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Abstract 
ePlant was introduced in 2017 for exploring large Arabidopsis thaliana data sets from the kilometre to 

nanometre scales. In the past four years we have used the ePlant framework to develop ePlants for 15 

agronomically-important species: maize, poplar, tomato, Camelina sativa, soybean, potato, barley, 

Medicago truncatula, eucalyptus, rice, willow, sunflower, Cannabis sativa, wheat and sugarcane. We 

also updated the interface to improve performance and accessibility, and added two new views to the 

Arabidopsis ePlant – the Navigator and Pathways viewers. The former shows phylogenetic relationships 

between homologs in other species and their expression pattern similarities, with links to view data for 

those genes in the respective ePlants. The latter shows Plant Reactome metabolic reactions. We also 

describe new Arabidopsis data sets including single cell RNA-seq data from roots, and how to embed 

ePlant eFP expression pictographs into any web page.  

Introduction 
Vast amounts of biological data have been generated over the past 15 years. Traditional methods of 

analyzing data in multiple formats can add a layer of friction to the creative processes of hypothesis 

generation. We introduced ePlant four years ago to help plant biologists explore and make connections 

between large Arabidopsis thaliana data sets for any given gene/gene product (Waese et al., 2017). It 
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includes views for exploring expression differences in ecotypes at a kilometre scale, expression levels in 

tissues and organs at the centimetre scale, sub-cellular localization at the millimetre scale, protein-DNA 

and protein-protein interactions at the micrometre scale and, finally, the tertiary structure of the 

molecule itself at the nanometre scale. Combining multiple views into one visual analytic platform 

allows researchers to ask and answer complex biological questions about a gene of interest using a 

single, user-friendly interface. 

Development of ePlant has continued since the original paper was published. Several new views have 

been added and the user interface has been updated to improve performance and accessibility. The new 

views include a Navigator viewer, a Pathways viewer, and seven new eFP viewers based on RNA-seq 

data. In addition, 15 new ePlants have been developed for agronomically-important species beyond 

Arabidopsis thaliana. Last, we have made it easy to embed ePlant eFP images showing expression 

patterns into any web page as a widget. 

Results  

New ePlant Design with Improved Accessibility and Performance 

Since the original Waese et al. (2017) paper, ePlant interface has undergone a major update (see Figure 

1). The colours have been updated to improve contrast, infrequently used features were removed to 

reduce clutter, and animated page transitions were removed to eliminate negative experiences that 

motion effects cause for some users. In addition, gene loading times have improved by up to 300% and 

several bugs have been fixed that used to cause unpredictable behavior when asynchronous events did 

not happen as expected. 

 

Figure 1: The new ePlant home page. 

 

To improve contrast, we swapped the background colours for darker ones, removed gradients and 

changed text colours, making much of ePlant compatible with the higher WCAG “AAA” standard for 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.28.441805doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.28.441805
http://creativecommons.org/licenses/by/4.0/


3 

 

enhanced contrast, which requires a ratio of at least 7:11. The original design did not meet the WCAG 

“AA” standard. The new design uses the colours shown in Figure 2. 

                      

Figure 2: Original ePlant colours (left) #444444, #666666, #99CC00; new colours (right)  #161616, #262626, #99CC00 

We have maintained use of the “BAR green” as the highlight colour, despite darkening the background 

colours. By swapping the background colours to darker alternatives and removing the use of white text 

on a green background we were able to increase contrast significantly and create a more readable 

design (Figure 3). We also removed the animated transitions between views to address concerns from 

researchers with vestibular disorders2. 

   

Figure 3: Contrast of the original ePlant design versus the new design. The original design (left) does not meet the WCAG “AA” 

level for contrast, while the new design (right) exceeds the “AAA” contrast level by a factor of more than two, as shown using 

Chrome’s developer tools. 

 

 

A Small Farm of ePlants 

The original ePlant published by Waese et al. (2017) only supported data from Arabidopsis thaliana. We 

now have ePlants for another 15 species: Arabidopsis thaliana, maize, poplar, tomato, Camelina sativa, 

soybean, potato, barley, Medicago truncatula, eucalyptus, rice, willow, sunflower, Cannabis sativa, 

wheat and sugarcane (see Figure 4 and Table 1). 

 
1 https://www.w3.org/TR/WCAG21/#contrast-minimum   
2 https://alistapart.com/article/designing-safer-web-animation-for-motion-sensitivity/  
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Figure 4: Accessing ePlants from the BAR homepage at http://bar.utoronto.ca.  

Although they share a common interface, the ePlants are not all identical. The 16 ePlants draw data 

from a variety of databases, and different species have different views based on data availability, as 

shown in Table 1. The Arabidopsis ePlant continues to have the greatest number of views. We 

developed a pipeline for creating a new ePlant of interest and this is available at 

https://github.com/BioAnalyticResource/ePlant_Pipeline. For several ePlants, we have predicted 

“structure-omes” using Phyre2 (Kelley et al., 2015). 
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Table 1: Overview of Data Available in each ePlant. Icons are defined in Figure 1, with the exception of the first 4: the icon denotes gene information, the icon denotes publications, 

the  icon denotes ePlant Navigator, and the  icon denotes the Heatmap Viewer. A new icon is the Pathways Viewer  icon. ePlants are available at http://bar.utoronto.ca.  

ePlant \ Viewer 
             

Data references 

Arabidopsis ePlant              As in Waese et al. (2017) and as discussed in this paper 

Maize ePlant              

Downs et al. (2013), Opitz et al. (2014, 2016), (2016), Wang et 

al. (2014), Li et al. (2010), Eveland et al. (2014) Hey et al. (2017), 

Sekhon et al. (2011), Musungu et al. (2015), Goodstein et al. 

(2011) 

Poplar ePlant              
Tuskan et al. (2006), Wilkins et al. (2009a, 2009b), Goodstein et 

al. (2011) 

Tomato ePlant              

Tomato Genome Consortium (2012), Koening et al. (2013), Toal 

et al. (2018), Kajala et al. (in press), Chitwood et al. (2013), 

Matas et al. (2011), Hooper et al. (2020), Goodstein et al. (2011)  

Camelina ePlant              Kagale et al. (2016) 

Soybean ePlant              
Libault et al. (2010a, 2010b), Severin et al. (2010), Goodstein et 

al. (2011) 

Potato ePlant              
Massa et al. (2011), Potato Genome Sequecing Consortium 

(2011), Goodstein et al. (2011) 

Barley ePlant              Thiel et al. (2021) 

Medicago ePlant              
Benedito et al. (2008), Righetti et al. (2015), Goodstein et al. 

(2011) 

Eucalyptus ePlant              
Myburg et al. (2014), Bartholomé et al. (2015), Zhang et al. (in 

prep.), Goodstein et al. (2011) 

Rice ePlant              

Jain et al. (2007), Wang et al. (2014), Li et al. (2007), Lasanthi-

Kudahettige(2007), Kajala et al. (in press), Ho et al. (2012), 

Goodstein et al. (2011) 

Willow ePlant              Zhou et al. (2018), Goodstein et al. (2011) 

Sunflower ePlant              Badouin et al. (2017), Goodstein et al. (2011) 

Cannabis ePlant              Van Bakel et al. (2011) 

Wheat ePlant              Ramírez-González et al. (2018) 

Sugarcane ePlant              Hosaka et al. (submitted) 
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Two New Viewers for the Arabidopsis ePlant 

Navigator Viewer 

The Navigator Viewer as shown in Figure 5 provides a tree-based visualization of homologous genes in 

other species. It uses data from the BAR’s Expressolog database (Patel et al., 2012) to construct a 

phylogenetic tree with leaf nodes representing the homologs from different species. For each gene, its 

species is reported along with the similarity at the sequence level and at the level of expression pattern 

similarity, based on the expressolog method developed by Patel et al. (2012). In this way, genes that are 

both sequence similar and have similar patterns of expression in equivalent tissues may be easily 

identified. Link-outs are also provided to each gene’s corresponding ePlant and or eFP view. In addition, 

dynamic links to genomevolution.org’s CoGe database (Lyons and Freeling, 2008) and to the Gramene 

database (Tello-Ruiz et al., 2018) are provided so that a researcher can easily access further information 

about syntenic relationships etc.  

This tool was created with the goal of quickly and easily helping biologists find similar genes across the 

various ePlant species. If a biologist studying one species is familiar with a gene in another, this view 

allows them to make a connection between the two.  

 

 

Figure 5: ePlant Navigator Viewer 

 

Pathways Viewer 

The Pathways Viewer shown in Figure 6 displays metabolic pathways associated with the active gene. It 

draws data from the Plant Reactome pathway database (Naithani et al., 2019) via application 

programming interface (API) calls and generates a pathway diagram. This is done using Cytoscape.js, a 

JavaScript-based graph theory library for network visualization and analysis (Franz et al., 2016). Nodes 
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are laid out with a force directed layout known as CoSE Bilkent3 and styled appropriately. All pathways 

available for a given gene are displayed as selectable tabs and a direct link to the pathway in the Plant 

Reactome pathway browser is provided for more information. In addition, hovering over the active gene 

label, which is denoted by bold text, calls up a tooltip which contains the Klepikova Plant eFP view for 

that gene, based on the Klepikova developmental atlas (Klepikova et al., 2016) – see the next section. 

The Klepikova eFP view can be used to assess in which parts of the plant the gene is strongly expressed, 

to help identify parts of the plant where the depicted reaction might be occurring.  

The ePlant Pathways Viewer fills a gap in the conceptual hierarchy within ePlant, between the 

Interaction Viewer and the Molecule Viewer. Currently this view is only available for the Arabidopsis 

ePlant with data for over 236 pathways, 590 reactions and 1059 gene products and it is coming to the 

other ePlants soon. Plotting these pathways enables researchers to understand the biological context of 

the active gene product. The other views in ePlant show where in the cell the gene/macromolecule 

exists and how it is expressed, but this view is what makes it possible to answer the question “what is 

the gene doing in the cell” in a way that was not possible before. 

 

 

 

Figure 6: ePlant Pathways Viewer 

 
3 https://github.com/cytoscape/cytoscape.js-cose-bilkent  
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  . 

Figure 7: Klepikova Plant eFP tooltip in ePlant’s Pathways Viewer, showing the expression pattern of At5g20980, ATMS3, 

involved in the S-adenosyl-L-methionine cycle, showing strong expression (red colour) in young leaves, flower buds, stems, and 

germinating seeds.  

 

New Data Sets 

The original ePlant publication introduced the Plant eFP Viewer and the Tissue and Experiment eFP 

Viewers with more than 20 different views. They display pictographs representing the level of 

expression of a queried gene in organs of the plant or in specific tissues or cell types, with intensity of 

expression represented by a colour gradient. Since the original publication in 2017, a number of new 

views have been added, with the Single Cell RNA Sequence eFP (Ryu et al., 2019) being one of six added 

in this new update, as shown in Figure 8. Most of the newly added data are based on RNA sequencing 

and include a new Plant eFP Viewer for the Klepikova RNA-seq-based developmental atlas shown in 

Figure 7 (Klepikova et al., 2016), a Germination view (Narsai et al., 2011), a Shoot Apex view (Tian et al., 

2014), a Root Immunity Elicitation view (Rich-Griffin et al., 2020), and a Guard Cell Drought view (van 

Weringh et al., 2021).  

We also updated the non-synonymous single nucleotide polymorphism data source for the Arabidopsis 

Molecule Viewer from the 1001 Proteomes site (Joshi et al., 2012), which had been deprecated, to the 

1001 Genomes API (1001 Genomes Consortium, 2016). The advantage of doing this, apart from having a 

reliable data source, is that the 1001 Genomes API is more comprehensive, containing polymorphism 

data for almost twice as many Arabidopsis ecotypes. 

eFP 
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Figure 8: Single Cell RNA-seq eFP View for the gene At5g60200 

 

ePlant eFP Widgets 

We have developed SVG-based ePlant Plant eFP widgets for use in any website, as shown in Figure 9. 

See https://bar.utoronto.ca/~asullivan/ePlant_Plant_eFP/example/  for how to use these. The widgets 

behave similarly to the eFP views found within ePlant itself and are available for 88 different SVGs. They 

function after the same paradigm, with a gradient showing intensity of gene expression in different 

tissue regions or cell types taken from different parts of the plant. 

Discussion 
We present several useful updates to our ePlant tool. Improvements to the accessibility and 

performance of the interface makes for a better user experience. Fifteen new ePlants permit easy 

exploration of expression, interaction, subcellular localization and structure data across multiple 

agronomically-important species. We hope that the research communities for these species will be 

interested in adding data sets to these new ePlants in the future. Two new viewers, the Navigator and 

Pathways viewers, permit genes/gene products to be explored in the context of their homologs and 

biochemical pathways retrieved from Plant Reactome, respectively. A Plant eFP tooltip for the active 

gene/gene product in the latter viewer can help highlight in which organ a pathway might be operating. 

We have added new expression data sets based on RNA sequencing to the Tissue and Experiment 

Viewers, increasing the breadth of transcriptomic data viewable in a pictographic manner. Last, ePlant 

eFP widgets may be easily embedded in any webpage for any Arabidopsis gene with some 

straightforward code.   
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Figure 9: Seed ePlant eFP widget 
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