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Abstract 

In-scanner head motion systematically reduces estimated regional gray matter volumes obtained 

from structural brain MRI. Here, we investigate how head motion affects structural covariance 

networks that are derived from regional gray matter volumetric estimates. We acquired motion-

affected and motion-free whole brain T1-weighted MRI in 29 healthy adult subjects and 

estimated relative regional gray matter volumes using a voxel-based morphometry approach. 

Structural covariance network analyses were undertaken while systematically increasing the 

number of motion-affected scans included in the analysis. We demonstrate that the standard 

deviation in regional gray matter estimates increases as the number of motion-affected scans 

increases. This subsequently increases pair-wise correlations between regions, a key determinant 

for construction of structural covariance networks. We further demonstrate that head motion 

systematically alters graph theoretic metrics derived from these networks. Our findings suggest 

that in-scanner head motion is a source of error that violates the assumption that structural 

covariance networks reflect neuroanatomical connectivity between brain regions. Results of 

structural covariance studies should be interpreted with caution, particularly when subject groups 

are likely to move their heads in the scanner. 
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1. Introduction 

Analysis of the covariance of regional grey matter volume and related morphometric measures 

across subjects is a widely used MRI-based network analysis technique that is used to investigate 

neuroanatomical changes in disease and healthy aging [1-15]. The primary underlying 

assumption of structural covariance analyses is that regional covariation of morphometric 

estimates reflects underlying neuroanatomical connectivity between brain regions. In this study 

we test this assumption by investigating the effect of in-scanner head motion on construction and 

graph theoretic analysis of structural covariance networks. 

In-scanner head motion has been previously demonstrated to cause brain-wide changes in 

morphometric estimates derived from structural MRI scans [16-19]. Increased head motion is 

generally associated with brain-wide reductions in cortical thickness and regional gray matter 

volume. Previous studies have shown that head motion is typically increased in disease groups 

relative to healthy controls and varies by age, with children and elderly adults showing increased 

head motion relative to adults aged between 15 and 40 years [17, 19]. Although the effect of 

head motion on MRI-based estimates of regional cortical thickness, volume and related 

neuroanatomical measures has been extensively described recently, the effect of motion on 

higher order multivariate analytical approaches such as structural covariance analysis is yet to be 

established.  

Structural covariance networks are inferred by measuring the correlation of brain volumes 

between pairs of brain regions across subjects. Because head motion increases variability in 

regional morphometric estimates across the whole brain, it is likely that the variability in both 

members of any pair of regional estimates is increased, increasing the measured correlation 

between these pairs. This effect can be conceptualized as a corollary of the restricted range 

phenomenon, in which the measured correlation between two variables is reduced if the sample 

is drawn from a limited range of the population [20]. In the case of in-scanner head motion, we 

hypothesize that the inclusion of motion affected scans will increase variability in morphometric 

estimates across subjects and subsequently increase the measured correlation in volumes 

between pairs of brain regions. 

We investigated the effect of head motion on structural covariance networks by obtaining both 

motion-affected and motion-free whole brain T1-weighted MRI scans in healthy adult subjects. 
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MRI scans were used to obtain regional gray matter volume estimates following a voxel-based 

morphometry approach similar to that used in a number of prior studies [4, 7, 8, 11, 12, 15]. We 

systematically varied the number of motion affected scans included in each group and assessed 

how this influenced metrics related to network construction and commonly used graph theoretic 

measures. If the inclusion of motion-affected scans affects the construction of structural 

covariance networks and derived metrics, regional covariance of volumes and related 

morphometric measures across subjects may not always reflect anatomical connectivity. In 

general, if subject groups differ in the amount of in-scanner head motion, differences in graph 

theoretic network metrics derived from structural covariance analyses of these groups may not be 

due to neurobiological differences. 

2. Methods 

Whole brain T1w MRI scans were obtained in 29 healthy control subjects recruited via 

community advertisement (mean age 33 ± 13 years, 13 female). Approval for the study was 

obtained from the NYU Langone Health Institutional Review Board, and written informed 

consent was obtained from all study participants. MRI scans and scripts associated with the 

analyses presented in this study are provided at 

https://sites.google.com/site/hpardoe/structcovar_motion [21]. 

Participants were imaged on a Siemens 3T Prisma MRI scanner. Two T1w MPRAGE MRI scans 

were acquired per participant in each imaging session; a motion affected scan, in which 

participants moved their heads in stereotyped prompted motions during the scan, and a motion-

free scan in which participants held their head still. Image acquisition parameters were: 1mm 

isotropic voxel size, echo time (TE) = 3 ms, flip angle = 8 degrees, inversion time (TI) = 0.9 s, 

repetition time = 2.5 s. 

MRI scans were segmented and co-registered using the DARTEL toolbox provided in the 

SPM12 software package [22]. A custom template was created from the motion-free dataset. 

Scans were segmented into gray (GM) and white matter and coregistered to MNI space via non-

rigid coregistration to the custom template. GM segments were smoothed using an 8mm 

Gaussian smoothing filter. Regional GM volumes were estimated by calculating the mean GM 

value within each region defined in the AAL atlas [23]. We excluded cerebellar brain regions 

from our analyses, thereby yielding GM volume estimates in 90 brain regions. Covariance 
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matrices were estimated from regional GM values across subjects by measuring the Pearson 

correlation (r) between brain regions. Matrices were thresholded and binarized to construct 

undirected adjacency matrices. Undirected adjacency matrices were thresholded by calculating 

the Pearson r value threshold that corresponded to a fixed target edge density; this is a standard 

approach used in a number of previous studies [2, 3, 6, 9, 13]. Subject groups were formed by 

systematically increasing the number of motion-affected scans in each group, ranging from no 

motion affected scans to all motion affected scans.  

We investigated how in-scanner head motion affected structural covariance network construction 

by measuring the following as the number of motion-affected scans included in each dataset 

increased: (i) the variability in volume estimates, assessed by measuring the standard deviation in 

each brain region across subjects; (ii) Pearson correlation coefficients (r) between volumes of 

brain regions and (ii) the Pearson r thresholds required to obtain fixed edge densities = 0.1,0.15 

and 0.2. We also investigated how commonly used graph theoretic network metrics, consisting of 

(i) global clustering coefficient (transitivity), (ii) modularity, (iii) global efficiency and (iv) small 

world index varied as a function of the number of motion-affected scans in each group. These 

analyses are described in more detail below. Analyses were carried out using the R software 

package with the iGraph, brainGraph and qgraph libraries [24-27].   

A bootstrapping approach was used to estimate how GM estimates derived from motion-affected 

scans affected (i) the across-subject standard deviation in each brain region and (ii) the Pearson 

correlation r between pairs of brain regions. The number of motion affected scans included was 

systematically increased from zero (no motion affected scans) to 29 (all motion affected scans). 

For each iteration, N = 5000 samples were drawn with replacement and (i) the across-subject 

standard deviation in each brain region and (ii) pairwise correlations in mean GM values 

between brain regions were calculated. The relationship between average standard deviation 

across brain regions and the percentage of motion affected scans was tested using a linear model. 

The relationship between average pairwise correlation and the percentage of motion affected 

scans was tested using a linear model. 

We further investigated how the inclusion of motion-affected scans affected the threshold r value 

required to obtain undirected adjacency matrices with a pre-specified fixed edge density. Target 

edge densities of 0.1, 0.15 and 0.2 were used. As in previous analyses a bootstrapping approach 
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was used to estimate the average r value required to obtain the target densities as the number of 

motion-affected scans increased. 5000 samples were drawn with replacement for each iteration 

as the number of motion-affected scans in the dataset was increased. The relationship between 

threshold r value and percentage of motion affected scans was tested using a linear model. 

Finally we investigated how in-scanner head motion affects graph theoretic network measures 

that are commonly used in structural covariance studies to assess differences between subject 

groups. Specific metrics included measures of network segregation, consisting of transitivity 

(also known as clustering coefficient) and modularity, and measures of network integration 

including global efficiency. We also measured how motion-affected scans influence the 

measured small world index. For these analyses the graph theoretic estimates were obtained from 

graphs constructed from adjacency matrices that were thresholded to obtain target edge densities 

= 0.1, 0.15 and 0.2. As in the previous analyses 5000 samples were drawn with replacement as 

the number of motion affected scans increased, with the four graph theoretic metrics calculated 

for each sample. 

3. Results 

The average across-subject standard deviation systematically increased as the number of motion-

affected scans included in an analysis increased, with an increase of 1.9 × 10-4 SD per percent 

change in the number of motion-affected scans (p = 4.5 × 10-10). The change in standard 

deviation as a function of the number of motion affected scans, both per-region and averaged 

across all brain regions, is shown in Figure 1. For example, if 20% of the scans in a dataset were 

motion affected, the standard deviation increased on average by 23%. The average correlation 

between GM regions also systematically increased as the number of motion-affected scans 

included increased, with an increase of 5.1 × 10-4 in r per percent change in the number of 

motion-affected scans (p = 1.5 × 10-6, Figure 2). As an example, we have provided scatterplots 

showing the change in the correlation between the left pallidum and left inferior temporal gyrus 

as the number of motion affected scans increased (Figure 3). The figure shows that the Pearson 

correlation increased from r = 0.57 if no motion affected scans are included to r = 0.71 if 6 

subjects (20% of the sample) are motion affected. The average threshold r value required to 

obtain adjacency matrices with the pre-specified edge densities systematically increased as the 
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number of motion affected scans included in the analyses increased; this was observed across the 

three target densities investigated in our study (Figure 4). 

 

Figure 1. Variability in regional gray matter volume estimates across subjects increases 

with the number of motion affected scans included in a dataset. The standard deviation 

averaged across all brain regions is shown in orange, with standard deviation in 

individual brain regions shown in green. 
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Figure 2. The correlation between gray matter volume estimates increases as the number 

of motion-affected scans included in a dataset increases. The green line shows the 

average Pearson r across all brain regions and the dashed lines indicate the 95% 

confidence interval. 
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Figure 3. The effect of in-scanner head motion on the measured correlation in gray 

matter volume between the pallidum and the inferior temporal gyrus. As more 

motion-affected scans are included in the sample the correlation between these brain 

regions increases from 0.57 to 0.71. 
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Figure 4. The threshold Pearson correlation required to 

obtain a pre-defined network edge density is dependent on 

the number of motion-affected scans included in an 

analysis.   

 

Both modularity and efficiency systematically increased as the number of motion affected scans 

increased. These changes were consistent across the range of edge densities used in our analyses 

(Figure 5). Small world index generally decreased as the number of motion affected scans 

increased, although the higher edge densities = 0.15, 0.2 showed a small peak in small world 

index when a low number of motion affected scans was increased. The relationship between 

transitivity and number of motion affected scans depended on edge density, with the shape of the 

density = 0.1 curve markedly different to curves for edge densities = 0.15 and 0.2. For the higher 

edge density values the transitivity decreased as the number of motion affected scans increased. 

When examining changes in graph theoretic metrics for a single edge density = 0.15, it can be 

seen that the most substantial changes in transitivity, modularity and efficiency occur when a 

small number of motion affected scans are included in the analysis (Figure 6). 
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Figure 5. Change in graph theoretic metrics across edge density = 0.1, 0.15, 0.2. The 

relationship between motion and transitivity (clustering coefficient) is variable depending on 

the edge density used. Modularity and efficiency increase as the number of motion affected 

scans increases. Small world index generally decreases as the number of motion affected scans 

increases.  
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Figure 6. Change in graph theoretic metrics as a function of in-scanner motion for edge density = 

0.15. For transitivity, modularity and efficiency the largest changes occurred when a small 

number of motion-affected scans were included (< 20%). 
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4. Discussion 

We have demonstrated that the inclusion of motion-affected scans in a structural covariance 

analysis framework causes systematic increases in the variability of measured gray matter 

volumes. The increase in variability subsequently increases the correlation in GM volumes 

between brain regions. The increases in regional variability and measured correlation between 

brain regions are observed across the whole brain. These findings suggest that in-scanner head 

motion can affect the construction of networks derived from covariance of the volumes of gray 

matter regions across subjects. We have also shown that graph theoretic metrics derived from 

graphs constructed based on correlation between brain regions are dependent on the number of 

motion affected scans included in an analysis. Our analyses suggest that in-scanner head motion 

is a potential source of error for structural covariance analyses, and violates the primary 

underlying assumption that significant correlations in GM volume estimates between brain 

regions reflect neuroanatomical connectivity. These findings suggest that caution should be 

exercised when interpreting the results of structural covariance analyses. 

Our experimental framework used individuals who deliberately moved their heads in the MRI 

scanner. The motion-related artifacts in these scans may be greater than those encountered in a 

typical clinical imaging study, particularly in studies that have stringent quality control 

procedures. Although quality control protocols are likely to reduce the magnitude of this source 

of error, it is unclear if they would eliminate this effect. Previous studies have demonstrated that 

in-scanner head motion in a clinical setting has a significant effect on cortical thickness and 

regional volume even in scans that have been visually rated as being high quality [17]; this 

suggests that it is possible that even subtle in-scanner head motion could have a systematic effect 

on structural covariance analyses, particularly in large studies. Recently developed motion-robust 

acquisitions [28] are likely to ameliorate the effects of in-scanner head motion described in this 

work, however this should be explicitly investigated in future studies. 

In summary, we have demonstrated that in-scanner head motion systematically increases the 

correlation in estimates of regional gray matter volume as a consequence of increased variability 

in these estimates. These changes affect graph theory-based metrics typically used to infer 

differences in neuroanatomical connectivity between subject groups. As with mass-univariate 

analyses of regional brain volume differences between subject groups, the results of structural 
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covariance analyses should be interpreted with the knowledge that head motion is a potential 

source of error. 
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