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Abstract 37 
Understanding the dynamics of species adaptation to their environments has long been a central focus 38 
of the study of evolution. Early adaptive theories proposed that populations evolve by "walking" in a 39 
fitness landscape. This "adaptive walk" is characterised by a pattern of diminishing returns, where 40 
populations further away from their fitness optimum take larger steps than those closer to their optimal 41 
conditions. This theory can also be used to understand molecular evolution in time, particularly across 42 
genes of different ages. We expect young genes to evolve faster and experience mutations with 43 
stronger fitness effects than older genes because they are further away from their fitness optimum. 44 
Testing this hypothesis, however, constitutes an arduous task. Young genes are small, encode proteins 45 
with a higher degree of intrinsic disorder, are expressed at lower levels, and are involved in species-46 
specific adaptations. Since all these factors lead to increased protein evolutionary rates, they could be 47 
masking the effect of gene age. While controlling for these factors, we fitted models of the distribution 48 
of fitness effects to population genomic datasets of animals and plants. We found that a gene's 49 
evolutionary age significantly impacts the molecular adaptive rate. Moreover, we observed that 50 
substitutions in young genes tend to have larger fitness effects. Our study, therefore, provides the first 51 
evidence of an "adaptive walk" model of molecular evolution in large evolutionary timescales. 52 
 53 
Significant statement 54 
How does molecular adaptation occur? John Maynard Smith was one of the first to address this 55 
question by introducing the notion of "adaptive walk", which defines the "walk" of a gene towards 56 
higher fitness. At the start of this walk, genes tend to experience mutations with larger fitness effects 57 
than those closer to their fitness peak. Whilst being well-established, this theory has never been tested 58 
on large evolutionary timescales. Here, we achieve this by comparing molecular adaptive rates across 59 
genes of different ages in plants and animals. We showed that a gene's age acts as a significant 60 
determinant of molecular adaptation, where young genes adapt faster than old ones. We, therefore, 61 
provide evidence for an "adaptive walk" through time. 62 
 63 
Introduction 64 
How does adaptive evolution proceed in space and in time? This question has long intrigued 65 
evolutionary biologists. Fisher (1930) proposed that adaptation relies on mutations with small effect 66 
sizes at the phenotypic level. He presented the geometric model of adaptation where phenotypic 67 
evolution occurs continuously and gradually towards an optimum fitness (1). At the molecular level, 68 
Wright (2, 3) first introduced the idea that populations evolve in the space of all possible gene 69 
combinations to acquire higher fitness. He characterised this model of evolution as a "walk" in an 70 
adaptive landscape. Wright consequently proposed the shifting balance theory of adaptation, which 71 
combines the effects of drift and selection. Drift acts by moving the population away from its local 72 
peak, while natural selection directs the population to higher fitness, the so-called "global optimum" in 73 
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the fitness landscape. With the rise of molecular genetics, Maynard Smith (4) extended this idea to a 74 
sequence-based model of adaptation. He introduced the concept of an "adaptive walk," where a protein 75 
"walks" in the space of all possible amino-acid sequences towards the ones with increasingly higher 76 
fitness values. Wright's and Maynard Smith's adaptation model was further developed by Gillespie (5–77 
7), who presented the "move rule" in an adaptive landscape. Gillespie suggested that adaptation 78 
proceeds in large steps, where mutations with higher fitness effects are more likely to reach fixation. 79 
The adaptive walk model was later fully developed by Allen Orr (8, 9), who extended Fisher's 80 
geometric model of adaptation and demonstrated that, apart from small effect mutations, adaptation 81 
relies on mutations of large fitness effects. He, therefore, characterised the adaptive walk with a 82 
pattern of diminishing returns. Under this model, a sequence further away from its local optimum will 83 
tends to accumulate large-effect mutations at the beginning of the walk. Small-effect mutations will 84 
then only be fixed when the sequence is approaching its optimum fitness. Experimental studies tracing 85 
the evolution of bacteria (10–13) and fungi (14) provided evidence for this view of adaptation as a 86 
walk with diminishing returns. Experimental studies, however, can only assess patterns of adaptation 87 
at relatively short time scales. The challenge lies in studying adaptation across time: how does the 88 
distribution of beneficial mutations vary across long evolutionary times? 89 

While long-term evolutionary processes are not directly observable, footprints are left in 90 
genomes in the form of genes of different ages (15, 16). The age of a gene can be inferred from its 91 
phyletic pattern, that is, its presence or absence across the phylogeny (17). This reconstruction is 92 
obtained using sequence similarity searches performed by tools like BLAST (18). A gene is 93 
considered "old" if a homolog is identified in several taxa over a deep evolutionary scale, or "young" 94 
or lineage-specific if the recognised homologs are only present in closely-related species. This 95 
approach is known as phylostratigraphy (19).  96 

Previous studies suggested that young or lineage-specific protein-coding genes evolve faster 97 
than older ones (16, 20–26). Albà and Castresana (26) showed a negative correlation between the ratio 98 
of the non-synonymous (!!) to synonymous (!") substitutions rates, w, and gene age in the 99 
divergence between humans and mouse, with young genes presenting a higher w. Cai and Petrov (21) 100 
reported similar findings using human-chimpanzee divergence data. By looking at polymorphism data, 101 
they further suggested that the faster evolution in young primate genes may be due to the lack of 102 
selective constraint posed by purifying selection and showed that these genes are more often positively 103 
selected. Similar correlations between w and gene age have been observed in fungi (24), Drosophila 104 
(22, 27, 28), bacteria (29), viruses (30), plants (31, 32), and protozoan parasites (33).   105 

Despite the observed consistency across taxa, the drivers of such an effect remain debated 106 
(21). Besides, young and old genes differ in their structural properties, expression level, and protein 107 
function. Young genes tend to be smaller (21, 23, 34), have a higher degree of intrinsic disorder (35), 108 
and are expressed at lower levels (16, 21, 23, 25). Moreover, young genes tend to encode proteins 109 
involved in developing species-specific characteristics and immune and stress responses (15, 36, 37). 110 
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As the macromolecular structure (38, 39), gene expression levels (38, 40) and protein function (38, 41, 111 
42) are known determinants of the rate of protein adaptation, they could be confounding the effect of 112 
gene age. Several studies reported the substantial impact of gene expression on the adaptive rate of 113 
proteins, where highly expressed proteins are significantly more constrained and have lower 114 
adaptation rates (38, 40, 43, 44). At the macromolecular level, some studies showed that highly 115 
disordered (38, 39) and exposed residues (38) present higher rates of adaptive evolution. Finally, there 116 
is evidence that proteins involved in the immune and stress response have higher molecular adaptive 117 
rates (38, 42, 45, 46). Thus, it is crucial to control for these confounding factors when assessing the 118 
impact of gene age on the rate of molecular adaptation.  119 

Here, we used a population genomic approach to test the adaptive walk model. We make two 120 
predictions: first, that younger genes are undergoing faster rates of adaptive evolution, and second, the 121 
evolutionary steps they make are larger. We tested the first prediction by estimating rates of adaptive 122 
and non-adaptive protein evolution using an extension of the MacDonald-Kreitman test (47), which 123 
uses counts of polymorphism and substitution at selected and neutral sites. We quantified the rates of 124 
adaptive and non-adaptive evolution using the statistics "# and "$#, which denote the rates of 125 
adaptive and non-adaptive non-synonymous substitution relative to the mutation rate. We investigated 126 
whether protein length, gene expression, relative solvent accessibility (RSA), intrinsic protein 127 
disorder, BLAST’s false-negative rate, and protein function act as confounding factors of the effect of 128 
gene age. To test the second prediction, we considered the rates of substitution between amino acids 129 
separated by different physicochemical distances as a function of gene age. We tested our hypotheses 130 
in two pairs of species with different life-history traits: the diptera Drosophila melanogaster and D. 131 
simulans and the Brassicas Arabidopsis thaliana and A. lyrata. In each species pair, we compared their 132 
most recent genes with those dating back to the origin of cellular organisms. 133 

 134 
Results  135 
We tested the adaptive walk model of sequence evolution by assessing the impact of gene age on the 136 
rate of adaptive ("#) and non-adaptive ("$#) non-synonymous substitutions. To assess whether the 137 
effect of gene age persisted when controlling for multiple confounding factors, we applied a non-138 
parametric measure of correlation between gene age and "# and "$# for each category of the co-139 
factors analysed. The overall effect of gene age on "# and "$# in each co-factor was assessed by 140 
combing significance values across tests in both species using the weighted Z-method (48).  141 
 142 
Young genes have a higher rate of adaptive substitutions 143 
We tested the adaptive walk model of sequence evolution by assessing the impact of gene age on the 144 
rate of adaptive ("#) and non-adaptive ("$#) non-synonymous substitutions. We found that gene age 145 
significantly impacts estimates of w, "# and "$# in both species’ pairs (Table 1 and Figure 1b). This 146 
result suggests that the higher w ratio of more recently evolved genes is due to a higher rate of 147 
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adaptive and non-adaptive non-synonymous substitutions. As X-linked genes are known to evolve 148 
faster (49, 50), we assessed whether the relationship between evolutionary rates and gene age differed 149 
between chromosomes in Drosophila (Figure 1b). We compared models with and without the 150 
chromosome’s effect (see Material and Methods and supplementary file S1) and found low support for 151 
a chromosomal effect (p = 0.041 for "$# and p = 0.094 for "#). We, therefore, combined all 152 
chromosomes for subsequent analyses.  153 
 154 
The effect of gene age on the rate of molecular adaptation is robust to multiple confounding factors 155 
Genes of different ages intrinsically differ in their features (15, 21, 35). As such traits significantly 156 
impact the rate of molecular evolution (38), they may be confounding the faster adaptive rates 157 
observed in young genes. Here, we assessed whether the effect of gene age on the rate of molecular 158 
adaptation persisted after controlling for multiple confounding factors. To do so, we assessed the 159 
correlation of gene age with the rates of molecular evolution in distinct categories of genes, according 160 
to a putative confounding factor. As estimates of the rate of adaptive substitutions for a small number 161 
of genes exhibit large sampling variances (51, 52), we could only assess each confounding factor 162 
individually.  163 

Previous studies reported that younger genes encode shorter proteins (23, 34, 53) and are 164 
expressed at lower levels (16, 21, 23, 25), a pattern that we also observed in our data set (gene age vs. 165 
protein length: Kendall’s t = -0.485, p = 2.82e-02; t = -8.48, p = 1.06e-05, Figure S1a; gene age vs. 166 
gene expression: t = -0.595, p = 7.35e-03; t = -0.790, p = 4.00e-05, Figure S1b in supplementary data; 167 
for D. melanogaster and A. thaliana, respectively). As younger proteins are shorter than older ones, 168 
they have a higher proportion of exposed residues (38): gene age is significantly positively correlated 169 
with the average relative solvent accessibility per gene (t = 0.636, p = 3.98e-03; t = 0.695, p = 3.03e-170 
04, for D. melanogaster and A. thaliana respectively; Figure S2a in supplementary data). Because 171 
exposed residues are more flexible (54), young genes tend to encode proteins with a higher degree of 172 
intrinsic disorder, a pattern previously reported in mice (35). We confirmed this pattern in D. 173 
melanogaster (t = 0.606, p = 6.10e-03; Figure S2b in supplementary data) and A. thaliana (t = 0.467, 174 
p = 1.53e-02; Figure S2b in supplementary data).  175 

We split our data into two roughly equal sized groups according to each of these potentially 176 
confounding factors and reran the analysis within the “high” and “low” groups, combining 177 
probabilities from the two analyses using the weighted Z-method (48). Some phylostrata were further 178 
combined when under-represented in some gene categories (see Material and Methods). We found that 179 
w, "$# and "# remain significantly correlated to gene age, except when controlling for protein length 180 
and gene expression for "# in Arabidopsis (Figure 2 and Table 1). This weaker effect may be a 181 
consequence of how the most recent clades were combined in these analyses, as there was little data 182 
available for those genes (see Material and Methods). Nonetheless, when combining probabilities 183 
across the two species, we observed a significant correlation between all measures of evolutionary rate 184 
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and gene age controlling each of the co-factors (Table 1). Our findings, therefore, suggest that the 185 
effect of gene age on rates of protein evolution is robust to the tested confounding factors and that a 186 
gene's age acts as a significant determinant of the rate of adaptive and non-adaptive evolution in both 187 
species.  188 
 189 
The effect of gene age on the molecular rate of adaptation is robust to BLAST's false negative rates 190 
The physlostratigraphic approach has been previously used to date the emergence of new genes, and 191 
some studies have pointed out its potential limitations (27, 55–58). Because BLAST homology 192 
searches might fail to identify homologs in short or rapidly evolving genes, such genes could be 193 
mistakenly classified as young. To assess whether BLAST's false negative rate could explain the 194 
correlation between gene age and the rate of adaptive evolution, we analysed the gene age's effect by 195 
correcting the variation in E-values estimates from BLAST's searches between each gene and their 196 
respective outgroups. As expected, we observed that genes in younger phylostrata present higher E-197 
values in both species (t = 0.564, p = 0.025; t = 0.951, p = 1.20e-06, for D. melanogaster and A. 198 
thaliana respectively; Figure S3a in supplementary data). To control this effect, we reran our analyses 199 
with a subset of genes for which the correlation between the E-value and gene age was no longer 200 
significant (see Material and Methods and supplementary file S2) (t = 0.408, p = 0.111; t = 0.354, p = 201 
0.141, for D. melanogaster and A. thaliana respectively; Figure S3b in supplementary data). We 202 
observed that the effect of gene age prevailed for all estimates in the two species (w: t = 0.929, p = 203 
1.30e-03; "$#: t = 0.786, p = 6.49e-03; "#: t = 0.643, p = 2.59e-02 in A. thaliana; and w: t = 0.697, p 204 
= 1.61e-03; "$#: t = 0.636, p = 3.98e-03; "#: t = 0.636, p = 3.98e-03 in D. melanogaster, Figure S4 205 
in supplementary data). These results suggest that the correlation of gene age with the rate of adaptive 206 
evolution cannot be attributed to errors in dating the emergence of a gene stemming from the failure of 207 
identifying homologs in older taxa. 208 
 209 
The effect of gene age on the rate of molecular adaptation does not depend on protein function 210 
Lineage-specific genes are known to be involved in species-specific adaptive processes, such as the 211 
evolution of morphological diversity (59) and immune and stress responses (16, 33, 59). As proteins 212 
encoding such functions tend to have higher molecular rates of adaptation (38, 41, 42, 45, 46, 60), we 213 
further assessed whether the observed effect of gene age could be due to younger genes being enriched 214 
in functions with higher evolutionary rates. We first examined which functions are encoded by young 215 
genes in A. thaliana and D. melanogaster. In A. thaliana, young genes (Clades 12 to 15 in Figure 1a) 216 
are mostly involved in a large variety of cellular processes, stress response and external stimulus, 217 
protein binding, and signal transduction (Figure S5a in supplementary data). In D. melanogaster, 218 
young genes (Clades 11 and 12 in Figure 1a) encode mostly functions involved in the cell's anatomic 219 
structure, stress response, nervous system processes, enzyme regulators, immune system mechanisms, 220 
and a wide range of metabolic processes (Figure S5b in supplementary data). However, it is important 221 
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to note that these functions represent general terms and not direct gene products due to the difficulty of 222 
annotating young genes. 223 

To further correct for the potential bias of protein function, we assessed the effect of gene age 224 
separately for several GO-annotated genes, when a sufficient number of annotated genes in each age 225 
class was available (see Material and Methods). In A. thaliana, we found that the impact of gene age 226 
on "# is stronger in proteins linked to stress response and cellular components, where younger genes 227 
present higher molecular adaptive rates (Figure S6a and supplementary file S3 in supplementary data). 228 
Although the GO term cellular component represents a comprehensive annotation, it denotes the 229 
cellular compartments where processes such as signal transduction and membrane trafficking occur, 230 
essential for maintaining the cell homeostasis (61, 62). In D. melanogaster, we observed a strong 231 
effect of gene age on "# for proteins encoding multiple cellular compartments, chromosomal 232 
organisation, protein complex, stress response, signal transduction, and involved in the cell cycle 233 
(Figure S6b and supplementary file S3 in supplementary data in supplementary data). Even though 234 
these functions cover a wide range of molecular processes, they are involved in DNA replication, 235 
genome stability, and immune and stress responses, which are critical functions for the co-236 
evolutionary arms race between hosts and parasites (46). When looking at "$#, our analyses revealed 237 
a strong influence of gene age in most functions analysed in both species, where young genes present 238 
higher rates of non-adaptive substitutions (Figure S6 and supplementary file S3 in supplementary data 239 
in supplementary data).  240 

These results suggest that, when restricting the analysis to proteins involved in defence 241 
mechanisms, which are known to adapt faster (41, 42, 46, 60), gene age still has an impact on the 242 
efficiency of selection acting upon a protein.  243 

 244 
Substitutions in young genes have larger effect sizes 245 
Our second hypothesis predicts that substitutions in young genes have larger fitness effects than in 246 
older genes. To test this prediction, we used Grantham's physicochemical distances between amino-247 
acids (63) as a proxy for the fitness effects of amino-acid substitutions. We looked at the fixed 248 
differences separated by one mutational step between each pair of species and reported the average 249 
Grantham's distances between residues within each age stratum. We observed that substitutions in 250 
young genes tend to occur between less biochemically similar residues (Arabidopsis: t = 1, p = 2.00e-251 

07; Drosophila: t = 0.788, p = 3.628e-04; Figure 3 and supplementary file S4), suggesting that 252 
substitutions in these genes have larger fitness effects than in old ones.  253 
 254 
Discussion 255 
Our population genomic approach successfully disentangled the effects of positive and negative 256 
selection on the rate of non-synonymous substitutions. Using complete genome data from two 257 
Arabidopsis and Drosophila species, we showed that the higher rate of non-synonymous substitutions 258 
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in younger genes results both from a relaxed purifying selection (higher "$#) and a higher rate of 259 
adaptive substitutions (higher "#) (Figure 1b). By looking at the magnitude effect of gene age, we 260 
observed that young genes present a 25-fold higher rate of adaptation than older genes in Drosophila 261 
species and around 30-fold higher in Arabidopsis. The magnitude of this effect is higher than that 262 
observed for recombination rate and solvent exposure in these species, two other factors strongly 263 
correlated to the rate of adaptive evolution (38, 64). We also observe that young genes undergo 264 
substitutions that are larger in terms of physicochemical properties than older genes. A question 265 
remains: what are the drivers of these effects? 266 
 267 
The magnitude effect of gene age on adaptive evolution is species-specific 268 
Although we observed a strong impact of gene age on the molecular adaptive rate in both species 269 
pairs, the shape of their correlations differs. While the relationship between gene age and "# is 270 
monotonously increasing in Arabidopsis, it has several peaks in Drosophila (Figure 1b). This pattern 271 
is particularly evident if we discard the two youngest clades. In Drosophila, the correlation becomes 272 
much weaker and non-significant for "# (w: t = 0.600, p = 0.016; "$#: t =0.556, p = 0.025; "#: t = 273 
0.467, p = 0.060), whereas, in Arabidopsis, the effect of gene age persists (w: t = 0.9487, p = 6.342e-274 
06; "$#: t = 0.872, p = 3.345e-05; "#: t = 0.692, p = 9.86e-04). Intriguingly, this multimodal 275 
distribution of "# observed in Drosophila resembles the pattern of emergence of young genes in this 276 
species (16). The peak in the adaptive substitution rate observed for clades 6 and 7 (Figure 1b) 277 
coincided with the animal phyla's major radiation at the time of extensive periods of glacial cycles 278 
(65). When looking at the functions coded by these proteins, we found that they are linked to a wide 279 
range of vital cellular and biological processes, such as defence mechanisms and cell differentiation 280 
(Figure S7 in supplementary data). This pattern suggests that these genes might be experiencing higher 281 
molecular adaptive rates due to their role in such vital processes. However, for these genes to keep 282 
such high rates of adaptive substitutions until recent times, epistatic interactions might be at play. 283 
Studies across taxa have proposed that functional epistasis is an important factor in the evolution of 284 
genes involved in defence mechanisms and adaptation to new environmental stresses (66–70). We 285 
posit that such gene interactions keep these proteins further from their optimum throughout time due 286 
to the rugged shape of the fitness landscape, leading to the high molecular adaptive rates observed in 287 
the branch between D. melanogaster and D. simulans. To further test this hypothesis, we used the 288 
degree of protein-protein interactions (PPI) as a proxy for epistatic interactions and analysed its 289 
relationship with gene age. We observed that genes in clade 7 have a slightly higher degree of PPI 290 
than other strata (Figure S8 in supplementary data and supplementary file S5), suggesting that these 291 
genes might be experiencing relatively more epistatic interactions. These findings are consistent with 292 
epistasis influencing the evolution of these genes, potentially explaining their continued higher rates of 293 
molecular adaptation. In contrast, the burst of the emergence of new genes in Arabidopsis coincided 294 
with the plant-specific radiation right before the emergence of Brassicaceae (16, 71). This trend is 295 
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consistent with our results from A. thaliana, where the bursts of "# occur in younger clades (after 296 
clades 11 and 12 in Figure 1b). These distinct patterns observed between species suggest that the role 297 
of a gene’s age in molecular adaptation is complex, as also evidenced by the lack of a significant 298 
correlation with "# previously reported in humans (21). The authors proposed that this result may be a 299 
consequence of the generally low molecular adaptive rates observed in primates (21, 47). 300 

Despite these species-specific trends, our analyses revealed a strong correlation between "# 301 
and gene age extending through hundreds of millions of years (Figure 2). These findings suggest a 302 
consistent effect of a gene’s age on the rate of molecular adaptation across taxa. 303 
 304 
An adaptive walk model of gene evolution 305 
Our study highlighted that, after their emergence, young genes evolve through relaxed selection, as 306 
first proposed by Ohno (1970), but also by acquiring beneficial mutations, as described in the 307 
"adaptive-conflict" model (36, 73). Ohno's idea of evolution was "non-Darwinian" in its nature, as he 308 
believed that "natural selection merely modified while redundancy created" (Ohno 1970). He proposed 309 
that new genes evolve by accumulating "forbidden" mutations, where they are only preserved if the 310 
development of a formerly non-existent function occurs, a process known as neo-functionalisation. In 311 
this scenario, natural selection only acts at the stage of acquiring a new function. Further extensions of 312 
this theory suggested that the preservation of a new gene can also occur through sub-functionalisation, 313 
where the accumulation of deleterious mutations leads to a complementary loss of function in both 314 
copies of the gene (74, 75). 315 

In contrast, the "adaptive-conflict" model assumes that the ancestral gene could carry more 316 
than two pleiotropically constrained functions (36, 73). Once the duplication event occurs, each copy 317 
then becomes specialised in one of the ancestral functions. In this case, the ancestral gene’s split 318 
proceeded through positive Darwinian selection (36, 73). These theories are based on the evolution of 319 
gene duplicates and agree with the idea of evolution as a "tinkerer" proposed by Jacob (1977), where 320 
evolution adjusts the already existing elements. In de novo evolution, however, new genes emerge by 321 
acquiring new functions from the non-coding fragments of the genome (16, 77, 78). This process is 322 
thought to proceed through a stochastic phase followed by the successive accumulation of beneficial 323 
mutations, ultimately leading to a new function with a species-specific selective advantage (79–82). 324 

When looking at the fundamental ideas behind these theories, one can draw one prominent 325 
feature that portraits the evolution of new genes: young genes are further away from their fitness 326 
optimum. Hence, we posit that these genes follow an adaptive walk model of gene evolution to reach 327 
their fitness peak (3, 83, 84). As their full potential has yet to be met, more consecutive beneficial 328 
mutations are theoretically needed to reach their fitness optimum, leading to the higher molecular 329 
adaptive rates observed in these genes. In turn, older genes are closer to their optimal features and less 330 
robust to large effects’ mutations, thus only accumulating mutations with small fitness effects. Such 331 
slightly advantageous mutations are more difficult to select for, leading to lower adaptive rates in 332 
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these proteins. We further tested this hypothesis using the Grantham's physicochemical distances (63) 333 
as a proxy for the fitness effect of substitutions. This analysis showed that substitutions in young genes 334 
tend to occur between more dissimilar residues (Figure 3), suggesting that the evolution of young 335 
genes proceeds in larger steps compared to old ones. Our study, therefore, provides evidence that the 336 
adaptive evolution of protein-coding genes follows a pattern of diminishing returns in plants and 337 
animals, indicating the potential generality of an adaptive walk model of gene evolution. 338 
 339 
Material and Methods 340 
We assessed the role of gene age on adaptive evolution using the divergence and polymorphism data 341 
published in Moutinho et al. (38). The data included 10,318 protein-coding genes in 114 Drosophila 342 
melanogaster individuals from an admixed sub-Saharan population from Phase 2 of the Drosophila 343 
Genomics Project (DPGP2) (85) and divergence estimates from D. simulans (Table S1 in 344 
supplementary data online); and 18,669 protein-coding genes in 110 Arabidopsis thaliana genomes 345 
comprising polymorphism data from a Spanish population (1001 Genomes Project) (86) and 346 
divergence out to A. lyrata (Table S2 in supplementary data online). These datasets also included data 347 
on protein length, gene expression, and residue intrinsic disorder. Gene age data were obtained from 348 
published data sets, wherein 9,004 Drosophila (27) and 17,732 Arabidopsis (32) genes were used. 349 
Analyses were performed by dividing genes into 12 and 15 phylostrata for D. melanogaster and A. 350 
thaliana (Figure 1), respectively, numbered from the oldest (stratum 1) to the most recent (strata 12 351 
and 15 in D. melanogaster and A. thaliana, respectively). The most recent clades include orthologous 352 
genes present in each species and their respective outgroups. The analyses on the X-linked and 353 
autosomal genes in D. melanogaster were performed with 1,478 and 7,526 genes, respectively. We 354 
fitted models of the distribution of fitness effects (DFE) across different age classes and gene 355 
categories to estimate the molecular rate of adaptation (47). 356 
 357 
Estimation of the adaptive and non-adaptive rate of non-synonymous substitutions 358 
The rates of adaptive non-synonymous substitutions were estimated with the Grapes program (47), 359 
using the Gamma-Exponential distribution of fitness effects (DFE), as this model was previously 360 
shown best to fit the data (38). Estimates and their confidence intervals were obtained with a bootstrap 361 
analysis by sampling genes in each category, with replacement. We performed a total of 100 362 
replicates, and the DFE model was fitted for each replicate with Grapes. Results for w, "$# and "# 363 
were plotted using the R package "ggplot2" (87) by taking the mean value and the 95% confidence 364 
interval of the 100 bootstrap replicates performed for each category (see detailed R scripts in the 365 
supplementary files in the supplementary data online, 366 
https://gitlab.gwdg.de/molsysevol/supplementarydata_geneage).  367 
 368 
Gene age vs. protein length and gene expression 369 
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To correct for the effects of protein length and gene expression, we divided our dataset into two 370 
equally sized groups based on the factor we wished to control. Short proteins had a size up to 366 and 371 
389 amino-acids, and long proteins had a size up to 4,674 and 5,098 amino-acids in A. thaliana and D. 372 
melanogaster, respectively. We further merged phylostrata containing a low number of genes. For D. 373 
melanogaster, we categorised gene age into 6 main clades by combining clades 3-4, 5-6, 7-10, and 11-374 
12, keeping the others unchanged. In A. thaliana, we combined the 15 clades in 6 main groups by 375 
merging clades 5-8 and 9-15. For gene expression, we used a total of 17,126 and 6,247 genes for A. 376 
thaliana and D. melanogaster, respectively, being categorised as lowly and highly expressed. Genes 377 
were classified as lowly expressed if the mean expression levels were up to 10.3 and 6.8, and highly 378 
expressed genes were the ones with expression up to 6,632.8 and 4,237.0 in A. thaliana and D. 379 
melanogaster, respectively. For D. melanogaster, we categorised gene age in 6 categories by 380 
combining clades 3-5, 6-9, and 10-12. In A. thaliana, we combined the data in 6 clades, merging 381 
clades 4-7, 8-11 and 12-15. 382 
 383 
Gene age vs. protein structure 384 
Since most young genes lack a defined three-dimensional structure (35), they do not have information 385 
on the residue's solvent accessibility. Hence, we used a deep learning approach, NetSurfP-2.0, that 386 
predicts the RSA of each residue from the amino-acid sequence (88) by using as a training model the 387 
HH-suite sequence alignment tool for protein similarity searches (89). To assess whether this approach 388 
provided reliable results, we compared the RSA estimates of NetSurfP-2.0 with those obtained from 389 
the PDB structures in our dataset (38). We found a good correlation between the two approaches for 390 
both species (Kendall’s t = 0.571, p < 2e-216; t = 0.462, p < 2e-216, for D. melanogaster and A. 391 
thaliana respectively). Using NetSurfP-2.0, RSA estimates were successfully obtained for a total of 392 
4,238,686 (88% of the total codon sites) and 7,479,807 (99% of the total codon sites) amino-acid 393 
residues for D. melanogaster and A. thaliana, respectively. To assess the impact of RSA at the gene 394 
level, we analysed the total number of genes in both species by making two categories of genes 395 
according to the average RSA value per gene. Genes with lower RSA had mean values between 0.127-396 
0.389 in Drosophila and 0.217-0.386 in Arabidopsis. Genes with a higher RSA had mean values 397 
between 0.390-0.894 in Drosophila and 0.387-0.898 in Arabidopsis. The phylostrata groups were 398 
defined by combining clades 7-8 in D. melanogaster, and 8-11, 12-15 in A. thaliana.  399 
 The intrinsic residue disorder analysis was performed for 7,126,304 and 3,645,645 sites for A. 400 
thaliana and D. melanogaster, respectively. Genes were combined into two categories according to 401 
the mean value of their residue’s intrinsic disorder. Genes with a low level of intrinsic disorder had 402 
values between 0.029-0.080 in Drosophila and among 0.041-0.084 in Arabidopsis. Genes with a 403 
higher degree of intrinsic disorder had values between 0.081-0.554 in Drosophila and among 0.085-404 
0.551 in Arabidopsis. In D. melanogaster, all of the 12 phylostrata could be used. In A. thaliana, the 405 
15 strata were combined in 12 categories by merging clades 9-10, 11-12 and 13-14. 406 
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 407 
Correcting for BLAST e-values 408 
We analysed the robustness of the gene age’s effect by correcting the variation in the Expect (E) value 409 
estimates in BLAST's searches between our focus species and their respective outgroups. By reducing 410 
the variation in E-values estimates, we could correct for potential failures in BLAST’s homology 411 
searches. To do so, we used a subset of genes for which the correlation between the E value and gene 412 
age was no longer significant: 12,472 genes with an E value lower than 1e-150 for A. thaliana and 413 
7,104 genes with an E value lower than 1e-100 for D. melanogaster (supplementary file S2). For A. 414 
thaliana, analyses were carried by combining clades 8-13, with no genes left in clades 14 and 15. For 415 
D. melanogaster, analyses were performed with the 12 strata.  416 
 417 
Gene age vs. protein function 418 
Gene ontology terms were obtained from the "dmelanogaster_gene_ensembl" and the 419 
"athaliana_eg_gene" tables in the Ensembl database (version 103), through the R package "biomaRt" 420 
(90). A total of 7,253 (~70% of the genes) and 15,604 (~80% of the genes) genes were mapped in D. 421 
melanogaster and A. thaliana, respectively. To check whether the effect of gene age prevailed across 422 
functional protein classes, we analysed the GO terms with the highest number of young genes 423 
mapped: more than 50 genes present in Clades 11 and 12 in D. melanogaster; and more than 30 genes 424 
present in Clades 12 to 15 in A. thaliana. This filtering step resulted in 6,637 genes across 23 GO 425 
categories in D. melanogaster (Table S1 in Supplementary Data online), and 15,410 genes across 10 426 
GO categories in A. thaliana (Table S2 in Supplementary Data online). To analyse the effect of gene 427 
age, we compared three age classes. In D. melanogaster, the first age category spanned over 428 
phylostrata 1-3, the second category covered clades 4-7, and the third one included clades 8-12. In A. 429 
thaliana, the first category comprised genes belonging to clades 1-6, the second category spanned over 430 
clades 7-11, and the third one included the phylostrata between clades 12-15 (Figure 1a).  431 
 432 
Gene Age vs. Protein-protein interactions (PPI) 433 
We obtained PPI data for D. melanogaster from the STRING database (91), which includes both 434 
physical and functional interactions (https://string-db.org/). This database included 13,046 proteins 435 
with annotated interactions, which were used to analyse the distribution of protein networks across 436 
phylostrata. 437 
 438 
Statistical analyses 439 
Assessing the effect of gene age within each protein functional class was performed by comparing rate 440 
estimates between all pairs of age categories. 100 bootstrap replicates were generated and "# and "$# 441 
were estimated for each resampling, allowing to compute the rate differences between categories. A 442 
one-tailed P-value can be obtained using the formula P = (2k + 1)/ (N + 1), where N=100 is the 443 
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number of bootstrap replicates and k is the number of times the computed difference was greater (resp. 444 
lower) than 0. Here. we used a two-tailed version of this test, computing the P-value as P = (2 * min 445 
(k-, k+) + 1)/(N+1), where k- is the number of times the difference was negative, and k+ is the number 446 
of times the difference was positive. P-values for all pairwise comparisons were corrected for multiple 447 
testing using the FDR method (91) as implemented in R (92) (see detailed R script in supplementary 448 
file S3). For the analysis with PPI and gene age, statistical significance was assessed using non-449 
parametric posthoc tests, as implemented in the “Kruskal” method of the R package “agricolae” using 450 
the FDR method to correct for multiple testing (92) (see detailed R script in supplementary file S5). 451 
For the rest of the analyses, statistical significance was assessed with Kendall's correlation tests using 452 
the mean value of the 100 bootstrap replicates for each category (see detailed script in supplementary 453 
file S6). To estimate the combined P-value for each co-factor we used the weighted-Z method using 454 
the R package “metap” (93). To obtain the weight of each p-value, we used a linear modelling 455 
approach with "# and "$# as response variables, and gene age and potential co-factors as explanatory 456 
variables and inferred the reciprocal of the squared standard error of the residuals in each model (see 457 
detailed R scripts in supplementary file S7). Finally, to determine whether the chromosome impacted 458 
gene age's effect on estimates of "# and "$#, we performed an analysis of covariance (ANCOVA) by 459 
comparing a model M1 that included the impact of the chromosome, age, and their interaction, with a 460 
model M0 that included age only (see detailed R script in supplementary file S1). Normality, 461 
homoscedasticity, and independence of the error terms of the model were assessed with the package 462 
"lmtest" (94) in R (95).  463 
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Figures 662 
 663 

 664 
Figure 1. (a) Phylogenetic definition of the strata used in the analyses for A. thaliana (top) and D. 665 
melanogaster (bottom). The number of genes mapped to each clade is shown. (b) Relationship 666 
between the rate of protein evolution (w), non-adaptive non-synonymous substitutions ("$#) and 667 
adaptive non-synonymous substitutions ("#) with gene age in A. thaliana (top) and in D. 668 
melanogaster (bottom). Clades are ordered according to (a). In D. melanogaster, the results for X-669 
linked, autosomal, and total genes are shown. Mean values of w, "$# and "# for each category are 670 
represented with the black points. Error bars denote for the 95% confidence interval for each category, 671 
computed over 100 bootstrap replicates. 672 
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 674 
Figure 2. Estimates of w, "$# and "# plotted as a function of (a) protein length and (b) mean 675 
expression levels, (c) relative solvent accessibility, and (d) protein intrinsic disorder with gene age in 676 
A. thaliana (top) and D. melanogaster (bottom). Analyses were performed by comparing short and 677 
long genes (a), lowly and highly expressed genes (b), proteins with low and high mean RSA values 678 
(c), and proteins with low and high average intrinsic disorder (d) across age categories (see Material 679 
and Methods). Legend as in Figure 1. 680 
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 682 
Figure 3. Relationship between gene age and Grantham’s distance between amin-acids for A. thaliana 683 
(a) and D. melanogaster (b). A linear model was fitted between gene age and Grantham’s distances 684 
values and is represented with the blue line. For each clade, the median value of the Grantham’s distance 685 
between residues is depicted with the black dot. The shaded area represents the physicochemical 686 
distances within the 1st and 3rd quartile.687 

0.5

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Phylostrata

G
ra

nt
ha

m
's 

di
st

an
ce

(a)

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 10 11 12

Phylostrata

G
ra

nt
ha

m
's 

di
st

an
ce

(b)

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.28.441765doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.28.441765
http://creativecommons.org/licenses/by/4.0/


 22 

Tables 688 
 689 
Table 1. Kendall’s correlation coefficients for the relationship between w,  !!" and !" and gene age, for the analysis of gene age and the combined analyses of 690 
gene age with the respective co-factors: protein length, gene expression, protein intrinsic disorder and the mean relative solvent accessibility per gene. The 691 
combined probabilities for each co-factor within and across species are presented in the fields “Weighted Z” and “Weighted Z across species”, respectively, for  692 
w,  !!" and !". 693 

  Arabidopsis Drosophila Weighted Z across species 
  w "#$ "$ w "#$ "$ w "#$ "$ 

Gene Age  0.962 *** 0.848 *** 0.733 *** 0.727 *** 0.697 ** 0.636 **    

Protein Length 
Long 1.000 ** 0.867 * -0.200 0.867 * 0.600 (.) 0.867 * 

1.56e-04 
*** 

7.71e-05 
*** 

7.98e-03 
** Short 1.000 ** 0.867 * 0.600 (.) 0.733 * 0.867 * 0.467 

Weighted Z 6.46e-04 *** 1.61e-03 ** 0.133 2.64e-03 ** 5.29e-03 ** 0.0105 * 

Gene 
Expression 

High 0.867 * 0.867 * 0.467 0.867 * 1.000 ** 0.600 (.) 
6.93e-05 

*** 
6.89e-06 

*** 
3.53e-03 

** Low 0.867 * 1.000 ** 0.333 0.867 * 0.733 * 1.000 ** 
Weighted Z 1.51e-03 ** 3.71e-04 *** 0.186 1.09e-03 ** 1.68e-03 ** 2.24e-03 ** 

Protein 
Intrinsic 
Disorder 

High 1.000 *** 0.939 *** 0.636 ** 0.670 ** 0.303 0.515 * 
<2e-216 

*** 
6.60e-06 

*** 
2.53e-03 

** Low 0.970 *** 0.909 *** 0.454 * 0.630 ** 0.576 ** 0.273 
Weighted Z < 2e-216 *** < 2e-216 *** 1.20e-03 ** 3.85e-05 *** 5.80e-03 ** 4.18e-02 * 

Mean Relative 
Solvent 
Accessibility 

High 0.944 *** 0.889 *** 0.722 ** 0.636 ** 0.673 ** 0.564 * 
1.00e-07 

*** 
9.00e-07 

*** 
1.37e-05 

*** Low 1.000 *** 0.778 ** 0.667 * 0.636 ** 0.491 * 0.564 * 
Weighted Z 6.20e-06 *** 1.41e-05 *** 1.24e-03 ** 3.67e-04 *** 7.76e-04 *** 1.55e-03 ** 

  694 
Note. For each variable, the correlation coefficient and the combined probabilities are shown with the respective significance (*P < 0.05; **P < 0.01; 695 
***P < 0.001; "." 0.05 ≤ P < 0.10) for w,  !!" and !" in Arabidopsis and Drosophila. 696 
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