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24 Abstract

25 Autism spectrum disorders have been proposed to arise from impairments in the probabilistic 

26 integration of prior knowledge with sensory inputs. Circular inference is one such possible 

27 impairment, in which excitation-to-inhibition imbalances in the cerebral cortex cause the 

28 reverberation and amplification of prior beliefs and sensory information. Recent empirical work has 

29 associated circular inference with the clinical dimensions of schizophrenia. Inhibition impairments 

30 have also been observed in autism, suggesting that signal reverberation might be present in that 

31 condition as well. In this study, we collected data from 21 participants with diagnosed autism 

32 spectrum disorders and 155 participants with a broad range of autistic traits in an online probabilistic 

33 decision-making task (the fisher task). We used previously established Bayesian models to 

34 investigate possible associations between autism or autistic traits and circular inference. No 

35 differences in prior or likelihood reverberation were found between autistic participants and those 

36 with no diagnosis. Similarly, there was no correlation between any of the circular inference model 

37 parameters and autistic traits across the whole sample. Furthermore, participants incorporated 

38 information from both priors and likelihoods in their decisions, with no relationship between their 

39 weights and psychiatric traits, contrary to what common theories for both autism and schizophrenia 

40 would suggest. These findings suggest that there is no increased signal reverberation in autism, 

41 despite the known presence of excitation-to-inhibition imbalances. They can be used to further 

42 contrast and refine the Bayesian theories of schizophrenia and autism, revealing a divergence in the 

43 computational mechanisms underlying the two conditions.

44

45 Author Summary

46 Perception results from the combination of our sensory inputs with our brain’s previous knowledge 

47 of the environment. This is usually described as a process of Bayesian inference or predictive coding 

48 and is thought to underly a multitude of cognitive modalities. Impairments in this process are thought 

49 to explain various psychiatric disorders, in particular autism and schizophrenia, for which similar 
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50 Bayesian theories have been proposed despite important differences in their symptoms. Recently, a 

51 new model of Bayesian impairment in schizophrenia has been proposed and validated using 

52 behavioural experiments, called the “circular inference” model. In the current study, we used the 

53 same task and computational modelling to explore whether circular inference could also account for 

54 autism spectrum disorder. We find that participants with autistic traits or diagnoses of autism do not 

55 present increased levels of circularity. This is the first study to investigate circular inference in 

56 autism, and one of the very few to explore possible autism and schizophrenia impairments with the 

57 same task and identical analytical methods. Our findings indicate one potential way in which the 

58 explanations of the two conditions might differ.

59

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.04.28.441748doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.28.441748
http://creativecommons.org/licenses/by/4.0/


4

60 Introduction

61 Autism spectrum disorder (ASD) and schizophrenia (SCZ) are two heterogeneous mental disorders 

62 with a complicated relationship [1,2]. While the term “autism” was initially used to refer to one of 

63 schizophrenia’s symptoms [3], the two disorders have since been considered as separate conditions 

64 and have been studied as such by most researchers. Despite that, numerous links have been observed 

65 between them, from behavioral and neurophysiological similarities in social cognition impairments 

66 [4,5], to immune [6] or intestinal [7] dysregulation and genetic overlap [8], among others. Such 

67 findings suggest that the relationship between schizophrenia and ASD should be more thoroughly 

68 explored, within a framework that is able to handle and explain their differences [9,10].

69

70 In Bayesian theories of perception and cognition, the brain is viewed as constantly making 

71 probabilistic calculations in order to infer the true state of the environment. The information coming 

72 from sensory inputs is captured by the likelihood function and is combined with prior beliefs about 

73 the environment, in a process akin to Bayesian inference [11]. This framework has been widely 

74 adopted in both ASD and SCZ research, with a frequently proposed hypothesis for both disorders 

75 being that sensory inputs are overweighted relative to prior beliefs [12–16] (see [17–19] for an 

76 alternative SCZ hypothesis). In schizophrenia, this theory attempts to explain the tendency of patients 

77 to jump to conclusions [20] and their partial immunity to perceptual illusions [21], with 

78 hallucinations and delusions being interpreted as the formation of bizarre beliefs to account for 

79 strange, hypersalient sensory data [22]. Intriguingly, the hypothesis of overweighted sensory 

80 information is also suggested to account for most of ASD’s symptoms, such as sociocognitive 

81 impairments, attention to detail, sensory hypersensitivity, and decreased susceptibility to illusions 

82 [15]. The similarity of the proposed theories for autism and schizophrenia is surprising given their 

83 distinct symptomatology. However, very few Bayesian studies have examined both conditions using 

84 the same experimental or computational paradigm, which would be crucial for understanding their 

85 relationship and mechanisms of action.
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86

87 In 2013, Jardri and Denève proposed a new computational explanation for schizophrenia, called 

88 Circular Inference [23], motivated by an attempt to understand the potential consequences of the 

89 increased excitation-to-inhibition (E/I) ratio that is associated with the condition [24,25]. Using 

90 hierarchical network simulations, they showed that inhibitory impairments in the cortex might lead 

91 to sensory evidence or prior beliefs being reverberated throughout the network that the brain uses to 

92 represent the environment, overwhelming the inferential process. Sensory input reverberation could 

93 cause the reported “jumping to conclusions” bias in schizophrenia, where patients get overconfident 

94 in their beliefs based on relatively little evidence [26]. The positive symptoms, then, can be seen as 

95 an extension of the same process, where hallucinations and delusions are produced by misplaced 

96 certainty in noisy perceptual and other non-sensory information, respectively.

97

98 Jardri et al. supported this hypothesis with behavioral evidence from 25 SCZ patients and 25 controls 

99 [27], using a probabilistic variant of the beads task [28], called the fisher task. In the fisher task, 

100 subjects are asked to estimate the chance that a red fish caught by a fisherman came from one of two 

101 lakes, while being presented with the lake preferences of the fisherman and the proportions of red 

102 fish in each lake (Fig 1). The researchers interpreted the preferences (which were presented first) as 

103 a Bayesian prior and the fish proportions as the sensory evidence. They showed that all participants 

104 exhibited signs of signal reverberation. Importantly, they found that sensory evidence was 

105 reverberated more in patients, with the magnitude of reverberation being correlated with their 

106 positive symptoms. A following study confirmed these findings, utilizing a social version of the 

107 beads task in a sample of 35 patients with schizophrenia or schizoaffective disorder and 40 controls 

108 [29]. The researchers found that the circular inference model fitted best the participants’ behavior, 

109 with increased sensory reverberation in patients. They also presented strong evidence for an 

110 association between that reverberation and various clinical features in patients (e.g., delusions, 

111 anhedonia-asociality).
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112

113 Fig 1. An outline of the four stages of the fisher task.

114 1) The fixation cross is presented; 2) participants are shown the preference of the fisherman, 

115 visualized as two baskets of varying sizes, one for each lake; 3) a blank screen is presented; 4) 

116 participants are shown the fish proportions and are asked to make a confidence estimate about the 

117 lake of origin of the fish (Adapted from [27]).

118

119 Impaired inhibition has been strongly associated with autism [30–34]. A question that arises naturally 

120 is, therefore, whether circular inferences are present in ASD, and whether they would then be of the 

121 same nature as in schizophrenia (e.g., sensory vs prior reverberation). In the present study, we aimed 

122 to assess cue integration in both autistic participants [“autistic” is the preferred term by people on 

123 the autism spectrum [35]] and participants with no ASD diagnosis but a broad range of autistic traits. 

124 This allowed us to investigate signal reverberation within a dimensional as well as a more traditional, 

125 categorical view of autism [36–39]. To achieve that, we utilized an online version of the fisher task, 
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126 and both circular inference and more traditional Bayesian models. This provided us with an 

127 opportunity to explore the influences of ASD in probabilistic decision-making and directly compare 

128 them with past SCZ findings.
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129 Methods and Materials

130 Sample

131 We recruited 204 naive participants; 61 voluntarily via our social media networks and 143 with fixed 

132 monetary compensation via the Prolific recruiting platform [40]. All participants had normal or 

133 corrected-to-normal vision and were not taking any psychotropic medication. 28 subjects were 

134 excluded for providing low quality data (Section A3 in S1 Supplementary Information). The final 

135 sample included 102 male and 71 female participants, with a median age of 26.6 years. Our study 

136 was approved by the University of Edinburgh, School of Informatics Ethics Committee (RT number 

137 29368).

138

139 Half of the Prolific subsample was selected to have a diagnosis of ASD or to identify as part of the 

140 autism spectrum (Section A1 in S1 Supplementary Information), with 21 subjects having a diagnosis 

141 in the final sample. All participants filled in the Autism Spectrum Quotient (AQ) questionnaire [41] 

142 and the 21-item Peters et al. Delusions Inventory (PDI) [42]. The final sample showed indeed 

143 stronger autistic traits (M=22.9, SD=6.5) than what is usually found in the general population 

144 (M=16.9, SD=5.6) [43], but no difference in delusional ideation (M=6.1, SD=3.1 vs M=6.7, SD=4.4) 

145 [42]. Interestingly, the participants with the ASD diagnoses had AQ scores on the low-end (M=28.0, 

146 SD=8.0) compared to those reported in the literature for autistic individuals (M=35.2, SD=6.3) [43]. 

147 Statistical power for our tests could not be calculated, as model parameters were not verifiably 

148 following any known distribution. However, the strength of Jardri et al.’s findings [27] suggests that 

149 comparable effects would reach statistical significance in our larger sample, according to an 

150 exploratory analysis (Section A4 in S1 Supplementary Information).

151

152 Procedure

153 The task was kept as similar to the original fisher task [27] as possible. The participants were shown 

154 a fisherman having caught a red fish and were asked which of two lakes the fish was caught from. 
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155 To make this decision, they were presented with two kinds of information in each trial: 1) the 

156 preferences of the fisherman for each of the lakes, visualized as two baskets of varying sizes (prior); 

157 2) the proportions of red versus black fish in each lake, visualized as 100 fish in two lake drawings 

158 (sensory evidence or likelihood). Subjects were instructed to gauge their confidence and respond 

159 using a continuous semi-circular scale, ranging from “I'm sure LEFT LAKE” to “I'm sure RIGHT 

160 LAKE”, with “I don't know” in the middle. Confidence estimates were interpreted probabilistically, 

161 in a continuous manner, with a click on the left edge of the scale corresponding to a probability of 1 

162 for the fish originating in the left lake (0 for the right) and vice versa.

163

164 Trials were structured as follows (Fig 1): Initially, a fixation cross was shown for 800ms, followed 

165 by the two baskets for 1000ms, and a blank screen lasting 50ms. Then, the lake drawings, the 

166 fisherman with the red fish, and the scale appeared until the subject gave a response. Participants 

167 were presented with detailed instructions telling them to respond “as fast and as accurately as 

168 possible”, which they could repeat many times before proceeding to the task. After the instructions, 

169 subjects completed 11 training trials with easy stimulus combinations to acclimate themselves with 

170 the task.

171

172 Due to concerns about participants' potential distractibility in an online environment if the task was 

173 too long, we reduced the number of trials to 130 (Section A2 in S1 Supplementary Information). The 

174 trials appeared in a random order, with lake drawings being different for every trial. Every 22 trials, 

175 the participants were prompted to take a break, which they could end with the press of a button. 

176 Lakes had 9 possible ratios of red to black fish, while baskets appeared in 9 possible sizes, both 

177 corresponding to the probabilities 0.1 to 0.9. In all trials, likelihoods and priors were complimentary 

178 (e.g., if the left fish proportions were 0.3, the right would be 0.7). Therefore, probabilities mentioned 

179 in the text refer to the left lake, as the probabilities for the right can be immediately inferred.

180
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181 Model-free analysis

182 A linear mixed-effects model was used to verify that the task components contributed to the 

183 participant responses in the expected way and as an initial exploration of the possible effects of 

184 autistic traits. We chose the absolute confidence of the participants as the response variable (|𝑐 ― 0.5|

185 , with c being the participant confidence estimate). We modelled the following as fixed effects with 

186 repeated measures across the subjects: i) the absolute likelihood (|𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ― 0.5|); ii) the prior 

187 congruency, that is how much the prior agreed with the likelihood (|𝑝𝑟𝑖𝑜𝑟 ― 0.5| ⋅ sgn[

188 (𝑝𝑟𝑖𝑜𝑟 ― 0.5)(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ― 0.5)]); iii) the total AQ scores; iv) the PDI Y/N scores; v) the reaction 

189 times. The latter one was used to investigate the possibility of a speed-accuracy trade-off. The 

190 participants were modelled as a random effect.

191

192 Bayesian models

193 Data were fitted with four models: Simple Bayes (SB), Weighted Bayes (WB), and two variants of 

194 the circular inference model: Circular Inference – Interference (CII) and Circular Inference – No 

195 Interference (CINI). Originally [23], the inferential processes expressed by these models were 

196 simulated in a hierarchical network, where priors corresponded to top-down signals and likelihoods 

197 to bottom-up ones. In the current study, we followed Jardri et al. in fitting simplified models, that 

198 capture the network effects with significantly fewer free parameters [27].

199

200 SB combines the two sources of information using Bayes’ theorem. This is expressed in logits as

201 𝐿𝑐 = 𝐿𝑝 + 𝐿𝑠 ,

202 with subscript p corresponding to trial prior, s to sensory evidence, and c to the confidence estimate, 

203 while L denotes the respective logit.

204

205 WB expands upon SB:

206 𝐿𝑐 = 𝐹(𝐿𝑝, 𝑤𝑝) + 𝐹(𝐿𝑠, 𝑤𝑠)  ,
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207 where F is the sigmoid function

208 𝐹(𝐿, 𝑤) = ln ( 𝑤𝑒𝐿 + 1 ― 𝑤
(1 ― 𝑤)𝑒𝐿 + 𝑤)  ,

209 allowing for the underweighting of priors or likelihoods. Each weight w expresses the reliability of 

210 the corresponding signal.

211

212 CII has the form:

213 𝐿𝑐 = 𝐹(𝐿𝑝 + 𝐼, 𝑤𝑝) + 𝐹(𝐿𝑠 + 𝐼, 𝑤𝑠) ,

214 𝐼 = 𝐹(𝑎𝑝𝐿𝑝, 𝑤𝑝) + 𝐹(𝑎𝑠𝐿𝑠, 𝑤𝑠) ,

215 where top-down and bottom-up signals get reverberated, interfering with one another, and end up 

216 corrupting prior beliefs and sensory evidence by the same amount, I. Parameters 𝑎𝑝 and 𝑎𝑠 affect the 

217 number of times the respective information is overcounted, expressing the signals’ reverberation.

218

219 CINI is similar to CII, but it assumes that both signals get reverberated or overcounted separately 

220 and are only combined at the end of the process:

221 𝐿𝑐 = 𝐹(𝐿𝑝 + 𝐹(𝑎𝑝𝐿𝑝, 𝑤𝑝), 𝑤𝑝) + 𝐹(𝐿𝑠 + 𝐹(𝑎𝑠𝐿𝑠,𝑤𝑠), 𝑤𝑠) .

222

223 SB has 0 free parameters, WB 2, and both CII and CINI have the same 4. All parameters take values 

224 within [0, 1] (for details see Section A5 in S1 Supplementary Information). A weight value of w=0 

225 shows no influence of the corresponding signal, while both w=1 make WB equivalent to SB and both 

226 a=0 make CII and CINI equivalent to WB. The difference between CII and CINI is subtle, but 

227 important. In CINI, the sensory and prior signals are combined linearly, while in CII, one signal’s 

228 influence on the model estimate depends on the strength of the other, due to the interference between 

229 them. Figure 2 illustrates the behavioral patterns predicted by the different models. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.04.28.441748doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.28.441748
http://creativecommons.org/licenses/by/4.0/


12

230

231 Fig 2. Illustration of WB (A), CII (B), and CINI(C) behavior.

232 The graphs show how logit model confidence estimates change as a function of logit likelihood (fish 

233 proportions). Different colors represent different prior values (basket size) and grey lines represent 

234 the SB model predictions. The SB model simply combines the information of the two signals by 

235 adding their logits. WB can underweight either or both signals, while, in addition to that, the circular 

236 inference models allow for signal overcounting. In CII, the contribution of the likelihood on the 

237 confidence estimate depends on the prior value and vice versa. In contrast with that, in the CINI 

238 model, each source of information affects the confidence independently, and therefore the graph 

239 lines are completely parallel to each other. Parameter values were the same for all models (𝑎𝑝

240 = 0.02,  𝑎𝑠 = 0.05,  𝑤𝑝 = 0.8,  𝑤𝑠 =  0.06).

241

242 We followed Jardri et al., assuming Gaussian noise in the logit model estimates (𝐿𝑐), and therefore 

243 fitted models via least squares, which is equivalent to maximum likelihood estimation in that case. 

244 Model comparison was performed using an approximation of the Bayesian information criterion 

245 (BIC) for normally distributed errors,

246 BIC =  𝑛 ln (𝜎2) + 𝑘 ln(𝑛)  ,

247 where n is the number of datapoints, k the number of free parameters, and σ the model’s mean squared 

248 error. To choose a model across all subjects, we followed the random-effects Bayesian model 

249 selection [44], implemented in the SPM12 [45]. Group-level BIC [46], a fixed-effects approach, 
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250 produced similar results. Experiment code, models, and anonymized data can be found at 

251 https://osf.io/yqug2/.

252

253 Statistical analysis and validity of results

254 We investigated the hypothesis of an association between autism and circular inference (H₁) in three 

255 ways: 1) correlations between model parameters and total AQ scores; 2) differences between the 

256 low- and high-AQ groups, defined as participants in the top and bottom 15% of the sample (AQ≥30, 

257 n=29 vs AQ≤16, n=30); 3) differences between subjects with an ASD diagnosis and those without, 

258 who also did not identify as part of the autism spectrum (ASD, n=21 vs ND, n=61; answers 1, 2 vs 

259 5 in Section A1 in S1 Supplementary Information). The nonparametric measures of Kendall rank 

260 correlation coefficient and Mann-Whitney U test were chosen, as model parameters were not 

261 normally distributed (Shapiro-Wilk test; p≤0.0068) and there is no reason to expect a linear 

262 relationship between them and psychiatric traits. The common language effect size statistic (f) was 

263 reported for the Mann-Whitney U [47]. All analyses were performed in MATLAB R2020a.

264

265 To quantify the evidence for the null hypothesis (H₀) in favor of the alternative one (H₁), we 

266 calculated the Bayes factors 01 (BF₀₁) for each of our tests. 1<BF₀₁≤3 constitutes weak evidence in 

267 favor of H₀, 3<BF₀₁≤20 positive evidence, and BF₀₁>20 strong [48]. Note that BF₁₀=1/BF₀₁. Bayes 

268 factors were calculated in JASP 0.14, using the default priors [49]. To verify the fitting and model 

269 selection processes, we performed parameter and model recovery on CINI and CII (Section A6 in 

270 S1 Supplementary Information), as SB and WB scored very poorly in model comparisons. 

271

272 Both models showed moderate recovery for the reverberation parameters (CINI 𝑎𝑝, r=0.54; 𝑎𝑠 

273 r=0.58; CII 𝑎𝑝, r=0.54; 𝑎𝑠, r=0.71), although this was partly due to Pearson’s correlation sensitivity 

274 to outliers [50] (Fig A2 and A3 in S1 Supplementary Information). The models exhibited excellent 

275 recovery for the weight parameters (CINI 𝑤𝑝, r=0.96; 𝑤𝑠, r=0.91; CII 𝑤𝑝, r=0.94; 𝑤𝑠, r=0.93). They 
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276 also showed no correlation between different parameters (Table A3 and A4 in S1 Supplementary 

277 Information). Model recovery was good for both models, with approximately 80% of the simulated 

278 participants being better fitted by their generating model (Table 1).

279

280 Table 1. Confusion matrix for model recovery.

Recovered

CINI CII

CINI 799 201Simulated

CII 185 815
281 Perfect model recovery would result in 1000 participants in the (CINI, CINI) and (CII, CII) cells, 

282 and 0 in the rest.

283
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284 Results

285 Model-free findings

286 Participant responses adapted to changes in both priors and likelihoods, showing that they took both 

287 sources of information into account to make their confidence estimate (Fig 3). Despite that, their 

288 behavior was not strictly Bayesian. A change from 0.5 to 0.4 or 0.6 in either prior or likelihood 

289 corresponded to a disproportionally large shift in the average response, indicative of signal 

290 reverberation. 

291

292 Fig 3. Average logit confidence estimates for all participants as a function of priors (A) and 

293 likelihoods (B).

294 Logit confidence estimates for the left lake increase following an increase in either prior probability 

295 for the left lake (baskets) or likelihood (fish ratios), showing that participants incorporate both 

296 information sources in their decision-making. However, their behavior is far from strictly Bayesian, 

297 as evidenced by the differences between colored and grey lines (SB confidence estimates). Different 

298 colors correspond to different likelihood (probability) values in the left graph and different prior 

299 (probability) values in the right.

300
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301 The fitting of a linear mixed-effects model, predicting the absolute confidence estimate, confirmed 

302 the influence of both absolute likelihood (t=40.30, p<10–323) and prior congruency (t=103.02, p<10–

303 323). It also showed a slight positive association with non-clinical delusional beliefs (PDI) (t=2.99, 

304 p=0.003) and a strong association with reaction times, with higher values corresponding to clicking 

305 towards the center of the scale (t= –18.49, p=10–75). The influence of autistic traits (AQ) on absolute 

306 confidence was weak and non-significant (t= –1.75, p=0.08). Neither AQ nor PDI were correlated 

307 with mean reaction times (AQ τ= –0.06, p=0.29; PDI, τ=0.05, p=0.33). The relationship between 

308 reaction times and absolute confidence might be a result of participants taking more time to respond 

309 when they are uncertain [51].

310

311 Model-based findings

312 Both random- and fixed-effects model comparisons showed that Circular Inference – No Interference 

313 was the best fitting model, followed by Circular Inference – Interference (Fig 4). Since model fit 

314 plots showed that both CINI and CII fit the data relatively well (Fig C1 in S1 Supplementary 

315 Information), for the sake of completeness, we conducted the same analysis with parameters from 

316 both models. Results from CINI are reported below, while those from CII can be found in S1 

317 Supplementary Information (Section C2).

318

319 Fig 4. Results of fixed (A) and random (B) model comparisons.
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320 (A) Group-level ΔBIC is defined as the sum of individual participant BIC scores for each model 

321 minus the sum for CII, used as a baseline, as it was the winning model in the Jardri et al. study [27]. 

322 The lower the BIC the better the model, with differences of more than 20 between BIC scores 

323 considered very strong evidence [48]. ΔBIC for CII is by definition 0. (B) Posterior model 

324 probabilities calculated using Bayesian model selection [44]. Both measures clearly show that 

325 Circular Inference models better account for the data, with CINI being a slightly better fit than CII.

326

327 There was no evidence of a relationship between prior or likelihood reverberation and total AQ 

328 scores (Table 2). The only correlation that reached an (uncorrected) p-value of lower than 0.05 was 

329 a negative correlation between AQ and the CINI prior weight (τ= –0.12, p=0.02, BF₁₀=1.57), but 

330 this did not survive controlling for multiple comparisons [52]. Furthermore, the low- and the high-

331 AQ groups behaved in a similar way (Fig 5), and the comparison between the parameters of high- 

332 and low-AQ groups did not reveal any difference, neither did the comparison between the ASD 

333 participants and those with no diagnosis (ND) (Fig 6, Table 3). Since it is possible that ND subjects 

334 with high autistic traits have an undiagnosed autism spectrum disorder, we performed an additional 

335 comparison between the ASD group and the subgroup of ND participants with weak autistic traits 

336 (AQ≤17, n=21). No difference between these groups was found (Section C1 in S1 Supplementary 

337 Information). A weak positive correlation was found between PDI and the likelihood weight (τ=0.13, 

338 p=0.02, BF₁₀=2.08; Table 2), that again is not significant when corrected. No relationship was 

339 present between psychiatric traits or diagnoses and CII parameters (Section C2 in S1 Supplementary 

340 Information).
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341

342 Fig 5. Participant confidence estimates and CINI model fits for the low-AQ (A) and the high-

343 AQ (B) groups.

344 Model and participant logit confidence as function of logit likelihoods and priors. Colored lines 

345 represent model predictions and rhombuses the participant confidence estimates. Different colors 

346 represent logit likelihood in A and logit prior values in B, and are equivalent to probabilities of 0.5 

347 to 0.9. Since both the task and the CINI model structure are symmetrical around 0 logit confidence 

348 (0.5 probability), participant estimates have been averaged between symmetric trials to reduce noise 

349 (e.g., a trial with a logit prior of –1 and a logit likelihood of 2 is symmetrical to one with a logit prior 

350 of 1 and a logit likelihood of –2).

351

352 Table 2. Kendall rank correlations between CINI parameters and psychiatric traits.
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AQ PDI
CINI 

params τ p BF₀₁ Τ p BF₀₁

𝒂𝒑 0.04 0.5 7.98 –0.04 0.48 7.76

𝒂𝒔 –0.02 0.65 9.11 0.01 0.85 9.94

𝒘𝒑 –0.12 0.02 0.64 0.07 0.20 4.14

𝒘𝒔 –0.02 0.69 9.35 0.13 0.02 0.48
353 Total AQ scores and Y/N PDI scores were used for the correlations. τ signifies the correlation 

354 coefficient. p-values are uncorrected for multiple comparisons. BF₀₁ stands for the Bayes factor 01, 

355 with higher values corresponding to stronger evidence for the null hypothesis.

356

357 Table 3. Mann-Whitney U test results between the CINI parameters of the ASD and ND groups 

358 and the low-AQ and high-AQ groups.

ND vs ASD low-AQ vs high-AQ
CINI 

params f p BF₀₁ F p BF₀₁

𝒂𝒑 0.55 0.50 3.82 0.54 0.63 3.60

𝒂𝒔 0.45 0.46 3.15 0.47 0.70 3.88

𝒘𝒑 0.47 0.64 3.85 0.40 0.19 1.96

𝒘𝒔 0.53 0.71 3.71 0.42 0.31 2.17
359 Total AQ scores were used for the comparisons. f signifies the common language effect size, with 

360 larger f values corresponding to larger parameter values for the ASD and the high-AQ groups. An f 

361 of 0.5 corresponds to no differences. p-values are uncorrected for multiple comparisons. BF₀₁ stands 

362 for the Bayes factor 01, with higher values corresponding to stronger evidence for the null 

363 hypothesis.
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364

365 Fig 6. CINI parameter values of ND vs ASD groups (Α) and low-AQ vs high-AQ groups (Β).

366 Violin plots show the density of estimated parameters over the possible values, relative to the 

367 subgroup size. Dashed lines in the middle represent the median, while dotted ones represent the top 

368 and bottom quartiles in each group. No differences are observed between groups.

369
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370 Discussion

371 In the present study, we investigated the relationship between circular inference and autistic traits or 

372 autism. Circular inference is an impairment in Bayesian hierarchical networks where top-down or 

373 bottom-up signals get reverberated throughout the network, becoming significantly amplified [23]. 

374 We hypothesized that stronger autistic traits and ASD diagnoses would be associated with stronger 

375 reverberation of priors or sensory evidence. We used the fisher task, a probabilistic decision-making 

376 task that had been used previously with patients with schizophrenia [27]. To our knowledge, this is 

377 the first study to explore signal reverberation in ASD. Our analysis showed that the circular inference 

378 models perform best across the whole sample, similarly to previous results [27,29]. However, our 

379 hypothesis was refuted. Specifically, no correlation was found between autistic traits and either 

380 reverberation parameter. Similarly, there were no differences in these parameters between the groups 

381 with the strongest and weakest autistic traits, and no differences between the autistic subjects and 

382 those with no diagnosis.

383

384 Circular inference attempts to model the effects of increased excitation-to-inhibition ratio, a 

385 phenomenon which has been strongly associated with schizophrenia [24,25]. Indeed, Jardri et al. 

386 found experimental evidence for stronger likelihood reverberation in patients with schizophrenia, 

387 using the fisher task [27]. On that account, our results are surprising, given the observed inhibitory 

388 impairments in ASD [33,34] and the commonalities between autism and schizophrenia regarding E/I 

389 imbalances [53,54]. Our findings reveal a divergence in the Bayesian mechanisms of the two 

390 conditions. This has also been observed by Karvelis et al., which showed an association between 

391 autistic traits and increased sensory precision, but no discernible imbalance in schizotypy, in a 

392 statistical learning task [55]. No other studies are known to us that compare ASD and SCZ using the 

393 same tasks and Bayesian models, despite the commonalities between their computational 

394 explanations (for reviews see [14,15]).

395
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396 In agreement with the findings of Jardri et al. [27], we found compelling evidence for signal 

397 reverberation across our sample. Interestingly though, one variant of the model, Circular Inference – 

398 No Interference (CINI), was a better fit for our data compared to the other variant, Circular Inference 

399 – Interference (CII), contrary to the Jardri et al. study. Additional analysis of the Jardri et al. dataset 

400 revealed that this is partially because we used fewer trials than in the original study (Section D2 in 

401 S1 Supplementary Information). Furthermore, even in the original dataset, CII was dominant mostly 

402 in the SCZ subsample, while it performed equally well with CINI in controls. The dominance of 

403 CINI across our sample (Section D2 in S1 Supplementary Information) could be an indication that 

404 prior beliefs and sensory evidence are usually reverberated and amplified separately in the brain. In 

405 schizophrenia, however, inhibition impairments in certain brain areas could lead these signals to get 

406 reverberated in a way that they interfere with each other, making CII a better fit for those individuals.

407

408 Surprisingly, we found no evidence for an association between prior or likelihood weights and ASD 

409 diagnoses or AQ scores. This result is seemingly in contrast with previous studies showing an 

410 overweighting of likelihoods relative to priors in autistic individuals or those with stronger autistic 

411 traits (e.g., [55–58]). However, these effects have been demonstrated exclusively in perceptual tasks, 

412 with the rare study of Bayesian decision-making in ASD showing no such imbalance [59]. Our 

413 analysis revealed a slight increase of absolute confidence with stronger non-clinical delusional 

414 beliefs (PDI), but no association between PDI and any model parameter. This confirms the Jardri et 

415 al. findings of no such relationship in healthy subjects, although only 8 participants had scores above 

416 the clinical PDI mean (M=11.9, [42]). This result would deserve further investigation with a more 

417 thorough assessment of schizotypy, so as to assess how it can fit with the dimensional view of 

418 schizophrenia [60].

419

420 Limitations and future work
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421 Through our recruitment methods, we had aimed to recruit participants with a broad range of autistic 

422 traits. However, the resulting variance of AQ in our sample (SD=6.5) was only marginally higher 

423 than what is found in the general population (SD=5.6, [43]). Moreover, only 4 participants had an 

424 AQ score of more than 1 SD below the neurotypical mean (M=16.9, [43]) and only 5 participants 

425 had an AQ above the clinical mean (M=35.2, [43]). A wider range of autistic traits would be useful 

426 in investigating Bayesian impairments that might be associated with the extremes of the AQ 

427 distribution. Moreover, the diagnoses of our participants in the Prolific subsample were self-reported. 

428 Our findings will need to be confirmed in a sample verified by a mental health professional, possibly 

429 differentiating between Autistic disorder, Asperger’s syndrome, and other related conditions [61]. 

430 Another limitation that also nuances the comparison with previous investigations in schizophrenia 

431 [27] concerns the fact that our experiment took place online. The lack of a lab-controlled environment 

432 could have substantially affected the quality of the collected data. Adding to that is the absence of 

433 in-person communication between participants and researchers, so the instructions of the task could 

434 have been clearly conveyed and possible questions answered. Such effects were visible in our dataset 

435 by the large portion of subjects that were excluded (≈14%). 

436

437 As with other findings relating behavior to Bayesian inference impairments, it will be important to 

438 assess how our findings can be generalized to other tasks or modalities. Circular inference is 

439 formalized within a hierarchical Bayesian framework of cognitive processing. This framework 

440 assumes that priors express the (top-down) influences of the more abstract representations of the 

441 environment to the less abstract ones, while likelihoods encode the reverse (bottom-up) influences 

442 [62]. It is difficult to verify that the information presented in the current task (baskets and fish 

443 proportions) is encoded by subjects in the expected way – that is, that the preferences of the fisherman 

444 correspond to more abstract or contextual information and the fish proportions to more sensory. If 

445 these stimuli were processed by the participants as being in the same conceptual level, the task 

446 structure would be more akin to a delayed cue integration task [63]. Additionally, it is possible that 
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447 the basket size is treated by participants as a qualitative variable, leading them to disregard the exact 

448 difference in size, something that would appear as prior overcounting in the models. We believe that 

449 these concerns do not invalidate our results, but further research would be needed to understand how 

450 delayed cue integration tasks or qualitative information fit within the circular inference framework. 

451

452 Future research should replicate both ASD and SCZ findings in other tasks, involving different 

453 cognitive modalities. The social beads task of Simonsen et al. [29], for example, might be well suited 

454 for the investigation of signal reverberation in ASD, given the condition’s impairments. Perceptual 

455 tasks, on the other hand, would avoid conscious strategies that are especially prevalent in decision-

456 making, focusing instead on more fundamental computations in the brain and connecting circular 

457 inference with the rest of the Bayesian literature. Equally important is clarifying the connection 

458 between reverberation and neurophysiological measures, with a focus on the spatial patterns of E/I 

459 imbalances across brain areas. Differences in such patterns could explain why computational [14,15] 

460 and neurobiological [4,9] theories of ASD and SCZ partially overlap, while their phenotypic 

461 expressions differ [53].
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