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Abstract

Motivation: Single cell RNA sequencing (scRNA-seq) is a powerful gene expression profiling technique
that is presently revolutionizing the study of complex cellular systems in the biological sciences. Existing
single-cell RNA-sequencing methods suffer from sub-optimal target recovery leading to inaccurate
measurements including many false negatives. The resulting ‘zero-inflated’ data may confound data
interpretation and visualization.
Results: Since cells have coherent phenotypes defined by conserved molecular circuitries (i.e. multiple
gene products working together) and since similar cells utilize similar circuits, information about each
each expression value or ’node’ in a multi-cell, multi-gene scRNA-Seq data set is expected to also be
predictable from other nodes in the data set. Based on this logic, several approaches have been proposed
to impute missing values by extracting information from non-zero measurements in a data set. In this
study, we applied non-negative matrix factorization approaches to a selection of published scRNASeq
data sets to recommend new values where original measurements are likely to be inaccurate and where
‘zero’ measurements are predicted to be false negatives. The resulting imputed data model predicts
novel cell type markers and expression patterns more closely matching gene expression values from
orthogonal measurements and/or predicted literature than the values obtained from other previously
published imputation approaches.
Contact: benjamin.spike@hci.utah.edu
Availability and implementation: FIESTA is written in R and is available at
https://github.com/elnazmirzaei/FIESTA and https://github.com/TheSpikeLab/FIESTA.

1 Introduction
Single cell RNA sequencing (scRNA-seq) is a powerful laboratory
technique aimed at quantifying the abundance of all the transcripts
within individual cells. Although it is now a widely used approach for
the identification of cell types and cell states based on characteristic
gene expression patterns, scRNA-seq typically suffers from incomplete
recovery of the cellular RNA pool within each cell (Marinov et al.,
2014; Linderman et al., 2018; Huang et al., 2018). Recently, several
data imputation approaches have been proposed to address inaccuracy
and ‘zero-inflation’ resulting from this transcript dropout effect (Huang
et al., 2018; van Dijk et al., 2017; Li and Li, 2018; Linderman et al., 2018;
Arisdakessian et al., 2019). Common to these computational approaches
is the idea that missing values can be inferred and corrected by borrowing
information from non-zero measurements obtained from similar cells
and/or correlated genes. For example, the scImpute approach identifies
similar cells by spectral clustering and then assigns a probability that a

given zero value represents a dropout event and recommends a replacement
value based on the bimodality and variance of expression distributions in
closely clustering cells (Li and Li, 2018). Another approach, MAGIC,
identifies similar cells using an adaptive Markov model in PCA space and
subsequently imputes values for each gene using a diffusion model and
pre-PCA values in ’neighboring’ cells (van Dijk et al., 2017). The SAVER
approach assumes a negative binomial distribution of expressed genes and
then uses the measured distributions from correlated genes and a penalized
regression model to imply values where they are predicted to be missing
(Huang et al., 2018).

We hypothesized that a recommender system based on matrix
factorization could provide a highly effective means to recover missing
values in scRNA-Seq data since the approach has been widely used to
make missing-value predictions from sparse data matrices in other fields
(Cai et al., 2010, Ling et al., 2012, Dai et al., 2020). Indeed, while
we have been working to compile and vet the robust factorization-based
computational pipeline reported here, a number of other approaches have
been proposed that similarly rely on the principal of matrix factorization
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to impute sparse and missing data. For example, CMF-impute uses a
collaborative matrix factorization based on singular value decomposition
(SVD) (Xu et al., 2020). ALRA also employs SVD followed by a post
hoc thresholding function (Linderman et al., 2018). Even more similar
to our own approach, the recently reported DeepImpute pipeline uses
a deep neural network model to impute missing values (Arisdakessian
et al., 2019). Although perfect factorization of empirically derived matrices
such as those containing gene expression data is NP-hard (Gillis and
Glineur, 2011), machine learning techniques can be used to optimize the
factorization, such that the product of factor matrix closely approximates
the original matrix. This product matrix then serves as an idealization of
the original matrix and can be used to recommend corrected values. NMF
has been shown by several groups including our own to be particularly
effective in delineating biologically relevant cell types and meaningful cell
type associated gene expression profiles from cell expression data (Brunet
et al., 2004, Zhu et al., 2017, Giraddi et al., 2018). NMF thus represents
an attractive approach to factorization-based imputation that is likely to
draw from relevant biological substructures in the data.

The list of imputation methods described above is not exhaustive and
several other approaches have also been reported (Ronen and Akalin, 2018;
Xu et al., 2020; Zand and Ruan, 2020; Chen and Zhou, 2018; Tang et al.,
2020; Lin et al., 2017; and others) . These many attempts at accurately
imputing missing data by borrowing information from the coherency of cell
types and gene circuits attest to the widespread interest among sequencing
users in the potential to computationally impute missing data that is
biologically meaningful. Here, we present an unsupervised computational
pipeline involving Factorization-based Imputation of Expression in Single-
cell Transcriptomic Analysis (FIESTA), an NMF-based, machine-learning
recommender system for imputation of missing values in scRNA-seq
data. FIESTA is based on matrix reconstitution following either of two
modified NMF approaches: sparse-NMF (sNMF) (Kim and Park, 2007) or
Weighted NMF (WNMF) (Kim and Choi, 2009) and employs factorization
rank, gene-weight, scaling and thresholding parameters derived from
non-zero values in the original normalized matrix. We applied FIESTA
to a selection of published data sets and compared its effectiveness to
existing methods that are based on nearest-neighbor ’smoothing’, as well
as two recently reported matrix decomposition-based approaches: ALRA

(Linderman et al., 2018) and DeepImpute (Arisdakessian et al., 2019).
We find that FIESTA outperforms each of these techniques in recovering
expression values known from orthogonal analysis of transcript levels or
from the literature, is effective across a broader range of initial detection
levels and facilitates the resolution of novel cell types and markers.

2 MATERIALS AND METHODS

2.1 Overview and input data

2.1.1 Pipeline overview
An overview of the FIESTA imputation package is shown in Figure 1.
FIESTA first identifies critical parameters from the input matrix and then
employs these parameters in the subsequent factorization, reconstitution
and tempering (scaling/thresholding) steps to achieve an imputed data
set with reasonably modeled expression values and greatly reduced false
negative entries.

2.1.2 ScRNA-seq Datasets
The input for FIESTA is a scRNA-seq expression data set. scRNA-Seq
data sets are essentially sparse/zero-inflated (m*n) matrices, where m is
the number of genes and n is the number of cells in a given matrix, R.
In this study, we used 3 different published datasets bearing orthogonal
measurements and system knowledge from the literature that can serve as
reasonable expectations of true expression values:

• a melanoma dropseq data set with paired orthogonal quantification of
transcripts using in situ hybridization (Torre et al., 2018),

• a recently published study of mouse lung adeno-carcinoma
cells involving experimentally manipulated genetics and molecular
therapeutic treatments, and bearing associated cell state changes
(Zewdu et al., 2021),

• and a portion (22184 genes * 3562 cells) of our previously published
breast tissues scRNA-seq data set representing adult mouse mammary
epithelial cells, where we have knowledge of tissue specific ‘ground

Fig. 1. Overview of FIESTA. FIESTA derives scaling, thresholding and factorization parameters from an input matrix, then factors the matrix with NMF, derives a factor product matrix
and applies scaling and thresholding to create a tempered, imputed matrix.
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truths’ from our own studies and from the literature (Giraddi et al.,
2018).

2.1.3 Data pre-processing.
Raw data was independently normalized in each of the published studies we
analyzes as described (Giraddi et al., 2018, Torre et al., 2018, Zewdu et al.,
2021). Logged values (i.e Log2(raw+1)) were used as input for matrix
factorization. Genes with no positive values in a data set are withheld from
factorization and replaced in the output matrix as non-imputed.

2.2 Derivation of imputation parameters from input matrix

2.2.1 Finding an effective factorization rank (k).
We intend to use NMF to divide an expression data matrix into basis
factors that we can subsequently multiply to generate an idealized
matrix. This idealized product matrix can then be used to recommend
corrected expression values. Ultimately, NMF factorization approaches
have the advantage that basis factors are positive and therefore intuitively
representative of cell types and gene expression circuits (Brunet et al.,
2004). We reasoned that the factorization rank (i.e. the number of features)
should be tuned such that factors optimally mitigate noise but retain
critical distinguishing features between similar cell types. Unfortunately,
identification of an optimal k is NP-hard (Gheyas and Smith, 2010), and
though iterative NMF-based optimization approaches can be effective they
are usually slow. Singular Value Decomposition (SVD) is a much faster
factorization approach and although it can produce uninterpretable basis
vectors, studies have shown similar precision and recall for SVD and NMF
at various ranks (k) (Peter et al., 2009, Lawson and Hanson, 1995,Phillips
et al., 2009). Furthermore, since SVD also gives a ’variance capture’ value
from the diagonal matrix D, we used SVD to find a good approximation
of number of features (k) in scRNAseq data and then used this k value for
the rank of NMF.

Thus, to identify a suitable rank (k), we determine the number of
sequential factors in an SVD diagonal matrix needed to describe at least
97% of the data variance. This value was arrived at empirically as (for
instance) increasing k beyond this point showed diminishing returns in
the mammary data set (Figure 2A,B)(Giraddi et al., 2018). However,
this parameter, designated variance capture (vc) remains selectable in the
computational package.

We select k for each new input matrix R as follows: Consider D is the
diagonal matrix from SVD of the input matrix, and n is the number of
cells, then,

diffs[n] =

n∑
i=1

D[i]−D[i− 1] ,then

find k such as diff [k] ≥ diff [n]

(1)

2.2.2 Calculate scaling coefficient (19V)
Similar to classically employed ’housekeeping genes’, we previously
employed the 19th ventile of expressed genes in scRNA-Seq data
(i.e. values between the 90th and 95th percentile of expressed values)
(Giraddi et al., 2018) as a reliable scaling tether. This expression
ventile encompasses multiple gene expression values near the upper
end of the overall expression distribution, which are therefore less
sensitive to dropout events than lower expression values, but which avoid
extreme high-end outlier values such as erroneously high “jack-pot” genes
(Marinov et al., 2014). For use in gene-wise scaling in section 2.2.5 below,
we calculated the mean gene-wise 19th ventiles for each gene as follows:

19V : {90th - 95th percentile mean =

mean((0.9 ∗ n), (0.95 ∗ n))}
(2)

2.2.3 Predict the number of true negatives.
We used a normal mixture model fitting technique to estimate the expressed
gene range and to predict the number of true zeros that would be
present in an accurately imputed data matrix. In this regard, a normal-
normal mixture model is fit to the expression values of each gene
independently {genei,1, genei,2, ..., genei,n} in R using the mixtools
package (Benaglia et al., 2009) and the distribution with the greater mean
is determined to model positive expression. The distribution with the lower
mean represents low or absent expression and is therefore used to calculate
the likelihood of any node for that gene being a true negative. That is, the
probability of zero in this distribution is used to determine the predicted
number of true zeros across the entire data set for a specific gene.

Independently, for each cell, a negative binomial distribution
is fit to the expression levels of all the genes expressed in that
cell {cellj,1, cellj,2, ..., cellj,n} in R using the fitdistrplus package
(Delignette-Muller et al., 2015), and the probability of a true negative
based on the cell-wise distribution of expression values across all genes is
calculated.

Both the gene-wise and cell-wise zero-probabilities are multiplied by
their respective vector lengths (i.e. m and n) to yield an expected number of
zeroes in each cell and in each gene, independently. This dual thresholding
pipeline is carried out as follow:

• Fit a mixture of two normal distribution to raw expression values for
each gene

Mixture Model = λ1 ∗ norm(µ1, σ) + λ2 ∗ norm(µ2, σ) (3)

and calculate the probability of zero of the normal distribution with
the smaller mean, (µmin) in:

Pgenei (0) = λmin ∗ pnorm(0, µmin, σ) (4)

Thus, we define tgenei (0) representing the expected number of
zeros based on gene expression values across the entire data set, by
multiplying the (Pgenei (0)) by the length of the gene row(n).

• A likelihood of zero is then also calculated on a cell-wise basis. We
fit a negative binomial distribution to raw expression values found in
each cell {gene1,i, gene2,i, ..., genem,i}, and find the probability
of entries equaling zero for that cell. Multiplying the calculated
probability of a zero by the length of the cell column (i.e number
of genes, m) we calculate a cell-based- zero-expectation, tcellj (0).

2.2.4 Imputation step.
Either of two NMF factorization implementations are used to factorize the
gene-expression matrix using rank k. We implemented these approaches
using the R library in NMF (Gaujoux and Seoighe, 2010).

• Weighted non-negative Matrix Factorization (WNMF): WNMF,
also known as ls-nmf (least squares nonnegative matrix factorization)
introduced by Guoli Wang et al., deploys uncertainty measurements
of gene expressions into NMF updating steps (Wang et al., 2006).
WNMF gets a weight matrix as input to emphasize more reliable cells
(m) in the factorization step.

Given a non-negative matrix Rm∗n, WNMF calculates 2
nonnegative factors Um∗k and Vn∗k , which minimize:

cost(U, V ) = 1/2

m∑
i=1

n∑
j=1

Wij(Rij − [UV T ]ij)
2 (5)
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• Sparse Non-negative Matrix Factorization (sNMF): Sparse Non-
negative Matrix Factorization introduced by Hyunsoo Kim et. al (Kim
and Park, 2007), uses alternating non-negativity-constrained least
squares in the updating steps, and in each step sNMF keeps the sparsity
of the factorized matrices. Given a non-negative matrixRm∗n, sNMF
calculates 2 non-negative factors Um∗k and Vn∗k , which minimize

cost(U, V ) = 1/2{||Rij − [UV T ]ij ||2F+

α||V ||2F +

m∑
i=1

β||U(i, :)||21}
(6)

This technique is known to work well on sparse datasets, which makes
it especially suitable for scRNA-seq data.

In both approaches, nndsvd is used to generate the function seed
(Boutsidis and Gallopoulos, 2008), and was effective in identifying
a good initialization point as both functions converged after just 5
iterations.

After factorizing the gene-expression matrix with either of the
above techniques, 2 non-negative factors are generated Um∗k and
Vn∗k , in order to generate the imputed matrix

ImputedR = Um∗k ∗ (Vn∗k)
T (7)

2.2.5 Scaling
We normalized the magnitude of imputed values in matrix ImputedR to
the biological expectations on a gene-wise basis using the 19V value
determined from raw data above [2.2.2].

RSI [genei, ] =

ImputedR[genei, ] ∗ S19V

where

S19V = (19VRaw/19VImputedR)

(8)

2.2.6 Thresholding
To align the number of zeros in the scaled, imputed matrix RSI with the
cell-wise and gene-wise biological zero-expectations 9i.e. tcellj (0) and
tgenei (0)) described above [2.2.3], we calculate threshold vectors for all
genes and cells (GT and CT, respectively), where:

GT = tgenei
th smallest values in {gene1,i, ..., genem,i} , for ∀ i

CT = tcellj
th smallest values in {cell1,j , ..., celln,j} , for ∀ j

(9)
An m*n thresholding matrix (T) is then created containing for each node
the lesser of GTi and CTj . In the final step this threshold matrix T is
applied to RSI as follows:

RTSIij = { if RSIij < Tij ,then 0; else RSIij } (10)

That is, if the recommended value from the imputation step given
in RSIij surpasses the minimum of these thresholds given in Tij , the
imputed value is retained. However, if the value given in RSIij is below
the minimum of CT and GT thresholds given in Tij that node will be
zeroed out.

3 RESULTS

3.1 Imputation parameters derived from intrinsic properties
of the data set.

Our approach to the recovery of missing values in a zero-inflated
scRNASeq data begins with determination of a suitable number of factors

Fig. 2. Imputation, scaling and thresholding parameters. A) Identification of SVD diagonal
matrix k surpassing 97% coverage of variance in Giraddi et al. data. B) Diminishing returns
of increasing k in the Giraddi et al. data set. C) Unique threshold values for k in each data set.
D) Gene-wise degree of scaling using S19V (raw 19V-raw/19V-imputed) from sNMF and
WNMF for each data set. E) Degree of gene-wise imputation varies by data set. F) Degree
of cell-wise imputation varies by data set G) Percentage of zeros imputed vs number of
zeros in the raw data in Giraddi et al. data. H) FIESTA imputation mitigates zero inflation
in Giraddi et al. data.

to use in the matrix factorization step (Figure 1 and 2). These factors
correspond to data features in the form of gene combinations whose
expression distinguishes cell types and states (Brunet et al., 2004).
However, since the optimization of k in NMF is computationally intensive
and slow using current techniques, we used SVD as a simple and rapid
factorization approach to identify a suitable number of features (k) for
subsequent use in NMF [see 2.2.1, above] (Phillips et al., 2009). Thus, we
calculated the percentage of total variance encompassed by sequentially
increasing ranks of SVD for each filtered data set, independently. For
example, at k=27 in the mammary epithelial data set (Giraddi et al., 2018),
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the SVD model captured >97% of the total variance and increasing k had
diminishing returns (Figure 2A,B). We subsequently employed the 97%
capture threshold for each data set we examined, although this parameter
remains tunable by end users in the FIESTA package. The numbers of
factors recommended for each data set analyzed in the present study based
on >97% variance capture were 27 (Giraddi et al., 2018), 26 (Zewdu et al.,
2021), and 18 (Torre et al., 2018) (Figure 2C).

To derive scaling and thresholding coefficients for ensuring post-
imputation matrices correspond to actual measured values where such
values are reliable in the raw data, we first modeled the expression values
for each gene using a mixture of two distributions [see Methods 2.2.3
and 2.2.6]. This mixed model fitting generates a predicted “expressed”
and “low/not-expressed” distributions appropriate to the vast majority of
genes. Next we determined the 19V of the upper, "expressed" distribution
as a scaling factor for values resulting from the FIESTA computational
pipeline [see Methods 2.2.2 and 2.2.5]. Thus, the 19V of the upper fit
distribution divided by the 19V of imputed values on a gene-wise basis
provides a scaling coefficient to bring imputed data to the scale of the
most reliable measured values for each gene. While most scaling factors
are modest, some usually those associated with low and rare expressed
genes are larger (Figure 2D).

We also used the fit distributions to form a joint probability thresholding
function to temper potential ’overimputation’ of the data. We first
calculated 1. Probability of zero for each gene. To do this, a mixture
of two normal distribution is fitted to each gene, and probability of zero in
the normal distribution with lower mean is calculated as the gene-wise zero
threshold (Figure 2) 2. To calculate the probability of zero for each cell, a
negative-binomial distribution is fitted to expressin values in each cell, then
the probability of zero in the fitted distribution is considered as the cell-wise
zero threshold. 3.These unsupervised likelihood values were used to form
joint probabilities that a given node equals zero rather than a recommended
imputation value. 4. For each node, if the imputed value of that node is
bellow both gene-wise and cell-wise thresholds, the node will be zeroed
out [see 2.2.3 and 2.2.6]. sNMF and WNMF performed comparably on
each data set although WNMF was significantly faster (Figure 2,E,F and
Supplemental Table 1). The overall amount of imputation was data set
dependent and likely reflects sequencing depth with greater sequencing
depth (i.e. Torre et al.>Zewdu et al.>Giraddi et al.) diminishing the amount
of imputation carried out by FIESTA (Figure 2E,F). As a function of
matrix factorization by parts (i.e. NMF) and gene specific thresholding, the
proportion of zeros imputed was unique to each gene (Figure 2G). Even
following the application of these scaling and thresholding steps which
restore many zeros in the data, the imputation pipeline retained significant
reduction in the number of zero values present in the expression matrix
relative to the non-imputed matrix and this is consistent with the imputation
of many predicted false negatives (Figure 2H).

3.2 FIESTA outperforms other imputation approaches
across a broad range of expression values.

Single molecule fluorescence in situ hybridization (smFISH) provides an
alternate approach to quantification of transcript abundance in individual
cells. Torre and Dueck et al. measured the abundance of 15 distinct,
variable transcripts in individual melanoma cells by smFISH that were
also assessed by parallel scRNA-Seq from the same cell populations (Torre
et al., 2018). Not withstanding the challenges associated with enumerating
smFISH data from a single confocal optical plain (Torre et al., 2018), this
orthogonal approach should provide a reasonable estimation of the true
relative expression, and therefore a surrogate ’ground truth’, as proposed
in (Huang et al., 2018). We therefore compared expression distributions
measured by smFISH with the distribution of values recommended by

Fig. 3. Performance of FIESTA in data recovery compared to existing methods. A)
Select gene expression distributions obtained from Drop-Seq (i.e. non-imputed), smFISH,
FIESTA, or alternative imputation approaches. B) Hellinger distance measures and ranking
of imputation approaches. C) Predicted Nkx2.1 positive cells in Zewdu et al. based on gene
deletion kinetics or various imputation approaches. D) Sensitivity and specificity measures
for imputed Nkx2.1 in Zewdu et al.

FIESTA, in comparison to 4 alternative imputation techniques (Figure
3A,B).
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While each imputation approach increased the number of cells
predicted to express the genes of interest, in most cases FIESTA imputation
resulted in gene expression distributions better resembling those implied
by smFISH analysis (Figure 3A,B). In fact, FIESTA (using either sNMF or
wNMF approaches) yielded the top two closest approximation of smFISH
data in over half of the genes tested and was within the top 3 scores
(i.e. lowest 3 Hellinger distances) for all but 2 genes – Fosl1 which had
negligible expression in this data set and Runx2 where FIESTA gave a close
3rd and 4th best approximation, behind scImpute and ALRA (Figure 3B
and Supplemental Figure 1).

The lung tumor data set from Zewdu et al. also include a surrogate
ground truth (Zewdu et al., 2021). It involved experimentally induced
genetic recombination to delete the Nkx2.1 gene, but gene deletion was
only partly successful resulting in distinct cellular transcriptional profiles
for Nkx2.1 deleted and non-deleted cells, implying expression and function
of Nkx2.1 where deletion failed. We inferred that although Nkx2.1 was
detected in only a subset of cells from the non-deleted clusters it was
likely expressed but undetected in most cells sharing the phenotype of
cells with detectable Nkx2.1 (Figure 3C)(Zewdu et al., 2021). Using this
inferred Nkx2.1 expression pattern, we tested the sensitivity and specificity
of FIESTA and various alternative imputation approaches to the predicted
expression pattern for the Nkx2.1 transcription factor in this study (Figure
3C,D). In this analysis SAVER and MAGIC exhibited apparent perfect
sensitivity, but this derived from an overly liberal imputation of the data,
as their specificity was incalculable due to no residual null values in the
imputed data set (Figure 3D). In contrast, FIESTA scored highly in both
sensitivity and specificity, while ALRA was overly conservative (Figure
3D).

3.3 Imputation affects cell-cell relationships

We next applied FIESTA to an adult subset of mouse mammary gland
scRNASeq profiles that we published recently (Figures 4-7)(Giraddi
et al., 2018). For comparison, we imputed the same data set using
other published approaches (Figure 4-6). In this mammary gland data
set, we previously described three major cell types in detail based on
transcriptional profiles and clustering. These cell types correspond to
long established differentiated cells of the mammary gland and carry
distinguishing marker gene expression including Krt14 for the basal cell
type, Wfdc18 for the alveolar cell type and Krt18 (in the abscence of
Wfdc18) for the remainder of luminal cells including the hormone sensing
epithelial cells of the mammary gland (Figure 4A,B)(Giraddi et al., 2018,
Bach et al., 2017).

Inspection of two-dimensional UMAP representations of imputed
data compared to non-imputed data demonstrate that each imputation
approach alters cell-cell relationships in unique ways (Figure 4A,B and
Supplemental Figure 2). Although it is often assumed that measures of
cluster separation or compactness (for instance in UMAP or tSNE plots)
are useful measures of improved interpretability of the data following
computational processing, there is usually no specific data supporting
the conjecture that more discrete clusters are a more true representation
of cellular relatedness, particularly since related cell types can lie
along a continuum of phenotypic differences and even be somewhat
interconvertible (Huang et al., 2018, Regan and Smalley, 2020, Giraddi
et al., 2018). In this regard, we note that UMAPs derived from FIESTA
imputation of mammary epithelial data yield a more continous luminal-
alveolar relationship, but also yield substructures suggestive of cellular
subtypes within the continuum of luminal/alveolar phenotypes, consistent
with previous studies (Figure 4B)(Giraddi et al., 2018, Bach et al., 2017).
Despite the changing graphical representations following imputation of
the data, determination of adjusted Rand indices (ARI) demonstrate that
all methods maintained the major cell type classifications in this data

Fig. 4. Imputation alters apparent cell-cell relationships. A) UMAP of non-imputed
mammary epithelial data and identification of basal, luminal and alveolar clusters based
on expression of Krt14, Krt18 and Wfdc18. B) UMAPs of imputed data with expression
patterns of cell type markers. C) Adjusted Rand scores for various imputation approaches.
D) pre- and post-imputation values (FIESTA) for Esr1 and Trp63.

set (Figure 4A,B and Supplemental Figure 2). All approaches yielded
ARI distances for imputed data >0.87 when using Seurat’s graph-based
clustering and marker genes (i.e. Krt14, Krt18, and Wfdc18) to call
cell type clusters and then comparing imputed calls to non-imputed calls
(Figure 4C)(Stuart et al., 2019).

However, representation of known marker genes for some clusters
were significantly improved following imputation. For instance,
Krt18+/Wfdc18- cells show overly sparse expression of estrogen receptor
though estrogen receptor is known to be broadly expressed by these cells
and showed a generally active regulon score in previous studies (Bach et al.,
2017, Giraddi et al., 2018, Zeps et al., 1998) (Figure 4D). In contrast to non-
imputed data, where Esr1 expression was rarely detected, FIESTA resulted
in a model of Esr1 expression that was more broadly expressed but still
compartmentalized in a manner consistent with the literature (Zeps et al.,
1998). The basal transcription factor Trp63 behaved similarly with the
proportion of cells predicted to express Trp63 increasing after imputation
but remaining largely basal restricted (Figure 4D).

3.4 Imputation affects gene-cell and gene-gene
relationships

Although we also carried out orthogonal smFISH based validation of
gene expression in Giraddi et al., the analysis was qualitative rather than
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Fig. 5. Correlation of FIESTA imputation values with orthogonal gene expression predictions. A) Correlation of imputed transcription factor values with Regulon activity scores given by
SCENIC in the Giraddi et al. B) The top half of regulon scores show high correlation with imputed values from several approaches including FIESTA. C) Correlation of Esr1 and Trp53
regulons with FIESTA predictions. D) FIESTA has the highest mean correlation with regulon predictions from SCENIC among imputation approaches. E) Correlations between FIESTA
imputed values for Epcam and Ly6a or Itga6.

quantitative (Giraddi et al., 2018). Thus, for this data set we leveraged a
different orthogonal computational approach as a ground truth reference.
Specifically, we compared values recommended by FIESTA (or other
imputation approaches) with the results of regulon analysis that was carried
out in Giraddi et al. using SCENIC (Aibar et al., 2017, Giraddi et al., 2018).
SCENIC uses correlated genes across a data set as well as transcription
factor binding site information to identify whether a transcription factor
that is responsible for driving the expression of a set of genes is likely to
be active. Where SCENIC predicts transcription factor activity it can be
inferred that the transcription factor was present even if it was not detected
in the raw scRNA-seq data. Thus, for a subset of genes (i.e. transcription
factors) SCENIC operates as an imputation engine.

When we examined active regulons predicted by SCENIC and
compared them to values recommended for the corresponding transcription
factor from FIESTA or other approaches, we noted a strong concordance
for many of the transcription factors in the top half of predicted activity
scores (Figure 5A,B). For instance the luminal transcription factor Esr1
and the basal transcription factor Trp63 showed positive correlations
between the SCENIC predicted activity level and the FIESTA predicted
expression level, even though FIESTA did not rely upon target gene
binding information or knowledge of its direct targets as surrogates for

these predictions (Figure 5C). In the lower half of predicted regulon
activity scores there was much less concordance (Figure 5A). This
presumably reflects the expression but inactivity of some transcription
factors. Compared to other methods, FIESTA demonstrated the highest
mean correlation between regulon values and imputed transcription factor
values among the top half of regulon scores i.e. those reflecting a
transcription factor that is predicted to be present and active (Figure 5C).

Although transcript levels are not always expected to correlate perfectly
with proteins levels given the existence of translational- and protein
stability-control mechanisms, imputation of the adult mammary epithelial
data with FIESTA yielded improvements of gene-gene correlation when
judged against relationships of their gene products reported in the
literature (Figure 5E and Supplemental Figure 3)(Visvader and Stingl,
2014; Shehata et al., 2012; Asselin-Labat et al., 2008; Spike et al.,
2012). For example, FIESTA imputation specifically recapitulates the
general relationship between Epcam, Sca-1 (Ly6a) and CD49f (Itga6)
proteins often used for sorting discrete mammary cell types (Figure 5D).
Conservative imputation approaches left these genes and their cognate
relationships highly digitized, while overly liberal approaches yielded
relationships that (although possible) do not well match the relationships
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described for their protein products in the literature (Supplemental Figure
3).

3.5 Imputation increases detection of population enriched
marker genes and identifies cellular subtypes

We next asked whether running FIESTA on sparse scRNA-Seq data is
likely to facilitate the identification of novel molecular markers for discrete
cell types. Differential expression analysis using Wilcoxon Rank Sum in
Seurat (Stuart et al., 2019) identified 976, 724, and 297 differentially
expressed genes uniquely overexpressed in basal, luminal and alveolar
cellular subtypes, respectively (Supplemental Figure 4A). These genes
represent many well known and often robustly expressed cell type
identifiers in the mammary epithelium. However, following FIESTA,
we identified an additional 1770, 1455, and 1103 candidate cell-type
markers among the differentially expressed genes (Supplemental Figure
4A). Within this expanded gene list were genes with clearly cell-type
restricted gene expression patterns but whose expression was detected
only in very restricted number of cells in the raw data (Figure 6A,B
and Supplemental Figure 4B). Thus, FIESTA helps identify sparsely
represented cell type markers.

Finally, we asked whether apparent cellular subsets identified in the
FIESTA imputed UMAPs were likely to reflect divergent cell types.
We examined two presumptive alveolar and two presumptive luminal
subsets for expression of additional transcripts related to known surface
markers in the mammary gland. Interestingly, we identified distinguishable
Egfr+Itga2+ and Kit+Itgb3+ positive subsets of Wfdc18+ cells, and also
identified a Ly6a- subset of Esr1+ cells (Figure 6C,D). Although these
cellular sub-states were not readily distinguishable in the non-imputed
data, they may correspond to select cellular sub-states emerging from other
recently published studies of cellular sub-types in the mammary gland
(Regan and Smalley, 2020, Fu et al., 2020, Pervolarakis et al., 2020).
Differential gene expression analysis between these subsets revealed
the cells are likely distinguishable by broader transcriptomic differences
representing distinct (although still quite similar) cell states (Figure 6D
and Supplemental Table 2).

4 Discussion
We set out to examine the potential of matrix factorization via NMF and
subsequent matrix completion from factor multiplication to accurately
impute missing values in scRNASeq data. This effort was based on
the demonstrated effectiveness of NMF in identifying meaningful cell
and gene relationships in gene expression data sets, and its proven
utility in recommender systems dealing with other types of sparse
data matrices. By applying unsupervised feature selection, scaling and
thresholding parameters estimated from measured values in the raw
data, we produced an unsupervised computational imputation pipeline for
data processing, FIESTA, that outperforms several alternative approaches
seeking to recover information in zero-inflated scRNA-Seq data. Further,
by comparing results of this approach to expression patterns known from
the literature and orthogonal analysis in three distinct published data sets,
we found the approach produced reliable relative expression patterns for
genes including those that had been undetected or poorly detected in the
raw data. Although the large number of differentially expressed genes
modeled by imputation of sparse scRNA-Seq data is likely to contain
many false positives (Andrews and Hemberg, 2018), FIESTA permitted the
identification of novel candidate cellular subtypes and markers for future
study that were missed by the same analysis of non-imputed data. The
approach will likely also have useful application to many of the emerging
data sets and compendia that have been produced with the scRNA-Seq
technology (e.g. Regev et al., 2017, Consortium et al., 2018).

Fig. 6. Identification of novel cell type markers from imputed data. A) Differentially
expressed genes identified in non-imputed and FIESTA imputed data. B) Diffusion map (as
in Giraddi et al.) showing cell type specificity of imputed differentially expressed genes.
C) Cellular subtypes implied by imputed data. D) Sub-population specific gene expression
profiles of populations indentified in C.

While several of the previously proposed approaches also provide
fairly reasonable gene expression estimates, these alternative methods
may be overly conservative (e.g. Saver and ALRA), too liberal (e.g.
MAGIC), or require potentially biased priors in the form of assumptions
about ’important’ genes or expected cell types (e.g. DeepImpute).
In contrast FIESTA is unsupervised and gives expression values that
realistically reflect both cellular heterogeneity and lineage/cell-type
restriction. The initial version of FIESTA (version 1.0) as described
in this manuscript is freely and immediately available as an R
package [https://github.com/TheSpikeLab/FIESTA]. Subsequent studies
are already underway to explore alternative NMF, scaling and thresholding
algorithms that may further improve accuracy or reduce computational
burdens, and be implemented as subsequent FIESTA version updates.

5 Summary
FIESTA, which is based on feature identification using wNMF or
sNMF, imputes missing values in sc-RNASeq data with a more intuitive
relationship to known biology than previously reported approaches. While,
all approaches tested altered graphical representation of the data and
thus affect interpretability of the data including cell-cell and cell-gene
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relationships, the expression patterns following FIESTA worked across
a broad range of input values and detection frequencies and matched
values obtained from orthogonal approaches. Analysis of gene expression
differences among populations emerging from FIESTA suggests resolution
of biologically meaningful features and an enhanced ability to detect
differentially expressed genes that define minority cell types.
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