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Abstract

Judgments of agency, our sense of control over our actions and the environment, are often

assumed to be metacognitive. We examined this assumption at the computational level by

comparing the effects of sensory noise on agency judgments to those on confidence judgements,

which are widely accepted to be metacognitive in nature. In two tasks, participants rated agency, or

confidence in a decision about their agency, over a virtual hand that tracked their movements, either

synchronously or with a delay, under high and low noise. We compared the predictions of two

computational models to participants’ ratings and found that agency ratings, unlike confidence, were

best explained by a model involving no metacognitive noise estimates. We propose that agency

judgments reflect first-order measures of the internal signal, without involving metacognitive

computations, challenging the assumed link between the two cognitive processes.
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Attributing ourselves agency, or causation of our actions and their outcomes, is central to

our experience of moving intentionally. Previous research has suggested that agency depends

on a comparison between the predicted and observed consequences of our actions, resulting in

a prediction error signal if they do not match. Under this widely accepted comparator model of

agency, it is the prediction error signal that leads to our feeling of agency (FoA), which we

assess in order to make judgments of agency (JoAs)1–3. In line with this notion, JoAs are often

considered to be second-order, metacognitive reports about these otherwise first-order agency

signals4–7. This is intuitively appealing, as JoAs conform with the conceptual definition of

metacognition, namely, cognition about our own cognition8,9. However, this conceptual

assumption is often made without being empirically tested or even explicitly defined, and it is

unclear if the assumed link between agency and metacognition is expected to hold at the level

of neural implementation, computational mechanisms, or just at the broad conceptual level. In

metacognition research, metacognitive ability is often operationalized as the precision of

confidence ratings following discrimination responses10. Under this narrower operationalization,

metacognitive confidence ratings have been shown to monitor the uncertainty in the perceived

internal signal11–15. Thus, here we aim to dissect the claim that agency is metacognitive by

asking exactly in which way the two cognitive processes are linked. In particular, we ask

whether agency judgments reflect the same underlying computational mechanisms as

confidence judgments, namely, if both involve second-order uncertainty monitoring.

We propose that for agency judgments to be metacognitive in a computational sense,

they should monitor the noise in the perceived prediction error signal, incorporating a

second-order judgment of the uncertainty of one’s agency processing. Some existing models of

agency have suggested a role of noise in the comparator model by showing that the output of

the comparator is the result of a cue integration process, in which the motor and sensory

information feeding into the comparator signal are integrated and weighted by their reliability16,17.

In line with these models, participants’ FoA, as measured by an implicit temporal binding effect,

has been found to rely less on cues that are noisy or imprecise, and more on more informative

cues18,19. Importantly, this work, which has focussed on the precision of the comparator signal

itself by determining how information gets optimally integrated to form that signal, has not

addressed whether agency judgments involve a second-order monitoring of that precision.

Further, one recent study suggested a role for sensory uncertainty in FoAs by proposing a

measure of confidence in one’s causal estimate (CCE) as the computation underlying them20.

However, importantly, this model does not explain how the suggested precision-dependent FoAs

relate to the level of explicit JoAs. Yet, it is JoAs that are generally considered to be at a higher
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level of the processing hierarchy21–24, and, hence, that are assumed to be metacognitive. Here

we focus on the latter to study potential metacognitive components of agency.

In sum, we identified two crucial limitations in previous work linking agency to

metacognition. First, despite the hierarchical distinction between FoA and JoA suggested

theoretically (whereby only the latter may be metacognitive), empirical work on uncertainty in

agency has focussed on the lower-level processes. Second, agency has been assumed, but not

shown, to be at the same hierarchical processing level as metacognitive judgments. It is unclear

whether JoAs are indeed metacognitive assessments of first-order agency signals and whether

they share computational mechanisms with other metacognitive processes.

Here, we expanded on previous work and directly investigated the question of whether

JoAs are metacognitive. We did this by setting up a two-criterion test. The first criterion for JoAs

to be metacognitive was for sensory noise to influence JoAs, beyond altering their variance

across trials. This would suggest that the reliability of the signal was factored into each rating,

against the simpler alternative that the rating was made on the basis of a linear readout of the

less reliable signal. We examined this by assessing the effects of noise and delay on explicit

agency ratings, using a sensory noise manipulation orthogonal to the delay. This first criterion

formed our pre-registered hypothesis, and was necessary, but not sufficient for JoAs to be

considered metacognitive. It therefore served as a prerequisite for the second criterion: Agency

and confidence judgments should show similar sensitivity to internal estimates of the sensory

noise, suggesting the involvement of second-order uncertainty monitoring following the same

computational principles. We assessed this by contrasting two computational models against

distributions of JoA data, one that would reflect metacognitive monitoring of noise and an

alternative model that would not. We found that JoAs satisfied the first, but not the second

criterion: Sensory noise did indeed influence JoAs, but this influence did not reflect any

second-order noise monitoring, suggesting that JoAs may not be metacognitive in the

computational sense.

Results
Each participant completed two tasks: A confidence-rating task, consisting of a

two-interval forced choice (2IFC) followed by a confidence rating on a scale from 1 to 6; and an

agency-rating task consisting of a JoA on an equivalent scale. Both tasks used the same basic

stimuli, namely, a movement of participants’ index finger tracked by a LEAP Motion infrared

tracker and displayed on the screen as a virtual hand movement either in synchrony or with

small temporal delays. In both tasks, we manipulated sensory noise in the same way, by
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changing the illumination of the scene. We created two conditions (low and high sensory noise)

by displaying the virtual hand under bright, high contrast illumination or under dim, low contrast

illumination respectively (Fig. 1A).

Confirmatory Analyses
Confidence-rating task. On each trial of the confidence task, participants were cued to

make two consecutive movements of their right index finger, with their hand out of sight. For

only one of the two intervals, we added a temporal delay to the virtual hand shown on the

screen (in the other interval, the virtual hand was displayed to match the participant’s hand

movement in real time). Participants then discriminated in which interval they felt more agency

over the movement of the virtual hand, and rated confidence in their response (Fig. 1B). We

assumed that participants compare their degree of control over the virtual hand in the two

movements to solve the task, and rate confidence in this comparison. This paradigm brings

agency into a standard framework for studying metacognition25. Importantly, under this

operationalization, we can define correct responses to the 2IFC discrimination task as those

where participants report that they felt more agency for the stimulus without any added delay,

allowing us to quantify discrimination accuracy. If the illumination manipulation served to

increase sensory noise in the intended way, we expected lower discrimination accuracy under

high sensory noise compared to low noise26. Further, based on previous work using similar

confidence paradigms11,15,27, and a normative model of confidence14, we predicted an interaction

between sensory noise and accuracy on confidence, in particular with confidence decreasing in

high noise following correct trials and increasing in high noise following incorrect trials. To test

the effect of the illumination manipulation, we first built a logistic regression model on response

accuracy, including sensory noise as a fixed effect, and by-participant random intercepts (see

Table 1 for the explicit model syntax). As expected, we found a main effect of Noise, revealing

significantly lower accuracy in the high-noise compared to the low-noise condition (Mdiff = 10%,

SE = 1.4%, χ2(1) = 97.60, p < 0.001, BF10 = 1.78 ✕ 1020, OR = 1.55, 95% CI [1.42, 1.70]; Fig.

1C). Then, we built a linear mixed-effects model on confidence to test the second prediction (an

interaction effect between sensory noise and response accuracy). The model included the

interaction between response accuracy and noise level and each factor as fixed effects, as well

as by-participant random intercepts. We also included response identity (first or second interval)

as a fixed effect, as presentation order could have biased confidence ratings28,29. In line with our

predictions, we found a significant interaction between Noise and Response Accuracy on

confidence, F(8858) = 14.43, p < 0.001, BF10 = 2.19, η2
p = 0.0016 (Fig. 1D), with a stronger

difference in confidence between correct and incorrect trials under low noise (MdiffCorrect-Incorrect =
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0.58, SE = 0.044) compared to high noise (MdiffCorrect-Incorrect = 0.34, SE = 0.042). In addition to

the interaction effect, we found that confidence following incorrect decisions was lower in the

high-noise compared to the low-noise condition. Although we expected confidence following

incorrect decisions to increase under high noise, the ‘double-increase’ confidence pattern seen

here has also been shown in the literature13,30,31. Finally, we found a significant main effect of

Response, F(8872) = 82.64, p < 0.001, BF10 = 5.71 ✕ 1014, η2
p = 0.0092, with pairwise

comparisons revealing significantly higher confidence ratings when participants reported feeling

more agency over the stimulus in the second interval, compared to the first (Mdiff = -0.27, SE =

0.030), t(8872) = -9.09, p < 0.001. These results were also all confirmed by repeating this

analysis with ordinal models (Supplementary Information). Together, these results suggest that

the illumination manipulation affected sensory noise as we intended, and influenced

metacognitive confidence judgments as previous studies have shown. Having validated our

experimental manipulation, we then went on to analyze the effect of sensory noise on JoAs.

Figure 1: Confidence Task. (A.) Sensory noise conditions. Sensory noise was manipulated by
changing the illumination, with high sensory noise captured by low contrast, dark illumination, and low
sensory noise captured by high contrast, bright illumination. (B.) Experimental paradigm. Cued by the
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offset of the fixation cross, participants made two consecutive finger movements on each trial, with their
hands out of sight. On the screen, participants saw either a virtual hand moving in synchrony with their
own, or with an additional temporal delay. Participants first discriminated which movement they felt more
agency over, and then rated their confidence in their own response. (C.) Discrimination accuracy. In line
with the intended effect of the sensory noise manipulation, accuracy was significantly higher for low- vs.
high-noise conditions. (D.) Mean confidence ratings. We found a significant interaction effect between
Response Accuracy and Noise on Confidence. Violin plots capture the kernel probability density and
boxplots show the median, interquartile range (IQR) with hinges showing the first and third quartiles, and
vertical whiskers stretching to most extreme data point within 1.5*IQR from the hinges. Outliers are
plotted as black or grey dots.

Agency-rating task. On each trial of the agency-rating task, participants made a single

movement of their index finger and watched the virtual hand model either move synchronously

with their movement (25% of trials) or with a delay of either 70, 100, or 200 ms. After every

movement, participants rated their agency on a scale from 1 to 6 (Fig. 2A). By adding sensory

noise to the perceived sensory outcome of the movement (namely, the virtual hand movement),

we added noise to the comparator signal that participants assessed with their JoAs (Fig. 2B).

We then formulated a two-criterion test to assess whether JoAs are computationally

metacognitive. The first criterion was for sensory noise to influence agency ratings beyond just

increasing their variability, and hence for JoAs to reflect not only a readout of the comparator

signal but also an indication of the signal’s precision (Fig. 2B). For this criterion to be met, mean

JoAs should depend on both delay and sensory noise. Alternatively, if the mean JoA per delay

does not depend on the sensory noise level, this would indicate that JoAs are simply a

first-order report of the perceived comparator signal, with mean JoA reflecting the mean of the

comparator signal distribution (Fig. 2B). The second criterion of our test, if the first criterion was

met, was for agency ratings to involve underlying metacognitive computations such as those

involved in confidence, in particular, the second-order monitoring of sensory noise. To test this,

we compared two computational models built based on the results of the first criterion, a

Bayesian-agency model that involves metacognitive processing, and an alternative Rescaling

model that does not.
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Figure 2: Agency-rating Task. (A.) Experimental paradigm. Cued by the offset of the fixation cross,
participants made one finger movement on each trial, with their hand out of sight. On the screen,
participants saw either a virtual hand moving in synchrony with their own, or with an additional
delay/temporal lag. Participants then made a judgment of the degree of agency they experienced. (B.)
Sketch of noise dependency prediction. Our high noise condition adds sensory noise to the observed
outcome, and hence to the comparator signal, computed as the mismatch between predicted and
observed outcomes. Points reflect the perceived signals on single trials. If JoA is a readout of the
comparator signal on each trial, though the variance would increase with noise, the mean JoA will not
depend on noise, but will reflect the mean of the comparator signal distribution. Alternatively, if JoAs
monitor the noisiness of the comparator signal, mean JoA will depend on noise. In other words, JoAs
would be a function not only of a noisier signal (x), but of the noisier signal and the noise itself (σ). (C.)
Interaction effect result. Predicted JoA across delays and noise conditions from linear mixed-effects
model results. 95% confidence intervals shown. Boxplots reflect subjectwise mean JoAs per noise level
and delay. They show the median, interquartile range (IQR) with hinges showing the first and third
quartiles, and vertical whiskers stretching to most extreme data point within 1.5*IQR from the hinges.
Outliers are plotted as grey dots.

Behavioural Results. While the results of the confidence task confirmed that the

illumination manipulation affected sensory noise overall as intended, we were interested in

examining precisely how JoAs responded to sensory noise, and hence required that the

high-noise condition actually increased sensory noise for all participants included in the analysis

of the agency task. We therefore excluded from the following analyses any participants for

whom discrimination accuracy in the high-noise condition was not lower than in the low-noise
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condition in the confidence task. We note that all of the results described below remain largely

the same, and the conclusions unchanged, when we included the data from all participants in

the analyses. We predicted that if sensory noise affected JoAs similarly to metacognitive

processes, we would observe a significant interaction between Noise and Delay on JoA (Fig.

2B). This would be the first of our two criteria. We investigated this using a linear mixed-effects

model on JoAs that included the interaction between noise level and delay as fixed effects, and

allowed for by-participant random effects of the interaction, and random intercepts (Table 1). We

found a significant interaction effect between Noise and Delay, F(52) = 61.16, p < 0.001, BF10 =

3.78 ✕ 106, η2
p = 0.54, 95% CI [0.35, 0.67], with a less extreme negative slope across delay

values in the high-noise condition (βHigh = -5.93, SE = 0.69), compared to low-noise (βLow = -9.84,

SE = 0.77) (Fig. 2C), suggesting that JoAs meet our first criterion. We also found a significant

main effect of Delay, F(39) = 132.05, p < 0.001, BF10 = 14486.52, η2
p = 0.77, 95% CI [0.64,

0.85], replicating previous findings that showed increasing delays of the virtual hand movement

to lead to lower JoAs32,33. We found this effect of JoAs decreasing with delay for the majority of

participants (37 out of 40) included in this analysis in both conditions, indicating that participants

were able to make meaningful ratings, even in the high-noise condition. We also repeated these

analyses with ordinal models, which confirmed our results (Supplementary Information).
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Figure 3: Models and Predictions. (A.) Two models of JoAs. In the Bayesian model of agency, JoA
reflects the posterior probability of the agency detection decision being correct, given the choice and
internal evidence. The agency criteria are spaced linearly in probability space, so their positions on the
internal signal space change with noise level. The solid coloured lines show agency as a function of
internal signal strength. In the Rescaling model of agency, JoA reflects a first-order estimate of delay
compared to the criterion, not based on noise. However, the agency criteria are spread evenly across the
range of signals within each noise level, such that they interact with noise level only due to a rescaling of
ratings. The solid coloured lines show agency as a function of internal signal strength, and this function is
linear but still interacts with noise. (B.) Model predictions. Predictions were based on simulations run
with representative parameters, shown. Both models predict an interaction effect between Noise and
Delay on JoA, but reflect different underlying computations.

Exploratory Analyses
Computational Modeling. We found in our behavioural analysis that the mean JoA

depended on both delay and noise, meeting our first criterion for JoAs being metacognitive. This

allowed us to move on to our second test-criterion and investigate whether there are strictly

metacognitive computations underlying agency judgments. In order to test our second criterion,

namely, whether JoAs can be explained by the same computations as confidence, we compared

two possible models of agency ratings (the Bayesian-agency model and the Rescaling model,

Fig. 3A). Both models could in principle account for the observed interaction effect between

noise and delay on JoA (Fig. 3B), satisfying the first criterion, but only the Bayesian model

included a metacognitive assessment of one’s own sensory noise. The Bayesian-agency model

assumed that agency ratings behave like confidence as described by Bayesian-confidence

models, namely as the posterior probability that a decision is correct, given the strength of the

internal evidence and the decision12,14. The computation of this probability requires the observer

to have second-order access to estimate their own sensory noise (Fig. 3A). As an alternative,

we considered the Rescaling model, which parallels the Bayesian one except that ratings are

based on first-order point-estimates of evidence and therefore do not involve metacognitive

estimates of sensory noise being factored into ratings (Fig. 3A). This Rescaling model accounts

for the observed relationship between noise and JoAs by considering that participants might

rescale their ratings based on the noise condition. In practical terms, this implies that

participants treated the conditions independently during the task, judging agency in low-noise

trials relative to one another, and high-noise trials relative to one another. Although our design

aimed to prevent this by interleaving the conditions, it is still possible that participants did this to

some extent, as our noise manipulation was visually very apparent. Critically, this rescaling is

achieved without making any estimates of the sensory noise of the conditions. This would mean

that in the Rescaling model a JoA of ‘6’ could have referred to different strengths of agency
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experience between the two noise conditions, as it is rescaled to reflect the highest strength

agency experience of only the trials of that condition. In the Bayesian model, on the other hand,

a JoA of ‘6’ would always reflect the same perceived level of certainty about the agency

decision and hence the same agency experience, since JoAs combine the evidence strength

and sensory noise.

Figure 4: Model Fits and Results. (A.) Model fits. Simulated probability of each JoA for a given delay
and noise level, given best fitting parameters from the MLE analysis for Bayesian and Rescaling models.
These are portrayed as continuous densities across the (discrete) JoAs. Data distributions are shown in
shaded grey, also portrayed as continuous densities across discrete ratings. (B.) BIC Results. BIC
comparison between Bayesian and Rescaling models on pooled JoA data.

We compared the two models in their ability to account for the distributions of JoAs per

delay and noise level (Fig. 4A) at the group level (with pooled data) and at the single-participant

level. To do so, we first found the best fitting parameter values for each model - low noise 𝝈L,

high noise 𝝈H, decision criterion (c), and the mapping parameter, or the number of ratings to be

considered as ‘Yes’ responses (NRYes), for both models, as well as the scale range parameter

(s) for the Rescaling model - using maximum likelihood estimation (MLE), and then performed a

Bayesian-information criterion (BIC) comparison. Following standard recommendations34, we

required a minimum BIC difference of 2 in order to consider one model a better explanation of

the data than the other.

Against the notion that agency ratings and confidence arise from analogous

computations, the group-level analysis revealed that the Rescaling model could better explain

the JoA data (ΔBICBayes-Rescaling = 2728, Fig. 4B). The best fitting parameters for this Rescaling

model were 𝝈L = 0.16, 𝝈H = 0.16, (c) = 0.16, NRYes = 3, and (s) = 1.11. In comparison, the best

fitting parameters for the Bayesian model were 𝝈L = 0.19, 𝝈H = 0.24, (c) = 0.16, and NRYes = 3.
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The predicted densities of each rating per delay and noise level for each model’s best fitting

parameters can be seen in Fig. 4A. Fitting the two models to each participant revealed results

consistent with the group-level analysis: The Rescaling model could better explain the data for

38 out of 40 participants, whereas the Bayesian model provided a better fit for only 2.

We then performed the same model comparison on confidence ratings from the

confidence task in order to confirm metacognitive computations underlying confidence using this

modeling approach, for comparison to our agency-rating results. As expected, the Bayesian

model could better explain confidence ratings (ΔBICRescaling-Bayes = 1121, Fig. 5A), suggesting

confidence to involve metacognitive computations, in contrast to JoAs. Fitting the two models to

each participant revealed the Bayesian model to provide a better fit in 24 out of 40 participants,

the Rescaling model to provide a better fit in 13, and a BIC difference of less than 2 (suggesting

neither model being a conclusively better fit) in 3.

Metacognitive Ability. In order to further ensure that participants’ confidence ratings

reflected metacognitive processing, especially given relatively low accuracy under high noise,

we analysed their metacognitive ability in both noise conditions. We did this by computing

metacognitive efficiency (MRatio), which accounts for differences in first-order task

performance35, using the HMeta-d′ toolbox36 for all participants. This revealed above-chance

metacognitive efficiency (MRatio > 0) in both noise conditions. Importantly, we did not aim to

compare metacognitive ability between conditions, but instead only confirmed that participants

showed above-chance metacognitive performance in both conditions, suggesting in turn that

confidence ratings were meaningful in both conditions. Interestingly, we also found that

metacognitive efficiency (MRatioLow Noise = 0.73, MRatioHigh Noise = 0.74, Fig. 5B) was nearly

indistinguishable between conditions, once differences in first-order accuracy were accounted

for. These results were further confirmed by an analysis of metacognitive sensitivity using

logistic regressions (Supplementary Information).
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Figure 5. Metacognitive Performance Results. (A.) BIC Results. BIC comparison between the
Bayesian and Rescaling models on pooled confidence rating data. (B.) MRatio Estimates. Metacognitive
efficiency for each noise level, estimated using the HMetad′ toolbox. The dashed vertical line indicates
chance-level metacognitive efficiency.

Discussion
Agency judgments are often assumed to be metacognitive without explicitly defining or

testing this relationship. Here, we aimed to dissect this assumption by examining whether JoAs

involve the same underlying computations as confidence judgments, widely thought to be

metacognitive. That is, we evaluated whether JoAs involve second-order uncertainty monitoring

or are rather grounded in first-order sensorimotor signal integration. By combining two tasks, we

brought JoAs into a metacognitive framework and compared them to a standard benchmark of

metacognitive processing, namely confidence ratings following a 2IFC decision. By examining

how discrimination accuracy and confidence changed with sensory noise in the

confidence-rating task, we first confirmed that the sensory noise manipulation had the intended

effect.

The effects of sensory noise on confidence allowed us to consider whether JoAs in the

agency-rating task responded to sensory noise in a computationally analogous way to

metacognitive confidence judgments. We reasoned that, if this were the case, JoAs would

satisfy two criteria: First, they would depend on the precision of the comparator information,

reflecting more than just a readout of the perceived signal. Second, this dependence on noise

would reflect underlying metacognitive computations such as those involved in confidence, in

particular, second-order estimates of one’s own sensory noise. The JoAs satisfied the first of the
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test-criteria. We found that noise did indeed influence mean JoA across delays, indicating that

the noise condition is factored into JoAs. However, because the noise manipulation changed the

display in a visually obvious way, this information about the condition could have influenced

judgments in a way that did not reflect participants making metacognitive estimates of the noise

of their own processing. The second test-criterion investigated precisely this possibility.

To assess the second criterion, we compared two computational models. As a

prerequisite, both models satisfied the first test-criterion. We contrasted a Bayesian

agency-model, which included metacognitive noise estimates, with a Rescaling model that did

not imply metacognitive processing. We tested these models in their ability to fit participants’

JoAs as well as confidence judgments, to understand the computations underlying both. In the

case of confidence, the model comparison revealed that participants' judgments were best

explained by the Bayesian model, confirming the metacognitive computations underlying

them14,37–39. In striking contrast, this model comparison against participants’ agency ratings

revealed that JoAs were better explained by the Rescaling model as compared to the Bayesian

agency-model, even despite the former including one additional free parameter. The Rescaling

model accounted for the observed behavioural relationship between JoA and noise by assuming

that participants compared trials only to other trials within the same condition, and set

condition-specific maxima of their rating scales accordingly. It would be an interesting direction

for future work to test how JoAs depend on sensory noise under a noise manipulation that is not

easily detectable, to investigate if the behavioural relationship we observe between noise and

JoAs is limited to cases in which participants can treat the manipulation conditions as

independent contexts, as our models suggest.

Taken together, our results suggest that while JoAs can be influenced by sensory noise,

this influence is not indicative of metacognitive processing, and JoAs may better reflect

first-order assessments of agency signals. We therefore argue that greater care should be taken

when discussing agency within a metacognitive context, as the assumptions made about

agency judgments being metacognitive do not hold on a computational level. Although this work

used confidence as a benchmark for metacognitive processing, the computation of interest is

second-order monitoring of the precision of one’s processing, which has become the narrower

focus of recent metacognition work10. While JoAs may still satisfy broad definitions of

metacognition, our results suggest that they may not satisfy this narrower definition of

metacognition that is associated with a concrete computational view. In this sense, these results

may help specify and clarify the assumed relationships between explicit agency judgments and

metacognition.
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Importantly, we also found that participants can make metacognitive confidence

judgments about agency decisions, but that subjective agency ratings do not share these

computations, despite the same basic agency task and noise manipulation. The use of 2IFC

agency tasks with confidence has recently been proposed as a promising step towards a more

reliable and complete investigation of agency processing, both in healthy and clinical

populations25. Here, using a virtual hand we extended this approach into a more proximal form

of embodied agency, closer to agency over the body itself33,40–42, and provide an initial step in

demonstrating that participants can meaningfully monitor the accuracy of these agency

decisions. We suggest that confidence judgments about agency should be considered as the

metacognitive level of an agency processing hierarchy, with agency judgments as explicit

first-order judgments. This also brings agency in line with recent motor metacognition research

that considers agency-like judgments such as decisions of which trajectory was caused by one’s

movement to be the first-order motor judgments, followed by metacognitive confidence ratings43.

Although we suggest that JoAs do not imply metacognitive processing, the dependence

of agency ratings on the noise condition should not be overlooked and may be highly relevant

both for future experimental design and in the interpretation of explicit agency reports. This

finding is in line with multifactorial accounts of JoAs as involving a variety of both internal and

external cues24, and with the expanding empirical work investigating a range of contextual

effects on agency42,44. Our work also fits within cue integration theories of agency16,45, with the

delay information being weighted less heavily when the signal is made less precise. Further,

these results are relevant to empirical work examining cue integration in agency, as they

suggest that having a perceivable manipulation such as reduced visibility in order to add noise

to feedback cues may itself act as an additional factor influencing agency judgments, which

should be accounted for in design and analysis.

These findings also complement recent work that has aimed to find computational

models of agency, but has focussed on low-level FoA and implicit measures such as temporal

binding effects20. Here, we bring explicit agency judgments into a Bayesian and SDT framework,

implementing formal computational models that could be used to further assess computations

underlying different JoAs. Our findings support the suggestions of previous work that, while

Bayesian confidence computations may underlie pre-reflexive FoA, explicit JoAs reflect a

different computational mechanism, and factor in different contextual information20,42.

Taken into the context of two-step models of agency24, our results suggest that sensory

noise information may influence lower level, perceptual agency signals by making them more

variable, and that these more variable signals then feed into higher level JoAs, but that
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estimates of the noise do not contribute as an additional cue to inform the JoAs. Hence, higher

order agency states remain ‘naive’ with regard to how noisy the lower level signals are. This

could illuminate agency processing deficits in clinical cases which might involve perceptual

agency cues becoming very noisy due to low level processing deficits. If explicit JoAs do not

consider this uncertainty (as our findings indicate), this could lead to extreme agency reports

despite unreliable evidence and inaccurate agency inferences. This is in line with work on

agency misattributions in schizophrenia suggesting that they may be due to particularly noisy

low level agency information, possibly due to dysregulated neurotransmitter activity16,46–48.

Our combination of tasks allowed us to consider JoAs against the benchmark of

metacognitive confidence judgments, while keeping the basic stimuli and noise manipulations

the same in both cases. Despite this, the analysis of JoAs is still limited by the type of ratings we

collected, and the manipulations used in the task. Our noise manipulation, for example, was

limited to adding noise to the perceived outcome signals, rather than motor or somatosensory

cues. Our approach of adding sensory noise orthogonally to the degree of control could be

expanded to add noise to other agency signals, and it is possible that JoAs monitor these

sources of noise differently. Beyond the sensory noise manipulation, our results should also be

considered in the context of the particular agency rating scale we used, as this will constrain

participants’ rating behaviour. Similar agency scales are used in other agency research5,6,33,49–54,

so the results presented here are relevant to understand the computations of agency ratings

discussed in the existing literature, to the extent that they are based on similar experimental

operationalizations. In light of this, although our agency-rating task differs from our confidence

task and does not include any postdecisional component, which could be argued to underlie the

differences in metacognitive processing, our results still suggest that the type of agency

judgments measured in the literature do not indicate metacognitive processing, whether or not

this is due to a lack of postdecisional ratings. On the basis of these results, we concur with

recent work25 that suggests that a 2IFC task on agency followed by a confidence judgment may

be more adequate to measure a metacognitive component of agency processing. Also, while it

is true that the rating scale we used here presupposes that agency is graded, the JoA models

assessed here actually allowed for the possibility of a binary agency detection threshold, with

scaling based on certainty level. Though our results show confidence to be a poor explanation

of the scaling of agency ratings, future work could apply a similar modeling approach in order to

investigate other possibilities, and to explore other types of agency judgments. Future work

could also further investigate another simplifying assumption made here in our models, namely

that trials in which, due to internal noise, participants experienced a negative delay, would be
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associated with strong evidence for agency. While this is a reasonable assumption in our task,

where participants knew that the virtual hand tracked their hand movement and likely dismissed

the possibility that the virtual hand moved prior to them, it may need to be adapted to fit other,

more ecologically valid cases of agency processing.

In conclusion, here we brought agency judgments into a metacognitive framework in

order to directly assess whether JoAs are metacognitive at the computational level. The results

suggest that agency ratings can be influenced by sensory noise, but that this effect is best

considered as a contextual cue that can affect participants’ scaling of agency ratings (at least

when it is detectable in the environment), rather than as the result of a second-order noise

monitoring computation, as a link to metacognition would imply. We therefore suggest that JoAs

best reflect first-order comparator signals, with the metacognitive level of agency processing

being second-order confidence judgments about one’s agency. In addition to clarifying

assumptions regarding the relationship between JoAs and metacognition, this work provides a

classical confidence paradigm with which to study metacognition of agency, as well as

computational models that can be used to further elucidate the mechanisms underlying explicit

agency judgments.

Methods
The experiment was pre-registered (osf.io/pyjhm), and we describe deviations from the

pre-registered plan.

Participants
We pre-registered a sample size of 32 participants (based on power estimates from

similar tasks). We collected data until we reached 40 participants that displayed the basic and

expected manipulation effect of illumination (see above). We tested 47 young, healthy

participants between 18 and 35 years of age (M = 27.15, SD = 4.68) in Berlin. To participate in

the study, we required that participants were right handed (Edinburgh Handedness Inventory

score: M = 79.5, SD = 23.6), had no injury or condition preventing or restricting movement of the

right index finger, had normal or corrected-to-normal vision, and were fluent in English. Subjects

were compensated with 8 euros per hour, or with course credit and gave signed, informed

consent before starting the experiment. The local ethics board approved the study (Nr.

2020-29), which conformed to the Declaration of Helsinki.

Setup
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We used a LEAP Motion controller (Leap Motion Inc., San Francisco, CA) to track

participants’ hand motion and to control in real time the movement of a virtual hand displayed on

the screen. The experiment ran on a Dell Latitude 5591 laptop (Intel core i5 with 16GB of RAM)

with a display resolution of 1,920 x 1,080 (refresh rate = 60Hz) using software built in Unity

5.6.1, and was modified from software used in previous studies32,33. The computer was placed to

the left of an opaque board, which occluded participants’ right hand from view. Participants

placed their right hand under the LEAP Motion tracker, which was fixed with its sensors facing

downward. Blackout curtains were used during all testing to keep the lighting conditions within

the room as consistent as possible.

Procedure
The tasks we used built on a paradigm in which participants see on the screen a virtual

hand that follows the movement of their own, with a given temporal lag32. This paradigm allowed

us to examine a situation closer to the more proximal or ‘narrow’ sense of agency that relates to

control of the body itself33,40,41. Each participant completed two tasks: a confidence-rating task

(Fig. 1B) and an agency-rating task (Fig. 2A). In both tasks, we manipulated sensory uncertainty

by controlling the visibility of the virtual hand, allowing us to compare the effect of noise on JoAs

and confidence. Importantly, we manipulated sensory noise orthogonally to the decision

variable, as done by previous work11,15,27, which allowed us to precisely examine effects of noise

without altering the true degree of control that the participants had over the virtual hand

movement.

Prior to starting the experiment, participants completed the Edinburgh handedness

scale. We then did a short thresholding procedure to set the illumination level that would be

used in the high-noise condition of the main tasks, in order to account for differences in eyesight

and lighting conditions in the room. Participants placed their right hand on the table, under the

LEAP tracker, and held it still. On each trial, participants first saw a fixation cross, followed by

two consecutive presentations (separated by a flashed grey screen) of the virtual hand on the

screen in the dark illumination condition, and in one case it was artificially enlarged. Participants

then discriminated which of the two intervals contained the larger hand. We ran this in blocks of

10 trials and adjusted the brightness setting of the screen after each block until participants

achieved 70-80 % correct in a block, and additionally did not report discomfort from straining to

see the hand. This thresholding procedure took approximately 5 minutes. The brightness was,

however, further adjusted if participants reported not being able to see the virtual hand
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movement during the training or at the beginning of the task. The brightness was only

re-adjusted prior to the confidence task for one participant.

Agency-rating Task. All participants performed the agency-rating task first so that

subjective ratings would not be biased by the structure or ratings of the confidence task. On

each trial, participants began with their right hand resting on the table, palm facing up, with

fingers extended. They saw a fixation cross (for 1.5 s), then the virtual hand appeared and they

had 2 seconds in which to flex and extend their index finger once. The virtual hand displayed

their movement either in real time, or with an added delay of either 70, 100, or 200 ms.

Participants then rated their agency over the virtual hand movement on a scale from 1 (lowest)

to 6 (highest). We explained that the term ‘agency’ referred to how much control they had over

the movement of the virtual hand, and they were asked to focus specifically on the timing of the

movement. Agency ratings were made using arrow keys to move a cursor, which started at a

random position on the six-point scale each trial. Additionally, error trials in which there was a

glitch of the virtual hand (such as flipping or contorting), participants saw no virtual hand, or

participants made the wrong hand movement, could be marked using the Space key. Overall,

2.4% of trials were marked as errors in the confidence task, and 1.9% were marked as errors in

the agency task.

To achieve the high-noise condition, the virtual hand was displayed under dark, low

contrast illumination, using a directional light intensity of 0 in the Unity environment. In the

low-noise condition, the virtual hand was displayed under brighter, higher contrast illumination

using a directional light intensity of 0.001 (Fig. 1A). The noise conditions as well as the four

delay levels were counterbalanced and randomly distributed across each block. There were 60

trials per delay level and lighting condition, for a total of 480 trials, split across 6 blocks. Prior to

this task, participants completed a short training consisting of 20 trials and including both noise

conditions and all delays, but they never received any feedback regarding any task. The

agency-rating task took approximately 45 minutes.

Confidence-rating task. After the agency-rating task, participants did a

confidence-rating task. Participants again flexed and extended their right index finger under the

LEAP motion tracker, while looking at the virtual hand on the screen. In contrast to the

agency-rating task, they made two consecutive movements, each cued by the appearance of

the virtual hand, and separated with a blank grey screen. They then decided which virtual hand

movement they had more agency over, and rated their confidence in their response from 1

(lowest) to 6 (highest). The difference in delay levels between the movements in each trial was

staircased, with one of the two movements always having no delay and the other being adjusted
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according to an online 2-down-1-up staircasing procedure aiming to achieve an overall accuracy

of approximately 71%. Only the low-noise condition was staircased, and the delays of the

high-noise condition were set to match those of the low-noise. Participants made their decision

and then confidence rating using the arrow keys, and an error trial could be marked during

either the decision or confidence rating.

We manipulated noise in the same way as in the agency-rating task, and this was fully

counterbalanced with which movement was the delayed one, with these factors randomly

distributed across each block. There were 100 trials per noise condition, for a total of 200 trials

across 5 blocks. Prior to this task, participants completed another short training consisting of 10

trials, but only in the low-noise condition, to adjust to the new movement and response

structure. The confidence task took approximately 45 minutes. At the end of the session,

participants completed an informal debriefing.

Analysis
We removed any trials marked as errors, and any trials with reaction times shorter than

100 ms or longer than 8 s for any decision or rating.

We tested our main hypotheses using the ‘lme4’ package55 in R (R Core Team, 2020) to

build linear mixed-effects models. All models included by-participant random intercepts, and the

model for the agency-rating task included random effects for the interaction of interest (Table 1).

All hypotheses were tested using two-tailed tests and an alpha level of 0.05, and additionally

using Bayes factors, which we computed with the ‘BayesTestR’ package56 using default priors.

To compute Bayes factors for the logistic mixed-effects analyses, we built Bayesian models with

the ‘brms’ package57. For each of these Bayesian regressions, we ran 4 chains of 15,000

iterations, including 5,000 burn-in samples for a total of 40,000 effective samples, and ensuring

a R-hat close to 1. Effect sizes for results of the linear mixed-effects analyses were computed as

η2
p using the ‘effectsize’ package58, with 95% confidence intervals reported when possible (large

sample sizes resulted in some confidence intervals of width zero, and hence uninterpretable).

The results of our linear mixed-effects analyses on confidence and JoAs were confirmed using

ordinal models, built using the ‘ordinal’ package59.

To analyse metacognitive ability from the confidence task, we measured metacognitive

efficiency (MRatio) using the HMeta-d′ toolbox36. In this analysis, for the MCMC (Markov chain

Monte Carlo method) procedure we used three chains of 15,000 iterations with an additional

5000 for adaptation, thinning of 3, and default initial values from JAGS (Just Another Gibbs

Sampler). We also ensured that R-hat was approximately 1 for all sampling.
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As a deviation from the pre-registered analyses, we included our second test-criterion

and computational modeling analyses, and excluded instead some planned analysis of the

variability of ratings, as, in hindsight, we reasoned that this would not help to clarify the link

between agency and  metacognition.

Table 1. Syntax for the Linear Mixed-Effects Models used

Task Hypothesis Model Formula

Confidence
Task

Sensory noise influences
response accuracy

logit(Response Accuracy) ~ Noise + (1 | Participant)

Confidence
Task

Sensory noise influences
confidence following
correct decisions

Confidence ~ Response + Response
Accuracy*Noise + (1 | Participant)

Agency
Rating Task

Sensory noise influences
the effect of delay on JoA

JoA ~ Delay*Noise + (Delay:Noise | Participant)

Modeling
To test whether JoAs reflect metacognitive computations, we compared two

computational models which could both account for the observed effect of noise on agency

ratings. Both are based on signal detection theory and a comparator model of agency, with the

amount of delay between the real movement and virtual hand movement as the signal.

However, under one model (the Bayesian-agency model) agency ratings involve a second-order

assessment of sensory noise in the same way that confidence judgments do; whereas under

the second one (the Rescaling model), agency is based on only first-order estimates of the

internal signal strength, with the effect of noise captured by participants rescaling their ratings

per condition without making metacognitive estimates of the noise.

Under both models, JoAs result from a Yes/No decision of whether participants felt

agency over the virtual hand movement, and this is scaled into a rating according to a function

of the strength of the evidence. Modeling JoAs as involving this binary detection decision

allowed us to examine whether agency ratings follow the computations involved in decision

confidence, and is also in line with work treating agency as a binary judgment60,61. We assume

that participants set an internal decision criterion (c) which determines whether they detected a

delay — thus judging a disruption in their agency —, or whether they detected no delay and

therefore judged themselves to have agency over the virtual hand movement. Then, the

different agency ratings are modeled as additional criteria on either side of (c). We model
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agency ratings as getting more extreme as the perceived signal (x) gets further from the

decision criterion in either direction, or in other words, as evidence supporting the agency

decision increases. This predicts that perceived delays that are very long relative to the decision

criterion would lead to a ‘No’ decision with strong evidence, and in turn low JoAs, whereas

perceived delays that are very short would lead to a ‘Yes’ decision with strong evidence, and

high JoAs. Crucially, the two models differed in the function of internal evidence (f(x)) that

determined the agency ratings, and in particular in the way this function was affected by sensory

noise.

Agency Ratings in the Bayesian Model. The Bayesian-agency model assumed that

agency ratings scale as a function of internal evidence in the same way as confidence, namely

scaling with the posterior probability of being correct, given a choice and the internal signal14.

Therefore, in this model, the agency rating is computed by estimating the probability that the

agency detection was correct, given the perceived signal and detection decision. Because this

probability computation depends on the level of sensory noise, the Bayesian-agency model

predicts that noise will be factored into participants’ JoAs.

In both models, we obtained the criterion values that split the continuous range of

possible f(x) values into equidistant bins. For the Bayesian model, because confidence reflects

a probability, it is naturally bounded to 1. So for the Bayesian model (with a 3:3 mapping, see

below) this amounted to finding the criterion values that would lead to confidence levels of ⅓, ⅔,

and 1. To estimate the positions of the criteria on the internal signal axis, we followed an

analytical solution that defines confidence as

if x ≥ c (1){Φ( 𝑐 − 𝑥
σ )

if x < c { 1 −  Φ( 𝑐 − 𝑥
σ )

which we implemented, for convenience, as in a previous study12:

(2)  Φ(  𝑥 − 𝑐 | |
σ )

This confidence measure can be interpreted as the perceived probability that the true delay

signal was on the same side of the decision criterion as the internal signal, hence making the

decision correct (Fig. 6).
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Figure 6: Function of internal evidence as estimated by each of the models tested. Agency as a
function of evidence strength computations in each model. In the Bayesian model this function of internal
evidence reflects confidence based on the posterior probability of having given a correct response, given
internal signal and choice. In the Rescaling model this is based on the perceived distance between signal
and criterion.

Agency Ratings in the Rescaling Model. The non-Bayesian alternative model

considers participants to compute their ratings proportionally to the distance between a point

estimate of the internal signal and the decision criterion (Fig. 6). According to this model,

participants do not use the full distribution of internal signals in their assessment and hence do

not make any metacognitive assessment of the precision of their evidence, but rather provide a

rating that varies linearly as a function of the internal evidence, according to

(3)𝑓(𝑥) =   𝑥 −  𝑐 | |

Unlike the Bayesian model, ratings in this linear model are not inherently bounded at 1, as f(x)

could be as high as any arbitrarily high internal signal (x). Therefore, in order to find criterion

placements that divide the continuous range of f(x) values into equidistant bins, we needed to

approximate a maximum. We assumed that participants bound their ratings based on the range

of delays they experience throughout the experiment. Because we cannot know the true range

of perceived delays, we approximated the most extreme perceived delays as the most extreme

external signals plus a multiple of the noise, the freely fit scale range parameter (s). Based on

the idea that participants rescaled their agency criteria according to the noise condition that they

observed, accounting for the observed behavioural interaction effect, (s) acted as a multiple of

the noise within a given condition. Hence, the scale range on low noise trials would be from -s𝝈L

to [200 + s𝝈L] but the scale range on high noise trials would be from -s𝝈H to [200 + s𝝈H]. Fitting

this parameter allowed us to obtain the maximum f(x) value as the maximum distance between

(c) and either bound of the scale, and then divide the continuous f(x) values into equidistant bins

just as we did with the Bayesian-agency model. However, due to the different f(x) computations,
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in this case the bins were equal linear distances on the internal signal axis, not equal probability

bins as in the Bayesian model (Fig. 3A). Importantly, although the agency ratings do depend on

the noise level due to the rescaling in this model, this does not involve participants making an

assessment of the precision of their evidence, but just reflects participants considering each trial

relative to a maximum that is different between illumination conditions. In other words, it would

require less extreme evidence to lead to a ‘1’ in the low-noise condition than a ‘1’ in the

high-noise condition.

Once we found criterion locations for each noise condition for each model, we calculated

the probability of each rating for any given alteration and noise level. Using these probabilities,

for all trials of a given participant or the pooled data, we built the likelihood function as

(4)
α=1

6

∏ (Φ(
γ

α+1 
− 𝑑

σ ) − Φ(
γ

α 
− 𝑑

σ ))
𝑛

α

where indexes the agency rating criterion in a given noise condition; is the position ofα γ
α 

criterion , with being -∞ and being +∞; d is the external delay; and is the number ofα γ
1 

γ
7

𝑛
α

trials observed for that rating and delay, in that noise condition. We then took the product of this

likelihood across all four possible external delays and across both noise conditions.

Model Parameters. Both models shared the parameters: standard deviation of the low

noise condition, 𝝈L, standard deviation of the high noise condition, 𝝈H, and decision criterion (c).

The Rescaling model also included the scale range parameter (s). Additionally, instead of

assuming that participants always used half of the scale ratings to reflect detection of agency

(JoA = 4:6), and half to reflect disruption to agency (JoA = 1:3), we fit a mapping parameter to

capture the number of ratings used for each decision. We fit this parameter, NRYes, defined as

the number of ratings used for ‘Yes’ decisions, with a minimum of one rating used for each

decision. If NRYes is two, for example, this would suggest participants used ratings of ‘5’ and ‘6’

to indicate detections of agency, and ratings of ‘1’ to ’4’ to indicate disturbances to their agency.

By fitting this parameter, we avoided having to make any strong assumptions about how

participants used the rating scale, considering we did not have their true Yes/No decisions.

Modeling Confidence. We also applied these two models to confidence ratings, in order

to compare confidence computations with those underlying JoAs. For this analysis, the models

were kept the same, except instead of fitting agency criteria, we fit the confidence criteria that

divided confidence ratings into 12 total bins, with 6 ratings on each side of the decision criterion.
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We did not need to fit NRYes, as the assignment of ratings to a particular decision was forced by

the task.
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Supplementary Information

Confidence Task Regression Analysis - Ordinal Models
Because participants rated confidence on a discrete scale from 1-6, we reran the linear

mixed effects (LME) analysis from the Confidence Task using ordinal models. We built a model

on confidence ratings including the interaction between response accuracy and noise level and

each factor as fixed effects, response identity as an additional fixed effect, as well as

by-participant random intercepts. This confirmed the results of our analysis using linear

regression, and revealed a significant interaction between Response Accuracy and Noise, χ2(1)

= 14.86, p < 0.001. This also confirmed the significant main effect of Response, χ2(1) = 78.91, p

< 0.001.

Agency Rating Task Regression Analysis - Ordinal Models
We also reran the LME analysis from the Agency Rating Task with ordinal models. We

built a model on JoAs including the noise level and delay, and their interaction as fixed effects,

as well as by-participant random effects of the interaction, and random intercepts. This

confirmed the results of our LME analysis, revealing a significant interaction between Noise and

Delay on JoAs, χ2(1) = 43.15, p < 0.001, as well as a significant main effect of Delay χ2(1) =

23.56, p < 0.001, replicating previous work 32,33.

Measuring Metacognitive Sensitivity with Logistic Regressions
Along with our M-Ratio analysis, we also measured metacognitive sensitivity using

logistic regressions, which does not account for first-order task performance. We built a mixed

logistic regression model on Response Accuracy including Confidence and Noise as well as

their interaction as fixed effects, and random Confidence slopes and random intercepts per

participant (see below for model syntax). Metacognitive performance was estimated by

considering the effect of confidence as a measure of how well confidence ratings tracked

accuracy. We found a significant main effect of Confidence (χ2(1) = 45.75, p < 0.001, BF10 =

1.24 ✕ 109), which confirmed that participants’ confidence ratings tracked their accuracy and

were hence meaningful, despite the difficult task. Further, in line with the manipulation check

displayed in Figure 1C (in the main text), we found a main effect of Noise on accuracy (χ2(1) =

74.74, p < 0.001, BF10 = 4.14 ✕ 1012). The data are inconclusive on whether the two factors

interact, as a frequentist analysis revealed a significant interaction between Confidence and
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Noise (χ2(1) = 5.22, p = 0.022), whereas Bayesian statistics revealed no conclusive evidence

either way (BF10 = 1.01).

Model Syntax

Task Hypothesis Model Formula

Confidence
Task

Confidence tracks
response accuracy,
modulated by sensory
noise

logit(Response Accuracy) ~ Confidence*Noise +
(Confidence | Participant)

Logistic Regression Results. Metacognitive sensitivity quantified with predicted probability correct
across confidence ratings and noise conditions from mixed logistic regression model results. We found a
significant interaction between noise and confidence, with a smaller slope of confidence across accuracy
under high noise. 95% confidence intervals shown.

Agency Rating Task - Subjectwise BIC Results
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Subjectwise BIC Results from Agency Modeling. BIC comparison between the Bayesian and
Rescaling models on JoA data per subject.

Confidence Task - Subjectwise BIC Results

Subjectwise BIC Results from Confidence Modeling. BIC comparison between the Bayesian and
Rescaling models on confidence data per subject.

Confidence Model-Fitting Using Additional Information from Confidence Task
The confidence task provided us with additional information that could be used to fit the

models, that we could not access in the agency rating task, namely, the calculated decision

criteria and the difference in noise level between conditions, with 𝝈H calculated as 𝝈L * d′H / d′L.

Because we aimed to compare JoAs and confidence ratings in terms of their underlying

computations, our main modeling analysis fit the two models to confidence ratings without using

any of the additional information available, and subjecting the analysis to the same assumptions

as with agency ratings. This involved freely fitting the noise levels, and assuming optimal

decision criteria, as we did in the agency task. Here, we repeated the group-level analysis using

the calculated decision criterion and noise difference. The calculated decision criteria for the

pooled data were -0.079 in the low-noise condition and -0.13 in the high-noise condition. The

high-noise level was calculated to be 2.73 times the low-noise, based on d′L/d′H. The winning
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parameters from this analysis for the Rescaling model were 𝝈L = 0.73, leaving 𝝈H as 2.00, and

(s) = 1.30. The winning parameter for the Bayesian model was 𝝈L = 0.37, leaving 𝝈H as 1.00. The

Bayesian model could still better explain confidence ratings (ΔBICRescaling-Bayes = 1448).

BIC Results from Confidence Task. BIC comparison between the Bayesian and Rescaling models on
pooled confidence rating data, using calculated decision criteria and difference between noise conditions.
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