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Abstract

Self-initiated movements are known to be preceded by the readiness potential or RP, a
gradual increase in surface-negativity of cortical potentials that can begin up to 1
second or more before movement onset. The RP has been extensively studied for
decades, and yet we still lack a clear understanding of its functional role. Attempts to
model the RP as an accumulation-to-bound process suggest that this signal is a
by-product of time-locking to crests in neural noise rather than the outcome of a
pre-conscious decision to initiate a movement. One parameter of the model accounts for
the imperative to move now, with cued movements having a strong imperative and
purely spontaneous movements having no imperative. Two different variants of the
model have been proposed, and both predict a decrease in the (negative) amplitude of
the early RP as the imperative grows stronger. In order to test this empirically, we
conducted an experiment where subjects produced self-initiated movements under
varying levels of time pressure, and we investigated the amplitude, shape, and latency of
the RP as a function of the imperative to move, operationalised as a time limit. We
identified distinct changes in the amplitude of the early RP that grew non-linearly as
the time limit grew shorter. Thus these data did not support the prediction made by
the model. In addition, our results confirm that the shape of the RP is not
stereotypically negative, being either positive or absent in about half of the subjects.

Introduction 1

In everyday life the phenomenology of movement initiation can be reduced to two 2

opposite case scenarios: movements are either exogenously induced in reaction to 3
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stimuli coming from the environment (for example a traffic light indicating the ‘go’ 4

moment for crossing the intersection; a phone ring tone signaling when it is time to 5

reply) or endogenously generated at an arbitrary undetermined time without any 6

specific perceptual evidence (for example a football player kicking a penalty kick after 7

waiting for the right moment; a computer user starting to browse for information on the 8

internet). 9

A growing body of literature has been investigating this dichotomy between 10

externally triggered and internally generated movements by contrasting cued responses 11

originating from instructed acts with free, self-initiated ones [1–15] produced in the 12

context of spontaneous voluntary movement (SVM) tasks [16]. Though useful in the 13

context of laboratory experimentation, this polarization oversimplifies the real nature of 14

movements which span a continuum from conditioned reaction time (RT) responses to 15

waiting time (WT) responses (defined as the interval between the start of the trial and 16

how long the subjects wait to freely initiate an act). Indeed, most real-life movements 17

lie somewhere in between those extremes. 18

An attempt to provide a first mechanistic explanation of the neural phenomena lying 19

along this spectrum was made by the stochastic decision model (SDM) [17], a leaky 20

accumulator inspired by the class of integration-to-bound models in perceptual 21

decision-making [18–22]. This model has managed to account for the distribution of 22

waiting times and the shape of the readiness potential in a self-initiated movement task 23

(a replication of Libet (1983) [23]). The readiness potential (RP) is a pre-movement 24

buildup of neural activity traditionally identified as the electrophysiological sign of 25

planning, preparation, and initiation of volitional acts [14,15,23]. 26

The model interpreted the slowly building activity occurring before self-initiated 27

movements both as a readout of the neural activity accumulating towards a decision 28

bound and as a methodological artifact (‘selective biased sampling’) originating from 29

averaging together data epochs aligned to the crests of auto-correlated neural 30

noise [16, 17, 24, 25]. Furthermore, it posits that in the presence of a sensory signal from 31

the environment (i.e., a strong imperative to act) it is mainly the neural activity 32

triggered by the cue that determines the threshold crossing time. Conversely, lacking 33

environmental information to accumulate, in the presence of only internal signals (i.e., a 34

weak imperative to act) it is mainly the noisy background activity that determines the 35

threshold crossing time. 36

Two variants of the model have thus far been proposed. One asserts a 37

correspondence between the output of the accumulator process and the temporal profile 38

of the RP [17]. The other asserts a correspondence between the movement-locked input 39

to the accumulator and the temporal profile of the RP [26]. The output and the input 40

model make opposite predictions regarding the direction of the relationship between the 41

amplitude of the early RP and the waiting time but they both consider the imperative 42

as a constant. 43

Here, we sought to manipulate the imperative reasoning that a progressive and 44

continuous decrease in the signal triggering a movement would require a higher amount 45

of background neural activity to accumulate in order to reach the threshold. To test 46

this prediction we developed a new paradigm that allows us to study the initiation of 47

movement along a spectrum between the extremes represented by ‘exogeneous’ and 48

‘endogeneous’ actions [1], laying the first stone on a new path of studies in volition 49

focusing on continuous vs discrete events. This requires an innovative design for 50

eliciting externally and self-initiated movements in continuous time. 51

So far, research on self-initiated movements has typically imposed a ‘minimal waiting 52

time’ leading to a discrete movement initiation at a self-chosen time, such as the 3-25 s 53

interval between irregular discrete self-paced movements in the Kornhuber & Deecke 54

(1965) task [14] or the 3 s of rotating clock dial serving as buffer time before a discrete 55
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single self-initiated movement in the Libet (1983) task [23]. While a continuous Libet 56

task, with parametrically varying minimal waiting times within which to perform the 57

movement, has already been used for studying systematic effects on the RP [27], to our 58

knowledge no design in the self-initiated paradigm has investigated movements made 59

under a ‘maximal waiting time’ context, either in discrete or continuous time. The 60

minimal waiting time design was developed with the goal of preventing rhythmic 61

movements [14] or reaction type of movements [23] to occur in a freely initiated act. In 62

our study we combined this minimal waiting time design (in the form of the traditional 63

Libet clock-task) with a maximal waiting time one, by randomly increasing levels of 64

temporal freedom (which is equivalent to decreasing levels of time pressure). Our goal 65

was to indirectly manipulate the strength of the imperative to act by parametrically 66

varying the time window in which participants were allowed to move. The external 67

temporal constraint would be a proxy of the imperative to act by imposing a time 68

pressure on the performance of a single self-initiated act. 69

We used EEG to record cortical readiness potentials from 22 healthy human 70

participants while they performed the above-mentioned time limit task. As expected, 71

self-chosen waiting times were longer with longer time windows (weaker imperatives to 72

move), indicating that subjects were, on average, willing to wait longer when time 73

permitted. EEG data revealed that the RP increased in amplitude for increasing levels 74

of time pressure (i.e. shorter time windows), counter to the prediction of the model. 75

These results were specific to the early phase of the RP, the one upon which the 76

predictions of the SDM are hypothesized to apply: the late phase of the RP, the 77

lateralized readiness potential (LRP) and the post-motor positivity (PMP) or reafferent 78

potential, following the onset of the movement, did not yield any significant result. 79

While not consistent with the predictions of the model, these experimental findings 80

show that the amplitude of the RP is susceptible to time pressure, and this puts some 81

constraints on the viability of different theories of the origin of the RP. We discuss these 82

findings in light of recent controversy surrounding the interpretation of the RP and the 83

nature of the bounds in build-to-threshold decision models. We also suggest that future 84

work focus on the spectrum from endogenous to exogenous determinants of movement 85

initiation. 86

Materials and Methods 87

Participants 88

A total of 22 subjects participated in the experiment (3 females, median age 22 y, 1 left 89

handed). All had normal or corrected-to-normal visual acuity. None had neurological or 90

motor disorders. Subjects were recruited from the surrounding community and nearby 91

universities through the CEA-GROOM online platform, and all subjects gave written 92

informed consent to participate and were paid for their participation. The study was 93

approved by the Comité de Protection de Personnes Ile de France VII in accordance 94

with the Declaration of Helsinki (2008). 95

Stimuli and Setup 96

Visual stimuli consisted of a circular clock dial (white on a black background) with a 97

small fixation cross in the center (diameter= 5.5 cm, visual angle= 3.43°), a small dot 98

revolving around the fixation cross along the inside edge of the clock dial, and a small 99

tick mark indicating the time limit. The dot was red at the beginning of each trial, and 100

would gradually change color to white over a period of 3 s. Subjects were instructed to 101

perform the movement any time after the dot became completely white, but before the 102

April 28, 2021 3/26

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.29.441753doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.29.441753
http://creativecommons.org/licenses/by-nc-nd/4.0/


dot reached the tick mark. If subjects forgot to answer (missed trials) or the answer was 103

too late or too early the screen would turn red and display the words: “Trop tard”, 104

“Trop tôt”. Visual stimuli were back-projected onto a translucent viewing screen 105

(Panasonic DLP projector, model PT-D7700E-K, 60 Hz refresh rate) positioned at ∼100 106

cm in front of the subject’s eyes. Experimental stimulation was coded and presented 107

with Psychtoolbox version 3 [28–30] running on MATLAB 2017 (R2017b, MathWorks 108

Inc). Movements, consisting of finger lifts (index finger extension), were collected 109

through a Fiber-Optic Response Pad (FORP; Science Plus Group) that sent a trigger 110

pulse when the finger stopped breaking a beam of light. During the task the hand of the 111

subject rested comfortably on a tabletop and on top of it the Fiber-Optic Pad was fixed 112

with tape. The experimenter sat outside of the shielded room and communicated with 113

the subject via an intercom. In order to ensure that participants followed the 114

instructions correctly, at the end of the experiment we administered an anonymous 115

questionnaire in which we asked subjects to report subjective impressions relative to 116

their felt spontaneity during the task and possible sources of nuisance during the 117

experiment (File S1). 118

Design and Procedure 119

Fig 1. Timeline for a single trial. Participant watched a fixation cross while a dot
revolving around the edge of the clock dial appeared. Once this dot completely turned
white, the participant was allowed to make a finger lift any time between then and when
the dot reached the tick mark (2, 4, 8 or 16 seconds later) or whenever they wanted if
there was no tick mark (Infinite seconds). After a random delay following the finger lift,
the trial ended).

Each session began and ended with a 5-min resting-state recording (part of a 120

separate study). During the actual experiment the subject had a training session lasting 121

10-min in which the experimental conditions were presented and re-explained. The two 122
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different types of conditions, resetting at each trial after 3 s of minimal waiting time, 123

were: the time limit conditions, with constrained windows of time in which participants 124

were allowed to make a movement (2 s, 4 s, 8 s, 16 s) and the infinite condition (Inf s), 125

an unlimited window of time like in the traditional Libet paradigm. After the 126

instructions were clear, the recording would start with 10 blocks interleaved with 2-min 127

breaks in between. During each block participants performed 20 finger lift movements, 128

one per trial. Thus, there were a total of 200 trials in each experiment: max 40 129

randomized trials for each of the five conditions distributed across 20 trials in each of 130

the 10 blocks. Depending on the subjects’ individual pace, the whole recorded session 131

would last around one hour and no more than one hour and a half. 132

Data Acquisition and Preprocessing 133

All data were acquired at NeuroSpin, in the French Alternative Energies and Atomic 134

Energy Commission (CEA) center of Saclay, France. EEG recording was performed 135

with the subject wearing an integrated 60-channel EEG cap (Elekta NeuroMag) at a 136

sampling rate of 1,000 Hz (306-channel whole-head Elekta NeuroMag EEG/MEG 137

system).The subject sat inside an electrically shielded chamber while they performed 138

the tasks. An EEG reference was added on the tip of the nose and a ground electrode 139

on the clavicle. The subject sat in an upright, but slightly reclined position. 140

Electrooculogram (EOG) (horizontal and vertical) and electromyograms (EMG) (one 141

above the flexor digitorum superficialis muscle and the other on the bone of the wrist, 142

ulnar styloid process) were also recorded, using pairs of electrodes connected to bipolar 143

recording channels. During the EEG cap preparation, we endeavored to keep impedance 144

below 15 kΩ, while being mindful of any reported discomfort during the preparation. 145

Data analysis was performed using MATLAB 2018 (MathWorks) with the help of the 146

FieldTrip toolbox for MATLAB [31]. Dedicated trigger channels were used to insert 147

temporal markers in the data, corresponding to: trial onset, button press, the five 148

experimental conditions, fixation cross and clock appearance. For the average analysis, 149

to preserve slow fluctuations, no detrending, no baseline correction, or high-pass 150

filtering was performed. Data were down sampled to 250 Hz off-line prior to data 151

analysis. Data were time locked to the finger lift response by epoching from 3 s before 152

movement onset to 1 s after movement onset. Ocular and cardiac artifacts were isolated 153

using Independent Components Analysis (ICA) [32] and removed by projecting the data 154

onto the pseudoinverse of the artifact component matrix. Trials with significant 155

artifacts remaining after this step were rejected based on visual inspection. 156

Behavioral Analysis 157

After artifact rejection, we further cleaned trials from ‘cognitive artifacts’ [33] by 158

removing trials in which participants committed errors (the behavioral response was 159

‘too early’ or ‘too late’ or the response was missing). This procedure was done after the 160

EEG pre-processing in order to have a correspondence between the behavioral and 161

electrophysiological trials. We tried to not exclude more than 20-25% of trials, thus 162

keeping at least between 150-160 trials for each participant. The behavioral analysis 163

served to ensure the success of the experimental manipulation: participants were 164

expected to have on average increasingly slower waiting times with decreasing time 165

pressure (or increasing ‘temporal freedom’). Therefore, to calculate descriptive statistics 166

on the WTs we sorted the trials according to the time-limit condition. 167
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EEG Analysis 168

After rejecting trials with behavioral artifacts, we applied a fourth-order Butterworth 169

low pass filter (30 Hz cutoff). Since time locking to high-pass–filtered EMG signal 170

simply shifts the signal by ∼50 ms forward in time as compared to time locking to the 171

button press (or in our case finger lift) [17,34], we chose to time lock to the finger lift by 172

epoching from 3 s before movement onset to 1 s after movement onset. We performed 173

data pre-processing in four different ways in order to adapt to the needs of the data 174

analysis and visualization: with all the trials averaged together and all the conditions 175

randomized; keeping individual trials and all the conditions randomized; by grouping 176

the data into the five experimental conditions (2 s, 4 s, 8 s, 16 s, Inf s) with all the 177

trials averaged together; by grouping the data into the five experimental conditions and 178

keeping each trial separate (for further details see code available in the GitHub 179

repository). For the averaging analysis we mostly relied on the data grouped into the 180

five experimental conditions. For the statistical analysis (regression) we used the 181

pre-processed data with non averaged individual trials. 182

An important criterion for participant inclusion in the statistical analysis was the 183

presence of a clear readiness potential. The RP is localized within the midline 184

centro-parietal area [35]. Traditionally, the RP exhibits maximal amplitude in the 185

electrode at the vertex (Cz or FCz) and this is the commonly used channel, along with 186

lateral central electrodes contralateral to the hand used to perform movements (FC1, 187

C1, C3) [34,36]. However, the inter-subject variability of the RP amplitude at the 188

candidate and neighboring electrodes sites makes it problematic to select a single 189

electrode as the channel for the analyses. Indeed, most subjects exhibit an RP at 190

electrode Cz and one or more adjacent electrodes, especially contralateral to the 191

dominant hand used to perform the task, but the center of the spatial distribution 192

varies from subject to subject (see [17], p. E2911). Visual inspection of the averaged 193

RP’s time series at candidate electrodes (single sensor selection method) for each 194

individual subject is one of the traditional ways to establish the presence of an RP but 195

not necessarily the most optimal [37]. In the literature, indeed, there is no agreed-upon 196

standardized procedure for assessment of the RP [38]. 197

In order to obtain a more robust estimate of the RP, we customized a 198

criterion-metric inspired by the effect-matched spatial filtering (EMSF or SF) 199

method [39]: we computed the mean signal amplitude within a 50 ms window 200

positioned at the pre-movement peak of the signal, and the mean signal amplitude 201

within a 50 ms window placed 1 s earlier. We computed the difference between these 202

two means and an amplitude decrease of at least 1µV was the criterion for considering 203

the movement preceding activity to be a RP. Participants who showed a decrease that 204

was inferior to this criterion or instead an increase in voltage prior to movement were 205

excluded from EEG signal analysis. 206

Finally, to compute the Lateralized Readiness Potential we computed the average of 207

the sensors C3 and C4 and then substracted their amplitude [40]. 208

Data Transformation and Statistics 209

To analyze differences in neural amplitudes we employed Wilcoxon’s signed rank test 210

and linear regression (MATLAB function regress). To overcome the problem of applying 211

a linear regression on autocorrelated EEG time points, the function regress was run for 212

each time point independently, across all 22 subjects, across all 60 channels (see [41] 213

chap. 34), across 2001 time points (for the latency -3 s 1 s), across all trials. The data 214

dimension was: ∼177 trials x 60 channels x 2001 time points. The function returned a 215

vector of beta weights or regression coefficients (slopes and intercepts) whose dimension 216

was 2 x 60 x 2001. For the predictor data, we specified a variables-by-observation design 217
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matrix X, with rows of X corresponding to observations, and columns corresponding to 218

predictor variables. For the behavioral data the predictor (x) was the time limit 219

condition indexes and the criterion variable (y) was the participant’s WTs on each trial. 220

Given the non-linear relationship between the behavioral responses (subjects’ waiting 221

times) and the time limit conditions, to allow for a linear regression, we log transformed 222

the input variables. 223

In the time-series domain, we ran a trial-by-trial regression with each of the time 224

limit conditions (2 s, 4 s, 8 s, 16 s, Inf s) as a predictor (x) and the RP amplitudes at 225

each time point as response variables (y) (henceforth first regression) across each of the 226

subjects (n= 22). Statistical significance of the resulting 22 beta coefficients was then 227

tested against zero via non-parametric approach with Fieldtrip’s cluster-based 228

permutation test (function: ft timelockstatistics) that corrects for multiple comparisons 229

without making any prior assumptions regarding where the effect should be. However, 230

this function, for the paired t-test, allows only for testing two independent conditions 231

against each other. Therefore, in order to test our regression coefficient against zero we 232

created a template of 22 surrogate beta weights with value 0. To calculate the 233

significance probability, we used the Monte Carlo Method [42] with dependent sample 234

t-statistics. The cluster-based permutation tests were performed on the time intervals 235

−2 s to -0.2 s relative to the finger lift and -0.2 s to 1 s after the finger lift with 1000 236

iterations from the permutation distribution. The cluster alpha value was set to 0.05 237

and we ran the cluster based permutation test under a two-tail hypothesis. Channel 238

neighbours for spatial clustering were defined using the distance method (minimum 239

neighbourhood distance = .13). We also ran a trial-by-trial regression with the 240

behavioral WTs as predictors (x) and the RP amplitudes as response variables (y) 241

(henceforth second regression). This second regression was performed as a control to 242

test for the relationship between the WTs and the RPs. To correct for multiple 243

comparisons, we followed the same procedure as outlined above. 244

Computational Model 245

Fig 2. Model-driven predictions. (A) Average stochastic input to the
accumulator, time aligned to first crossing times in the output, separately for a range of
different values of I (the evidence or imperative to move) sorted by levels of strength.
Darker lines (from brown to black) correspond to the shortest time limit conditions.
Lighter lines (from yellow to orange) correspond to the longest time limit conditions.
(B) Same as (A) but for the output of the accumulator.

The computational model that we used was the same as that used in Schurger et al. 246

(2012) [17] and Schurger (2018) [26], which amounts to numerical integration over the 247
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following differential equation: 248

dx = (I − kx)dt+ cξβ
√

(dt) 249

where x is the decision variable, I is the imperative or evidence, k is leak 250

(exponential decay in x), ξβ is noise with 1/f exponent beta, and c is a noise scaling 251

factor set at 0.1. For β = 0, ξβ is simply Gaussian white noise, and the process is a 252

leaky stochastic accumulator (Ornstein-Uhlenbeck process). For β > 0, ξβ is 253

autocorrelated (pink) noise. There is one additional parameter which is a threshold on 254

x. When the threshold is crossed we consider that a movement has been initiated and 255

we time lock the simulated data to that point in time. Two assumptions about the RP 256

are possible. One is that the RP reflects the average trajectory of the decision variable 257

leading up to threshold crossing [39], and the other is that the RP reflects the average 258

time course of the noise (ξβ) leading up to the threshold crossing [26]. We consider both 259

possible interpretations here, in case the predictions that they made were different 260

(though it turns out that they were qualitatively the same). 261

The goal of the simulations was to make a prediction about the relative amplitude of 262

the RP under different levels of imperative. To that end, we ran the simulation many 263

times for a range of different values of I (the evidence or imperative) and observed how 264

the amplitude of the simulated RP changed with changing I. We did this for both the 265

input and output assumptions and also across a broad range of values for the other 266

parameters, except for beta which was either 0 (output assumption) or 1.4 (input 267

assumption). Repeating the simulation for a range of different values of k and for 268

different thresholds reassured us that the prediction about the relative amplitude of the 269

RP for different values of I was not limited to a very narrow range of values for the 270

other parameters, and it turns out that it was not. Regardless of the specific value of k 271

and the threshold (within reason - for extreme values the model simply breaks down) 272

the same qualitative prediction emerged: the amplitude of the (early) RP is predicted to 273

be higher for weak imperative and vice-versa. This was true under both the input and 274

output assumptions. Figure 2 shows the results of the simulation for representative 275

parameter values (see the figure legend for the specific parameter values). 276

Results 277

Behavioral Results 278

Participants (n = 22) were presented with a rotating dot on a clock dial while 279

maintaining fixation in the middle of the clock. On each trial one of five different 280

temporal windows of opportunity to make a movement (‘time limits’) was marked on 281

the clock dial in the form of a small tick mark marking the end of the interval. We used 282

a randomized design in which at each trial a different window of time was assigned from 283

among the following: 2 s, 4 s, 8 s, 16 s, Inf s (see Methods). In principle, with the 284

infinite time limit condition subjects could wait forever to perform a movement. In 285

practice, due to the demand characteristics of the task, participants never waited more 286

than 30 s to make a finger lift, like reported by Schurger et al. [17]. We received 287

questionnaire answers for 20 participants out of 21. Only five of them reported adopting 288

a particular strategy for performing the task. Six of them reported that the time limit 289

triggered them to move, specially in the case of short duration. Four of them reported 290

that the cue turning white triggered them to move faster or to wait before feeling the 291

need to move. Fourteen of them reported that their actions were spontaneous most of 292

the time, four that their actions were always spontaneous and only one of them said 293

that their actions were only sometimes spontaneous. 294
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Fig 3. Behavioral performance and RPs sorted by condition. (A) Average
waiting times sorted by conditions 2s (red dots), 4s (yellow dots), 8s (green dots), 16s
(blue dots), Inf (violet dots) and plotted in log scale. Dots represent individual
participants (n= 22). Mid line in box plots indicate the median WTs across subjects.
(B) Average RP amplitudes across participants (in blue) sorted by conditions 2s, 4s, 8s,
16s, Inf ; small red bars represent ± SEM across participants.

Overall participants completed on average 185 (SD= 10.70) trials in the entire 295

session, 177 (SD= 10.96) for correct trials only. The waiting-time data were 296

log-transformed because they were markedly positively skewed (one-sample 297

Kolmogorov-Smirnov test for normality: 0.787, p < 1.0e− 07; see Fig. S 1) and the 298

standard deviation scaled with the mean (r= .88, p < 0.00001; see Fig. S 2), as is the 299

case for response-time tasks [43]. Participants’ median waiting times within each 300

condition, for correct trials only, were: 0.48 s (min: 0.002 s, max: 1.76 s; IQR: 0.39 s - 301

0.57 s) for time limit 2 s ; 1.31 s (min: 0.002 s, max: 3.7 s; IQR: 1.10 s - 1.53 s) for time 302

limit 4 s ; 2.34 s (min: 0.05 s, max: 7.88 s; IQR: 1.77 s - 3.03 s) for time limit 8 s ; 3.60 s 303

(min: 0.05 s, max: 15.11 s; IQR: 2.21 s - 4.98 s) for time limit 16 s; 4.10 s (min: 0.01 s, 304

max: 33.41 s; IQR: 1.70 s - 5.57 s) for the Inf condition. The Kruskal-Wallis Test, a 305

non-parametric one-way ANOVA, revealed a significant main effect of the time limit 306

durations assigned (2 s, 4 s, 8 s, 16 s, Inf ) on the median waiting times (H = 71.98, 307

p < 9e− 15, df = 4); post-hoc pairwise comparisons from a multiple comparison test 308

(Mathworks; function multcompare) revealed that participants waited significantly less 309

time in the 2 s condition as compared to all other conditions, and waited significantly 310

less time in the 4 s condition compared to the conditions 16 s and Inf s (for H statistics 311

and p-values see Table 1 in Supporting Information). Participants’ average waiting 312

times were highly correlated with increasing time limit conditions (R= 0.60, p < 0.0001; 313

see 3a). Taken together these results show that participants waited longer when they 314

were given more time, as expected. 315

Given the temporal aspect of the task, as a post-hoc analysis we wondered if 316

participants would adopt a different strategy in response to the time limit conditions. 317

Because the distribution of median WTs of each subject across condition did not show 318

any segregated pattern, we decided to look at their standard deviation averaged across 319

conditions (see Fig. S1, A and B). Following what the literature has described as a 320

‘universal law’ of reaction time tasks [20, 43] or timescale invariance [44,45], we showed 321

that most of the participants would display more random responses for longer time 322

limits, and that their WTs would become more dispersed with increasing temporal 323

freedom or decreasing temporal pressure (Fig. S1, C). By looking at within-subjects 324

standard deviation responses, we found 15 participants (subjects 2, 3, 6, 7, 9, 11, 12, 13, 325

14, 15, 17, 18, 19, 20, 21) whose standard deviation linearly scaled with time limit 326

imposed. We called those ‘timers’. The other 7 participants (subject 1, 4, 5, 8, 10, 16, 327

22), instead, displayed very little change in variability across conditions (meaning that 328
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the standard deviations of their WTs did not scale with their mean WTs). We 329

considered those subjects as Non-timers because they were not sensitive to the timing 330

aspects of the task, as opposed to the Timers. We wondered if this difference in the 331

behavior would reflect some neural process related to the RP and potentially connect 332

the RP to an endogenous timing mechanism. Therefore, we later used this 333

categorization across participants for sorting the electrophysiological data into two 334

distinct groups for group-level statistical analysis and for comparison with a subset of 335

participants displaying different temporal profiles of RP (see next session). 336

The Readiness Potential is Not a Stereotypical Signal Across 337

Subjects 338

Table 1. Criterion for deciding if a participant shows a canonical readiness potential.

Subject n◦ RP amplitude (µV ) RP peak latency (s) SF baseline window (s) Inclusion

1 -2.775e-07 0.014 [-0.036 0.014] No
2 -2.872e-07 -0.020 [-0.070 -0.020] No
3 -3.424e-06 0.128 [0.078 0.128] Yes
4 -4.306e-07 0.038 [-0.012 0.038] No
5 -9.340e-07 -0.042 [-0.092 -0.042] No
6 -3.5671e-06 0.018 [-0.032 0.018] Yes
7 -2.400e-06 -0.030 [-0.080 -0.0300] Yes
8 -1.593e-06 -0.190 [-0.240 -0.190] Yes
9 -2.605e-07 -0.200 [-0.250 -0.200] No

10 -1.607e-06 -0.140 [-0.190 -0.140] Yes
11 -6.058e-07 0.056 [0.0060 0.0560] No
12 1.029e-06 -0.200 [-0.250 -0.200] No
13 -2.702e-06 -0.016 [-0.066 -0.0160] Yes
14 1.070e-06 0.022 [-0.028 0.022] No
15 -2.711e-06 -0.096 [-0.146 -0.096] Yes
16 1.775e-06 -0.0880 [-0.138 -0.088] No
17 -2.344e-06 -0.002 [-0.052 -0.002] Yes
18 -1.486e-06 -0.050 [-0.100 -0.050] Yes
19 -1.596e-06 -0.200 [-0.250 -0.200] Yes
20 -3.074e-06 -0.054 [-0.104 -0.054] Yes
21 -3.856e-06 0.110 [0.060 0.110] Yes
22 1.463e-07 -0.172 [-0.222 -0.172] No

Criterion defined as a decrease of minimum 1µV over 1 s (-1e-06). RP stands for Readiness Potential, SF stands for Spatial
Filter.

Before undertaking any group-level analysis on the electrophysiological data we 339

wanted to make sure that all the included participants displayed a clear RP, which is 340

canonically defined as a negative-going voltage deflection before movement onset with a 341

fronto-central scalp distribution. We then performed a within-subject analysis: we 342

examined the EEG time-series by time locking the data to the onset of movement 343

(finger lift), sorted the trials according to each of the five experimental conditions and 344

took the average of the samples over 4 s (epoch: -3 s to 1 s). We looked at those 345

individual mean amplitudes with a customized criterion for determining the presence of 346

the RP across conditions (see Methods for details) using as a reference the infinite time 347

limit condition because its RP is obtained through the classical Libet task. Through 348

this technique participants were divided into two groups: the ones showing a canonical 349
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negative-going RP signal and the ones showing a positive-going RP signal or a flat RP 350

signal (see Fig. S2). The last two groups represented up to 45.5% of the entire sample 351

size. With the criterion method we concluded that only 12 subjects (subjects 3, 6, 7, 8, 352

10, 13, 15, 17, 18, 19, 20, 21) exhibited a stereotypical RP in the Inf s condition. In 10 353

subjects (subjects 1, 2, 4, 5, 9, 11, 12, 14, 16, 22) the RP could not be identified at all 354

(see Table 1). We grouped these participants in the following categories: Negative-RPs 355

and Positive-RPs. We later used this categorization across participants for post-hoc 356

analysis. Interestingly, we found that the morphologies of the ERPs of the RP-negative 357

subjects and the ones of the timers overlapped, as well as the ERPs of the RP-positive 358

subjects and the ones of the non-timers (see Fig. S3 a) and b), c) and d)). 359

We computed the grand average of the time-locked data across all the 22 360

participants around three RP candidate sensors (Cz, FCz and C3)(see Fig. 4a). 361

Plotting the between-subjects mean RP amplitudes as a function of condition 362

monotonically ordered (2s, 4s, 8s, 16s, Inf ) revealed that the mean RP amplitudes 363

across participants decreased with increasing time limits, meaning that amplitude was 364

negatively correlated with the imperative (see Fig. 3b), contrary to the prediction of the 365

model (see Fig. 2). We initially looked for differences in mean amplitude between 366

conditions with Wilcoxon signed-rank tests and corrected for multiple comparisons. We 367

found no significant difference between adjoining conditions, and only the 2 s time limit 368

condition significantly differed from the others (see Table S 3). Given the clear 369

non-linear monotonic trend in the electrophysiological data, we decided to perform a 370

regression analysis in order to see if the RP signal decreased or increased as a function 371

of the imposed time limit condition (henceforth first regression). Furthermore, as a 372

control we also tested if the RP signal decreased or increased as a function of the WT 373

(henceforth second regression). 374

We sorted the electrophysiological data into two distinct groups, Negative-RPs and 375

Positive-RPs, for group-level statistical analysis and compared it with the Timers and 376

Non-timers subgroups of participants. Given the fact that we had already inspected the 377

data before choosing the final statistical analysis, in order to control the false alarm rate 378

(FA) and avoid biases, we decided to run Fieldtrip’s cluster-based permutation test [42] 379

without pre-defining sensors or time windows of interest. According to the predictions 380

(see Fig. 2) we expected the variables to be positively correlated: an increase in the 381

time limit duration would correspond to an increase in the RP amplitude. However, the 382

data suggested that the variables were instead negatively correlated: an increase in the 383

time limit duration would correspond to a decrease in the RP amplitude, therefore a 384

negative correlation. Since the RP is negative-going by definition, a positive regression 385

between the time limit and the RP magnitude of the signal would mean a more 386

‘negative’ RP (as it gets farther away from 0) and therefore the appropriate test would 387

be a negative cluster test. A negative regression between the time limit and the RP 388

magnitude of the signal would mean a more ‘positive’ RP (as it gets farther away from 389

0) and therefore the appropriate test would be a positive cluster test. 390

Increasing Time Pressure Induces a Corresponding Decrease in 391

Early RP Amplitudes 392

For the first regression, testing across all participants (n= 22) for an effect in the early 393

RP latency (-2 s -0.2 s), the cluster-based permutation test revealed a significant 394

positive cluster effect (p = 0.0400, cluster based permutation test, two-sided, corrected), 395

but not a significant negative one (p = 0.3786, cluster based permutation test, 396

two-sided, corrected), see 4a. Since we had an a priori hypothesis that RP activity 397

should be negative, we performed a two-tailed test on the subgroup of Negative-RPs. 398

Testing across the participants with a clear RP profile or Negative RPs (n= 12) for an 399
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Fig 4. (A, B) Grand-averaged RP amplitude ± SEM across participants for the
conditions 2s (red line and shade), 4s (yellow line and shade), 8s (green line and shade),
16s (blue line and shade), Inf (violet line and shade). Data are time-locked to time 0 s
(finger lift). For representative purposes, we display EEG activity recorded from Cz
electrode which did not differ from the ROI cluster of channels. P-values indicates
cluster analysis period for the main hypothesis. In (A) cluster-based permutation
testing was used to test whether the regressions of single-trial RP amplitudes against
the time limit conditions per each trial (predictors in regression 1) was significant. In
(B) cluster-based permutation testing was used to test whether the regressions of
single-trial RP amplitudes against the single-trial WT responses (predictors in
regression 2) was significant. (C, D) Topography of the grand-averaged beta
coefficients’ power for regressions using the time limit conditions per each trial as
predictors (A) or the single-trial WT responses as predictors (B). The time interval (s)
is indicated below each subplot and corresponds to the the early RP or pre-commitment
phase [-2 s to ∼-0.2 s] and the late RP [∼-0.2 s to 0 s] or post-commitment phase.
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effect in the early RP latency (-2 sec -0.2 s), the cluster-based permutation test revealed 400

a significant positive cluster effect (p = 0.0300, cluster-based permutation test, 401

two-sided, corrected), but not a significant negative one (p = 0.4585, cluster based 402

permutation test, two-sided, corrected), see Table S4. Given the effect found overall 403

across all participants, we further tested across the participants without an identifiable 404

RP profile or Positive-RPs (n= 10) for an effect in the early RP latency (-2 s -0.2 s), the 405

cluster-based permutation test did not find any significant positive cluster (p = 0.1229, 406

cluster-based permutation test, two-sided, corrected) or negative cluster (p = 0.4835, 407

cluster-based permutation test, two-sided, corrected), see Table S4. Given the 408

relationship between the electrophysiological and the behavioral subgroups, we further 409

performed the cluster-based permutation on the subgroups of Timers and Non-timers. 410

Surprisingly, testing across all the Timers (n= 15) for an effect in the early RP latency 411

(-2 s -0.2 s), the cluster-based permutation test did not find any significant positive 412

cluster (p = 0.2148, cluster-based permutation test, two-sided, corrected) or negative 413

cluster (p = 0.6224, cluster-based permutation test, two-sided, corrected). Finally, 414

testing across all the Non-timers (n= 7) for an effect in the early RP latency (-2 s -0.2 415

s), the cluster-based permutation test revealed a significant positive cluster 416

(p = 9.9900e− 04, cluster-based permutation test, two-sided, corrected) but no a 417

negative one (p = 0.1938 cluster-based permutation test, two-sided, corrected). 418

Increasing Waiting Times Relates to a Corresponding Decrease 419

in Early RP Amplitudes 420

For the second regression, testing across all participants (n= 22) for an effect in the 421

early RP latency (-2 s -0.2 s), the cluster-based permutation test revealed a significant 422

positive cluster effect (p = 0.0270, cluster based permutation test, two-sided, corrected), 423

but not a significant negative one (p = 0.4995, cluster based permutation test, 424

two-sided, corrected), see 4a. Since we had an a priori hypothesis that RP activity 425

should be negative, we performed a two-tailed test on the subgroup of Negative-RPs. 426

Testing across the participants with a clear RP profile (n= 12) for an effect in the early 427

RP latency (-2 sec -0.2 s), the cluster-based permutation test revealed a significant 428

positive cluster effect (p = 0.0060, cluster-based permutation test, two-sided, corrected), 429

but not a significant negative one (p = 0.2268, cluster based permutation test, 430

two-sided, corrected), see Table S4. Given the effect found overall across all 431

participants, we further tested across the participants without an identifiable RP profile 432

(n= 10) for an effect in the early RP latency (-2 s -0.2 s), the cluster-based permutation 433

test did not find any significant positive cluster (p = 0.0549, cluster-based permutation 434

test, two-sided, corrected) or negative cluster (p = 0.3576, cluster-based permutation 435

test, two-sided, corrected), see Table S4. Given the relationship between the 436

electrophysiological and the behavioral subgroups, we further performed the 437

cluster-based permutation on the subgroups of Timers and Non-timers. Surprisingly, 438

testing across all the Timers (n= 15) for an effect in the early RP latency (-2 s -0.2 s), 439

the cluster-based permutation test revealed a significant positive cluster (p = 0.0030, 440

cluster-based permutation test, two-sided, corrected) but did not find any negative 441

cluster (p = 0.3477, cluster-based permutation test, two-sided, corrected). Finally, 442

testing across all the Non-timers (n= 7) for an effect in the early RP latency (-2 s -0.2 443

s), the cluster-based permutation test revealed a significant positive cluster 444

(p = 0.07899, cluster-based permutation test, two-sided, corrected) but no a negative 445

one (p = 0.5554 cluster-based permutation test, two-sided, corrected). 446
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Manipulating the Temporal Pressure Does not Affect Late RP 447

or Lateralized Readiness Potential Amplitudes 448

Fig 5. (A, B) Grand-averaged LRP amplitude ± SEM across participants for the
conditions 2s (red line and shade), 4s (yellow line and shade), 8s (green line and shade),
16s (blue line and shade), Inf (violet line and shade). Data are time-locked to time 0 s
(finger lift) and result from the grand-average of the subtraction between the EEG signal
from electrodes C3 and C4 (LRP= C3 - C4). There were no significant time points (n.s.,
p > .05) resulting from the cluster permutation tests. In (A) cluster-based permutation
testing was used to test whether the regressions of single-trial LRP amplitudes against
the time limit conditions per each trial (predictors in regression 1) was significant. In
(B) cluster-based permutation testing was used to test whether the regressions of
single-trial LRP amplitudes against the single-trial WT responses (predictors in
regression 2) was significant. (C, D, E) Topography of the grand-averaged RP
amplitudes grouped by condition for the latency corresponding to the different phases of
the RP, according to the literature: the early RP or pre-commitment phase [-2 s to
∼-0.2 s] (C); the late RP or post-commitment phase [∼-0.2 s to 0 s] (D), the
re-afferent or movement evoked potential [0 s to ∼1 s] (E). The time limit condition is
indicated below each subplot. Note the complete absence of modulation of mean RP
amplitude across conditions in the late RP phase as compared to the early RP phase
where a clear modulation of mean RP amplitude across conditions is visible.

Our a-priori hypothesis (see Introduction) concerned the early RP latency 449

(pre-commitment phase), so the window of interest for performing the statistical tests 450

was restricted to -2 s -0.2 s. As a control we tested also for the following temporal 451

window: -0.2 s to 1 s, roughly corresponding to the latency of the late RP starting with 452

the point of no-return (post-commitment phase) [46], the motor evoked potential 453

latency or MEP (which covers the last 50 ms before movement onset) and the 454

post-movement positive complex or re-afferent potential [34]. By regressing the RP 455

amplitudes at each time point against the time limit conditions (first regression) testing 456

for an effect after the point of no-return in all the participants (n= 22), the 457
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cluster-based permutation test did not find any significant positive cluster (p = 0.3237, 458

cluster based permutation test, two-sided, corrected), or negative cluster (p = 0.1668, 459

cluster based permutation test, two-sided, corrected), see 4a. When testing for an effect 460

in the same latency in the Positive-RPs participants (n= 10), the cluster-based 461

permutation test did not find any significant positive cluster (p = 0.3027, cluster based 462

permutation test, two-sided, corrected), however it did find a significant negative cluster 463

(p = 0.0340, cluster based permutation test, two-sided, corrected), see Table S4. When 464

testing for an effect after the point of no-return in the Timers participants (n= 15), the 465

cluster-based permutation test did not find any significant positive cluster (p = 0.5874, 466

cluster based permutation test, two-sided, corrected) or significant negative cluster 467

(p = 0.5355, cluster based permutation test, two-sided, corrected), see Table S4. When 468

we regressed the RP amplitudes at each time point against the behavioral waiting time 469

responses for the same window of interest (-0.2 s to 1 s) in all the participants (n= 22), 470

the cluster-based permutation test did not find any significant positive cluster 471

(p = 0.2128, cluster based permutation test, two-sided, corrected), or negative cluster 472

(p = 0.4216, cluster based permutation test, two-sided, corrected), see 4b. When testing 473

for an effect in the Negative-RPs participants (n= 12), the cluster-based permutation 474

test did not find any significant positive cluster (p = 0.3017, cluster based permutation 475

test, two-sided, corrected), or negative cluster (p = 0.8322, cluster based permutation 476

test, two-sided, corrected), see Table S4. When testing for an effect in the Positive-RPs 477

participants (n= 10), the cluster-based permutation test did not find any significant 478

positive cluster (p = 0.4835, cluster based permutation test, two-sided, corrected) nor a 479

significant negative cluster (p = 0.2507, cluster based permutation test, two-sided, 480

corrected). When testing for an effect in the Timers participants (n= 15), the 481

cluster-based permutation test did not find any significant positive cluster (p = 0.6513, 482

cluster based permutation test, two-sided, corrected) or significant negative cluster 483

(p = 0.8342, cluster based permutation test, two-sided, corrected), see Table S4. When 484

testing for an effect in the Non-timers participants (n= 7), the cluster-based 485

permutation test did not find any significant positive cluster (p = 0.1049, cluster based 486

permutation test, two-sided, corrected) but it did find a significant negative cluster 487

(p = 9.9900e− 04, cluster based permutation test, two-sided, corrected), see Table S4. 488

Finally, an important control was the presence of a Lateralized Readiness Potential 489

(LRP), see 5, which confirmed the lateralization of the response preparation, expected 490

since in our instruction to the participants we had specified the response side (right 491

hand for the finger lift). To compute the LRP we subtracted the mean amplitude of 492

sensors C3 and C4 (see Methods). We tested for parametric effects in the LRP through 493

regression of the LRP amplitudes at each time point against either the time limit 494

conditions or the behavioral waiting time responses and as a control we used the same 495

latencies and subgroups of subjects as for the RP. In the first regression we found no 496

significant positive or negative clusters (p > .05, cluster-based permutation test, 497

two-side, corrected) in the latency -2 s -0.2 s for neither all subjects together (n= 22), 498

see 5a, Negative RPs (n= 12), Positive RPs (n= 10), Timers (n= 15), NonTimers (n= 499

7), see Table S4. In the latency -0.2 s to 1 s we found no significant positive or negative 500

clusters (p > .05, cluster-based permutation test, two-side, corrected) for neither all 501

subjects together (n= 22), see 5b, Positive RPs (n= 10), Timers (n= 15), NonTimers 502

(n= 7). However, we found a significant positive cluster when testing Negative RPs (n= 503

12) subjects. 504

Taken together, these results show how a systematic effect of parametrically varying 505

time pressures is selective for the early RP latency and motor preparation phase, and 506

does not concern motor components involved in the movement execution phase. 507
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Discussion 508

So far, most studies in the domain of self-initiated movements have focused on the 509

dichotomy between stimulus-triggered and internally-triggered movements [47] without 510

exploring the spectrum in between. Those studies have shown functional and anatomical 511

dissociation between the neural signals preceding self-generated and externally-generated 512

movements both in terms of the signal average and its variability before movement 513

onset [2, 48]. According to a theoretical prediction of the leaky stochastic accumulator 514

model there is not a dichotomy but a continuum from ‘exogenous’ to ‘endogenous’ that 515

can potentially be described in terms of a strong or weak imperative (or drift term). 516

However, it has remained so far experimentally untested how neural activity 517

dynamically evolves along those extremes. Moreover, the current versions of the model 518

(the output and input hypotheses, see [17, 26]) have only tested the possibility of a fixed 519

imperative, for which variability in behavioural responses (giving rise to fast or slow 520

waiting times) depend solely on noise. We wondered if by parametrically manipulating 521

the strength of the imperative to move, operationalised as exogeneous triggers about 522

when to move, we would affect the RP profile and consequently the WT data. In order 523

to do that, we provided participants with a clock displaying parametrically varying 524

levels of time pressures within which they had to make a finger movement: this allowed 525

us to get a closer look at the evolving dynamic of the RP morphology. 526

At the behavioural level we found that the external imposition of time pressure 527

correlated with participants’ waiting times (meaning that most of the participants 528

waited longer if there was more time allotted). At the electrophysiological level the time 529

pressure-imperative to move anti-correlated with the time-locked RP signal amplitude 530

(the EEG signal was ‘stronger’ the shorter the limits of time to perform a movement). 531

However, this effect was specific to the early phase of the RP up to about -200 ms 532

before movement onset: neither the very late portion of the RP or the post-motor 533

positivity (PMP) exhibited a change in amplitude corresponding to the experimental 534

manipulation. To further corroborate this finding, as a control, we also tested for the 535

presence of a significant modulation induced by the task in the amplitude of the 536

lateralized readiness potential (LRP) [40,49] without finding any. 537

Traditionally, the RP is divided into two physiologically and functionally distinct 538

components: the early RP, which originates bilaterally in the pre-supplementary motor 539

area (pre-SMA), and is known to be influenced by cognitive factors such as “level of 540

intention, preparatory state and movement selection”; the late RP, whose generator 541

source is lateralized in the contralateral primary motor cortex (M1) and lateral 542

pre-motor cortex, and is supposedly affected by motor related features such as precision, 543

discreteness and complexity of the movement [34]. This distinction is consistent with 544

that between central processes responsible for programming the movement and 545

peripheral processes implicated in the initiation of the movements, as dual-process 546

motor theories posit [50]. Schurger et al.’s model [17] interprets, instead, the motor 547

preparation phase as the input evidence preceding the decision to move now, a neural 548

commitment represented by the threshold crossing moment (at around 150 ms), and, 549

consequently, the motor execution phase as the output decision variable following this 550

threshold crossing event. Therefore, the pre-commitment phase or early RP is 551

dominated by stochastic fluctuations, while the post-commitment phase or late RP 552

corresponds to a lateralization of the readiness potential in an effector-dependent 553

manner [51] and an increase in cortical excitability [52]. This theoretical framework is 554

compatible with two recent experimental findings. Concerning the post-commitment 555

phase, Schultze-Kraft et al. found a point of non return (at around -200 ms) [46] after 556

which a motor signal progressing to the peripheral muscles in a ballistic way [53] cannot 557

be cancelled any longer once the brain enters the motor execution stage. Concerning the 558

pre-commitment phase, Khalighinejad et al. [48] found that the across-trial decrease in 559
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variability of the stochastic fluctuations before self-initiated movements is stronger in 560

fronto-midline electrodes (like Cz) which are associated with a general cognitive 561

preparation process independent of the hand that will execute the movement. 562

Our results converge with these studies in showing at around -200ms this transition 563

from a regime governed by a neural decision process, affected by external triggers or 564

endogenous activity, to one where the decision unfolds into an actual, ballistic 565

movement. It has to be noticed that in [17] the authors arbitrarily choose to fit the 566

stochastic decision model output to the RP signal up to -150 ms, based on previous 567

literature. However, the present study brings the first experimental evidence validating 568

the model’s assumptions regarding the early and late RP. 569

So far we interpreted the data in terms of a manipulation of the imperative to move, 570

however another interpretation is possible: in the very first RP study [14,15] the 571

readiness potential is shown to increase “with intentional engagement” and be reduced 572

“by mental indifference of the subject”. A follow up study by McAdam and Seale 573

(1969) [54] confirmed an enhancement in the RP amplitude due to increasing levels of 574

motivation. Freude and Ullsperger (1988) [55] showed that the RP is significantly higher 575

in amplitude when participants had to solve tasks involving mental load under higher 576

time pressure, even with motor activity kept constant. If we consider the fact that in 577

our experiment participants are trained to make a finger movement specifically within 578

the allotted window of time and are negatively reinforced for being too early or too late 579

on the response, we cannot rule out the possibility that the observed effect on the RP is 580

instead a consequence of the task demands. Indeed, it might be that for shorter time 581

limits, where the pressure to make a response is higher, participants feel more ‘engaged’ 582

in their movement, while in the longer time limits, where they are free to wait as much 583

as they want, participants feel more ‘relaxed’. Along the same line that links the RP to 584

non motoric mechanisms, Pornpattananangkul and Nusslock (2015) [56] adapted a 585

reward time-estimation task in which participants were instructed to make a 586

button-press 3.5 s after the onset of a cue and were rewarded for accurate estimation. 587

They showed that the RP amplitude significantly increased for the trials belonging to 588

the reward condition. Alexander et al. (2016) [57] claimed that RPs can occur in 589

absence of movements as their amplitude is modulated by decision and anticipation. 590

More recently, Wen et al. (2018) [58] argued that the awareness of action-effect 591

contingency can have an internally rewarding effect for the action itself and therefore 592

increase the RP amplitude. 593

It could be that the current design is manipulating something other than the 594

imperative to move, such as the above-mentioned cognitive processes or temporal 595

expectation. For example someone could argue that some components of the task 596

resembled the contingent negative variation (CNV) paradigm [59]: the visual cue might 597

resemble the warning stimulus and the time limit target bar the imperative stimulus. 598

Therefore the cortical negativity that we captured through epoching and time-locking 599

could be just a portion of a CNV curve. However, in classic CNV tasks the expectation 600

is generated by the association between a fixed warning and an imperative cue. In our 601

case, to prevent subjects from building up a prediction about when to move we included 602

random times both at the starting of the moving dot and after the time-limit was 603

passed (the inter-trial interval). 604

In previous studies [17,26] the stochastic decision model model in the form of a fixed 605

boundary model could provide a satisfactory fitting for both behavioral and 606

electrophysiological data in a self-initiated movement task. However, in the present 607

study model simulations have not managed to reproduce completely the qualitative 608

pattern in the results leaving open the possibility that the current state of the SDM 609

cannot account for the time limit variations paradigm. In perceptual decision-making 610

tasks involving a response deadline participants achieve optimality in performance by 611
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collapsing the decision threshold such that the decision is reached on time with less 612

evidence accumulated. Besides the deadline duration, another factor modulating the 613

speed-accuracy trade off is the ‘endogenous timing uncertainty’ [60]: the shorter the 614

deadline duration or the more uncertain the deadline, the earlier the threshold should 615

collapse to allow for a timely response. In our time limit task, the uncertainty about 616

when to move is maximal in the Inf s condition, where cues for the duration of the trial 617

are absent, and minimal in the time limit conditions, where a small visual target 618

signaled the deadline for the response. Even if the majority of participants declared in 619

the questionnaire to not have adopted a strategy, the tendency was to not wait longer 620

than a quarter of the time allotted. In conditions of equal endogenous uncertainty for 621

performing the response, the differences among the waiting times might have reflected a 622

time-dependent threshold decay, for which a collapsing boundary model provides a 623

better description. Indeed, participants on average waited less for the Inf s condition 624

(longest deadline but least certain) rather than for the 16 s the condition (long deadline 625

but more certain). A previous study (Gluth et al. 2013) [61] successfully modeled the 626

influence of evidence accumulation and elapsed time on the RP with a time-variant 627

sequential sampling model (SSM) that assumes threshold collapse. The need for such 628

models has been deemed controversial for being redundant with the standard diffusion 629

model and not providing an improvement for tasks with human data [62,63]. However, 630

a recent line of research has proposed a shift from conventionally behavior-based 631

drift-diffusion models (DDM) with one source of build-up (evidence accumulated) to 632

neurally informed (NI) decision models with multiple build-up (evidence accumulated 633

and dynamic, evidence-independent urgency signal) and time delay 634

components [18,64,65]. In particular, Kelly et al. (2020) have experimentally shown a 635

better fit for neurophysiological data through the NI model as compared to the classic 636

DDM. Moreover, in convergence with our empirical results and relative to a speed 637

pressure paradigm, the authors have found an enhancement of the drift rate under short 638

deadlines (‘deadline regime’) in contrast to long deadlines (‘easy regime’), whereas the 639

DDM fit lead to opposite conclusions analogous to the qualitative predictions of the 640

SDM which was also constructed upon behavioural data. Further work should try to 641

address these issues by proposing a more complex version of the model that fully 642

characterizes the dynamic aspects of the task (such as different levels of time-dependent 643

bounds, urgency signal) by leveraging neural data to quantitatively constrain the model 644

parameters (see also [66]). 645

An established fact in the readiness potential literature is the fact that the signal 646

precedes only self-initiated movements and not stimulus-triggered ones. This makes 647

sense from the perspective of the classical view which entails a preparatory function for 648

the RP shape. However, according to the stochastic model, the RP is originated by 649

averaging ongoing fluctuations time-locked to movement that actually occurred. 650

Therefore, the RP is not ‘exclusive’ to internally initiated movements but can be 651

originated also in externally triggered cases. Indeed, readiness potentials could be 652

recovered in the average of reaction time trials in a task in which movement that was 653

not intended to be performed was induced by unpredictable, compulsive auditory cues 654

(the Libetus interruptus task, [17]). Here, we could replicate this finding by obtaining 655

RPs also when the movement timing was not completely freely decided because of the 656

time constraint. 657

A pillar regarding the nature of the RP is its slowly-increasing negative 658

voltage [23,34,67,68]. However, one of the findings of our study was that not all 659

participants showed the same polarity in the RP, with 45% of them displaying a positive 660

shift and some presenting no RP at all. This is not a novel account though it has 661

received minor attention in the RP literature: Freude and Ullsperger (1989) [69] had 662

already found in single-trial analysis that 44% of the RPs preceding self-paced voluntary 663
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movements present slow positive potentials shifts; VaezMousavi and Barry (1993) [70] 664

replicated the same results in another experiment and showed that the proportion of 665

positive RPs increased by 10% in conditions of mental load, suggesting a relationship 666

between the effects of spontaneous brain activity on improved cognitive performance 667

and the negative RP polarity. More recently, another group (Jo et al., 2013) [71] 668

reported that the apparent negative slope in the average RP results as the sum of an 669

unequal ratio of negative (67.16%) and positive (32.84%) potential shifts and proposed 670

that the ongoing negative deflections in the slow cortical-potentials (SCPs) facilitate 671

movement initiation by increasing its likelihood (see also the slow cortical potential or 672

SCP sampling hypothesis [72]). In our study, however, we report the presence of 673

positive shifts not on single-trial level but on averaged trials within and across-subjects. 674

Therefore, contrary to previous records for which positive RPs are ‘cancelled out’ in a 675

weighted average with more frequent negative RPs, we show for the first time RP 676

grand-averages with an overall positive dominant polarity, indicating a bigger proportion 677

of positive single-trial epochs in comparison to the negative ones. Surprisingly, including 678

subjects with a prevalent positive RP profile in the statistical analysis did not make the 679

results less significant. This result is unexpected and suggests that the effect due to the 680

parametric variation of the imperative to move persists regardless of the polarity of the 681

RP. It is worth noting that the stochastic decision model predictions are agnostic 682

regarding the sign of the RP voltage, though this is usually assumed to be negative. 683

Another unprecedented finding related to the RP polarity is the striking overlap 684

between the subjects grouped according to their RP polarity (‘positive RPs’ or ‘negative 685

RPs’) and the same subjects grouped according to their individual variability in their 686

waiting time responses across different conditions (‘timers’ or ‘non-timers’). If the RP 687

negativity reflects increased cortical excitability correlated with motor performance, as 688

suggested by the SCP theory [73], we could speculate that this is the reason why the 689

participants whose behavioural responses followed task demands coincide with those 690

with the predominant negative shifts. Further analyses will be needed to test for this 691

hypothesis. 692

Overall, these findings about how the shape of the RP varies, across experimental 693

conditions (the imperatives to move), how its polarity changes, across and even within 694

subject, and how the RP is generated suggest that the RP is not a highly stereotypical 695

signal as commonly believed [46]. 696

Conclusion 697

In conclusion, we developed a novel paradigm that extends the traditional Libet task to 698

a continuum spanning from temporal pressure to temporal freedom which corresponded 699

to more stimuli-driven decisions to move and internally generated decisions to move. We 700

showed that the parametric variation of temporal pressures affects movement related 701

neural activity. We found that increasing the time windows allotted for making a 702

self-initiated movement was associated with a decrease in the readiness potential’s 703

amplitude corresponding to its early components. We also showed that the 704

manipulation did not affect either the late component of the RP (after the so called 705

‘point of no-return’) or the LRP. Finally, we suggest a possible revision of the stochastic 706

decision model with the inclusion of collapsing bounds with different rates of collapse or 707

dynamic urgency components that could provide a more neurally plausible account for 708

time-limit or deadline type of tasks. 709
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Supporting information 710

File S1. Questionnaire in French. We report the original anonymous 711

questionnaire sheet delivered to the participants at the end of the experiment. 712

Individual responses are available upon request. 713

Fig. S1. Behavioural results. (A, B) Distribution of subjects waiting times 714

sorted by time-limit condition 2s (red), 4s (yellow), 8s (green), 16s (blue), Infs (violet). 715

Note that the shape of the distribution of the WTs is very similar across conditions no 716

matter the time-limit duration (time-scale invariance). (C) Subjects standard 717

deviations of the WTs are sorted by condition. Subjects whose WTs standard 718

deviations do not scale following the order of the time-limit conditions are framed. (D) 719

Linear relationship between the mean and the standard deviation of WTs, mechanism 720

typical from perceptual-decision making task. 721

Fig. S2. Individual RPs profiles. (A) Averaged RP amplitude within 722

participants (n= 22) ± SD for the condition Infs (violet line and shade) over 4 s 723

(epoch: -3 s to 1 s). Data are time-locked to time 0 s (finger lift). For representative 724

purposes, we display EEG activity recorded from Cz electrode which did not differ from 725

the ROI cluster of channels. Red lines indicate slopes computed over the last 1 s before 726

movement onset. (B) Topography of the grand-averaged RP amplitudes within 727

participants (n= 22) for the condition Infs and the latency corresponding to the last 1 728

s before movement onset. All topographic plots have been normalized to the same ERP 729

amplitude scale. ROI channels are highlighted. 730

Fig. S3. Negative-RPs, Positive-RPs, Timers, Non-timers. (A) Averaged 731

RP amplitude ± SEM across participants displaying a canonical, negative RP (n= 12) 732

and bar plots representing averaged RP amplitudes across conditions from -2 s to 0 s for 733

the same subgroup of subjects. (B) Grand-averaged RP amplitude ± SEM across 734

participants displaying a positive or flat RP (n= 10) and bar plots representing 735

averaged RP amplitudes across conditions from -2 s to 0 s for the same subgroup of 736

subjects. (C) Grand-averaged RP amplitude ± SEM across participants whose std 737

WTs did not scale with the time-limit duration (n= 15) and bar plots representing 738

averaged RP amplitudes across conditions from -2 s to 0 s for the same subgroup of 739

subjects. (D) Grand-averaged RP amplitude ± SEM across participants whose std 740

WTs did not scale with the time-limit duration (n= 15) and bar plots representing 741

averaged RP amplitudes across conditions from -2 s to 0 s for the same subgroup of 742

subjects. As in Fig. 3 the conditions and color codes are: 2s (red line and shade), 4s 743

(yellow line and shade), 8s (green line and shade), 16s (blue line and shade), Inf (violet 744

line and shade). Data are time-locked to time 0 s (finger lift). For representative 745

purposes, we display EEG activity recorded from Cz electrode which did not differ from 746

the ROI cluster of channels. 747

Table S1. Results from one-sample Kolgoromov-Smirnov test. We run 748

post-hoc pair-wise comparisons comparing the behavioural responses in each condition 749

to all the others conditions in order to reveal where the effect of the time limit 750

conditions were. 751

Table S2. Results from the post-hoc multiple comparison test. We 752

computed one-directional Wilcoxon paired tests between pairs of conditions at 753

alpha = 0.05: mean RP amplitudes and slopes within each condition for channel FC1, 754

C3, Cz separately and ROI (average across channels) and mean RP amplitudes obtained 755
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through the EMSF technique. The uncorrected p-values were all adjusted with the 756

Benjamini and Hochberg (1995) procedure for controlling the false discovery rate (FDR) 757

for multiple comparison correction. (*) indicates p-values <0.05. 758

Table S3. Cluster-based permutation tests results. We report the results of 759

the nonparametric statistical tests performed with the method Monte-Carlo on the beta 760

coefficients of the regressions. cfg.clusteralpha, cfg.correcttail, cfg.neighbour correspond 761

to Fieldtrip parameters. stat.posclusters.prob is the output of the permutation test for 762

positive clusters. (*) indicates p-values <0.05. (**) indicates p-values <0.005. 763
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