
control. Error bar indicates the standard error from two biological replicates.  
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Fig S3. Specific noise metric does not change our observation, related to Figure 2. (A) 
Power-law relations for expression mean and Fano factor and CV2 for CMV promoters at 
different genomic locations in K562 cells. (B) Box plot showing Fano Factor and CV2 as noise 
metric for active and repressed locations. (C) Comparison of peak density between 4C (blue line
and Hi-C derived virtual 4C (orange line) for Location 2 and Location 4. Each peak represents 
the normalized read density centered on the insertion site.  
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Fig S4 Epigenetic Analysis for different genomic locations, related to Figure 3,4. 
ChIP-seq datasets of histone modification are downloaded from the ENCODE and are 
correlated with active and repressed regions. (A-C). Violin plot showing active histone 
modifications peaks 5kb surrounding the integration site at active and repressed locations. (D-F)
Violin plot showing repressive histone modifications peaks 5kb surrounding the integration site 
at active and repressed locations. (G) Number of histone ChIP-seq peaks (H3K9ac, H3K27ac, 
H3K9me3, H3K4me3, H3K27me3) and DNase-seq peaks within a given window centered on 
the integration site for 22 genomic locations in K562 cells Solid blue line: average number of 
peaks, blue shade: 95% C.I.). 
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Fig S5. Fitted rates for different promoters and different genomic locations, related to 
Figure 5. (A) Different rates (Km, Koff, and Kon) of the ON/OFF model for different promoters at 
active and repressed locations. (B) Cumulative distribution function for different rates at active 
and repressed locations  
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