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Rapid and consistent protein identification across large clinical cohorts is an impor-

tant goal for clinical proteomics. With the development of data-independent technolo-

gies (DIA/SWATH-MS), it is now possible to analyze hundreds of samples with great

reproducibility and quantitative accuracy. However, this technology benefits from em-

pirically derived spectral libraries that define the detectable set of peptides and proteins.

Here we apply a simple and accessible tip-based workflow for the generation of spectral

libraries to provide a comprehensive overview on the plasma proteome in individuals

with and without active tuberculosis (TB). To boost protein coverage, we utilized non-

conventional proteases such as GluC and AspN together with the gold standard trypsin,

identifying more than 30,000 peptides mapping to 3,309 proteins. Application of this li-

brary to quantify plasma proteome differences in TB infection recovered more than 400

proteins in 50 minutes of MS-acquisition, including diagnostic Mycobacterium tubercu-

losis (Mtb) proteins that have previously been detectable primarily by antibody-based

assays and intracellular proteins not previously described to be in plasma.

Introduction

Mass spectrometry-based proteomics is among the most promising technologies for biomarker

discovery due to the ability to simultaneously detect thousands of proteins, post-translational

modifications, and isoforms, all of which holds great potential as future biomarkers.1 This

high throughput approach can lead to the identification of proteins that can be translated

into simple, affordable, and non-invasive assays at the point-of-care for disease diagnosis

and monitoring. For example, tuberculosis (TB) is a leading cause of mortality from an

infectious disease globally for which diagnosis remains a key challenge. There is a critical

need for rapid, low-cost, point-of-care assays but there are few promising biomarker2 targets

for assay development. Proteomics offers the potential to address this challenge and facilitate

advances in diagnostics development for TB and other diseases.

.
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Plasma is easy to obtain and has been used for diagnosis of a variety of infectious dis-

eases, such as AIDS,3 Hepatitis C4 and recently, Sars-CoV-2.5 The plasma proteome also

represents a particularly challenging matrix to analyze due to the large dynamic range of

protein concentrations spanning 10 orders of magnitude and the overwhelming presence of

a select set of highly abundant proteins (e.g. albumin). Historically, this has limited both

the number of proteins detected, as well as the reproducibility of detection. To mitigate

issues in protein detection, numerous studies have successfully employed extensive off-line

chromatographic fractionation, allowing for the injection of individual fractions of reduced

complexity into the mass spectrometer. This approach has been highly successful to in-

crease the number of proteins detectable in plasma,6,7 albeit at the cost of a correspondingly

dramatic increase in MS acquisition time to analyze dozens of fractions. Furthermore, the

reliance on off-line fractionation introduces a low-throughput and cumbersome additional

step in sample preparation that is not accessible to many labs.

Reproducible protein quantification is also critical for biomarker discovery, as differences

in the abundance of specific proteins can be used as a clinical marker. Regardless of the

method of quantification employed, data-dependent acquisition (DDA)8 strategies suffer

from stochastic precursor ion sampling resulting incomplete quantification, particularly with

increase sample numbers.9 In contrast, data independent acquisition mass spectrometry ap-

proaches (DIA/SWATH-MS)10 sequentially sweep across m/z precursor isolation windows

to acquire multiplexed tandem mass spectra irrespective of which peptides are being sam-

pled. This results in highly complete and consistent quantification that readily scales for the

analysis of hundreds or thousands of samples. While DIA offers great potential for plasma

proteomics, most studies have been limited to measuring ≈ 300 proteins,11 partially due to

the lack of comprehensive spectral libraries that are used to guide peptide identification and

quantitative data extraction.

Here we offer a plasma proteomics spectral library in which we have utilized accessible tip-

based fractionation and non-conventional proteases to boost proteome sequence coverage,
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and combined this with a DIA-MS strategy to reproducibly quantify the differential regula-

tion of the plasma proteome upon active TB infection.

Material and Methods

Sample-specific library generation

Plasma samples from 3 adults with (0 with HIV) and 3 adults without (0 with HIV) active

pulmonary TB were used from the FIND specimen bank. The samples were inactivated by

addition of 2x inactivation buffer (8M urea, 100mM ammonium bicarbonate, 150 mM NaCl)

in a 1:1 v:v ratio, followed by addition of RNAse (NEB) to 0.75µL/mL concentration. 10 µL

of plasma from the individuals with active TB were pooled and depleted using the top12 most

abundant depletion kit (Thermo-Fisher) according to manufacturer’s instructions. Following

depletion, the samples were boiled at 90 °C for 5 minutes. Denatured proteins were reduced

with 5 mM TCEP for 30 minutes at 56 °C and then alkylated with 10 mM of chloroacetamide

for 30 minutes at room temperature in the dark. The samples were then loaded into a

Vivaspin 3 KDa MWCO (Sartorius) and washed thrice with 200 µL of MS-grade H2O.

Samples were resuspended in 100 µL of 50 mM ammonium bicarbonate and then subjected

to proteolysis using either 2 µg of trypsin (Promega), 2 µg of AspN (Promega), or 2 µg of

GluC (Sigma-Aldrich) overnight at 37 °C on a shaker at 1000 rpm. Peptides were collected

by centrifugation (8000 g for 30 minutes) and the filters were washed once with 100 µL of

ddH20. To perform basic reverse phase fractionation, the samples were acidified to 0.1% TFA

final concentration. C18 spin columns (Nest group) were activated with 1 column volume of

ACN and equilibrated with two column volumes of 0.1% TFA. Peptides were bound to the

column and washed twice with 0.1% TFA. For elution, 7 solutions were used with increasing

concentration of ACN in 0.1% triethylamine from 2.5% to 20% and following the last elution

the column was washed twice with 1 column volume of 50% ACN (see Supplementary Table

1). Fractions were dried under vacuum and resuspended in 15 µL buffer A (0.1% FA in
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MS-grade H20) and approximately 500 ng were subjected to proteomic analysis.

In plate sample processing for Mtb positive and negative samples

5 µL of plasma from individuals with and without TB diseases were inactivated following a

similar procedure to the library generation and were separated into three samples (AspN,

GluC, and Trypsin). Each samples was then loaded on a 96 well filter plate (Acroprep,

PALL) with 3 KDa MWCO cutoff. Samples were washed twice with 200 µL of MS-grade

H2O. 50 µL of TUA buffer (8M Urea, 5 mM TCEP, 25 mM ammonium bicarbonate) were

addded and the samples were incubated on a thermo shaker at 37 °C and 400 rpm for 1 hour.

Chloroacetamide was added to 10 mM final concentration and samples were incubated at

room temperature in the dark for 30 minutes. Buffer was removed by centrifugation at 1000

RPM for 1 hr and samples were washed thrice with 200 µL of MS-grade water and centrifuged

to dryness. Proteins were resuspended in 50 µL of 25 mM ammonium bicarbonate. 1 µg of

either trypsin, AspN, or GluC were added to each corresponding well and incubated on a

shaker at 37 °C overnight. Peptides were recovered by centrifugation at 1000 rpm for 1 hour

and plate was washed twice with 100 µL of MS-grade H2O. Peptides were transferred to low-

binding tubes and the receiver plate was washed with 100 µL of 80% ACN to increase recovery

of hydrophobic peptides. Peptides were dried under vacuum and resuspended in 12 µL buffer

A (0.1% FA in MS-grade H20). 3 µL per tube was pooled together and pooled sample was

defined as multi-enzyme digested sample (MS pool). Approx 500 ng were analyzed by mass

spectrometry.

DDA Pasef acquisition for spectral library generation

Data for each fraction was acquired on a timsTOF Pro mass spectrometer (Bruker) interfaced

with a Thermo Easy-nLC 1200 (Thermo Fisher Scientific). The peptides were separated at

a flow rate of 400 nL/min over a manually packed 15 cm long column containing 1.7 µm

BEH beads (Waters) packed with a silica PicoTipTM Emitter (inner diameter 75 µm) (New
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Objective, Woburn, USA). Peptides were eluted from the column using a linear gradient

from 2% to 32% buffer B (80% acetonitrile and 0.1% formic acid in HPLC grade H2O) in

Buffer A (0.1% formic acid in HPLC grade H2O) with a total length of 90 minutes. The

peptides were sprayed into the timsTOF Pro using a CaptiveSpray source (Bruker), with a

end plate offset of 500 V , a dry temp of 200 °C, and with the capillary voltage fixed at 1.6

kV . The mass spectrometer was operated in positive ion mode. For DDA acquisition the

timsTOF Pro (Bruker) was operated in PASEF mode using Compass Hystar v5.1 and oTOF

control v6.2. The mass range was set between 100-1700 m/z, with 10 PASEF scans between

0.6 V s/cm2 and 1.6 V s/cm2. Accumulation time was set to 2 ms and ramp time was set

to 100 ms. Fragmentation was triggered at 20,000 arbitrary units (a.u.) and peptides (up

to charge 5) were fragmented using collisionally-induced dissociation (CID) with a spread

between 20 eV and 59 eV .

DIA Pasef Acquisition

For DIA acquisition, each sample was acquired on the same HPLC-MS setup previously

described, and analyzed with either the 90 min gradient used for DDA analysis, or a shorter

50 minute gradient in which peptides were separated for 35 minutes using a linear gradient

of buffer B (80 % acetonitrile and 0.1% formic acid in HPLC grade H2O) from 5% to 33%,

then buffer B was increased to 40% in 5 minutes and the column was washed at 90% for

10 minutes before the next run. The separation was done at 400 nL/min while the column

wash was performed at a flow rate of 500 nL/min. Similar MS1 range, PASEF parameters,

and fragmentation parameters were employed as described above for DDA. 12 DIA-PASEF

scans were performed.

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.28.441706doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.28.441706
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mass spectrometry data analysis

Sample-specific library generation

The AspN library and trypsin libraries were generated using Spectronaut.12 The samples

were searched using Pulsar against a combined database encompassing the Mycobacterium

Tubercolosis proteome (4081 entries, downloaded from Uniprot on the 12/02/21) and Homo

Sapiens proteome (20,397 entries, downloaded on 07/01/21). The default BGS settings

without iRT normalization were used. The GluC spectral library was generated using MS-

Fragger.13 Briefly, the ’SpecLib’ workflow was employed using default parameters. The

number of missed cleavages was fixed to 2, using cysteine carbamydomethylation as fixed

modification, N-terminal acetylation and methionine oxidation as variable modifications.

The GluC DDA-PASEF files were also searched against the combined human-Mtb database.

Decoys were generated by pseudo-inversion as previously described.14 Both searches were

performed with 1% FDR at peptide and protein level. EasyPQP (https://github.com/

grosenberger/easypqp, commit #dfa4ead) was used to generate the aligned retention time us-

ing high confidence iRT (ciRT). The resulting library was then converted into a Spectronaut-

compatible library using an in-house Python script. The final sample specific spectral as-

say combined data from all proteases and encompasses 765,411 assays from 30,400 pep-

tides mapping to 3309 protein groups (Supplementary Table 2). The spectral assay library

has been deposited to the ProteomeXchange via the PRIDE15 partner repository with the

dataset identifier PXD025671. To compute sequence coverage the protein coverage sum-

marizer from the Pacific Northwest National Laboratory was used (https://github.com/

PNNL-Comp-Mass-Spec/protein-coverage-summarizer).

Data processing and analysis for DDA and DIA data

DIA data for each protease was searched independently for both 90 minutes and 50 minutes

gradients using Spectronaut and the correspondent spectral library. The settings employed
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in Spectronaut were default BGS (iRT normalization kit off) and each file was exported

at the peptide level. For protein inference the average top3 peptide intensities were used.

The resulting protein level matrix was log2-transformed and the data was normalized using

median-centering. For missing value imputation, a distribution-based strategy was employed.

For each sample, we selected the lowest 10% of values and calculated standard deviation (σ)

and mean (µ). We then generated a normal distribution having similar σ but downshifted

mean by 1.8 × σ. Rational for this imputation strategy is that lack of peptide detection

cannot be differentiated between precursor ion intensity being below the limit of detection

(LOD) or true biological absence. By sampling intensities below the LOD (defined here as

the lowest 10% of recorded values per MS-injection) we assume that all not-detected peptides

are below the LOD of the instrument. Following normalization and imputation the log2FC

was calculated as ratios of the average intensities between Mtb infected and not infected

individuals in log space. P were calculated using a two-tailed Welch t-test and corrected for

multiple testing using the Benjamini-Hochberg correction. The coefficient of variation was

calculated on the non-log transformed data and defined as σ
µ
.

For estimation of concentration for proteins detected in the spectral library, the con-

centration was downloaded from Human Protein Atlas16 (https://www.proteinatlas.org/

humanproteome/). Concentrations were converted to ng/L and a quadratically penalized

general linear model (GAM) was used for regression using logged intensity and logged

concentration values. To estimate the concentration of Mtb proteins, the combined li-

brary was subset to only Mtb peptides and imported into Skyline v 20.2.0.343 (https:

//skyline.ms/project/home).17 Each transition was then exported for all spectral library

DDA runs using its specific protease and fragment-level intensities. Transitions were summed

up into peptides and then peptide intensities were average across proteases and fractions (in

case of identification in multiple fractions) to obtain the overall protein intensity used for

further concentration analysis. Interpolated value were used as is to estimate the concen-
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tration for the detected Mtb proteins and the rest of the identified proteins. Spectrums for

ALKEGNER and DGRAVLR peptide were annotated using the IPSA tool.18 For enrichment

analysis, Enrichr19 was used (https://maayanlab.cloud/Enrichr/) and the corrected p was

used for all plots.

All data analysis was performed in python v3.8.1 (https://www.python.org) using pan-

das v1.1.3 (https://pandas.pydata.org), numpy v1.19.2 (https://numpy.org),20 scikit-learn

v0.23.2 (https://scikit-learn.org/stable/).21

Figures 2 ACD, 3 AB, 4 AB, 5 ABCD and supplementary figures 2,3,4 were generated in R

version 4.0.3 (https://www.r-project.org), using ggplot2 v3.3.2 (https://ggplot2.tidyverse.

org) and ggpubr v0.4.0 (https://github.com/kassambara/ggpubr). Venn diagramms in fig-

ures 2B and supplementary figure 1 were generated using matplotlib v3.3.2 (https://matplotlib.

org) and matplotlib-venn v0.11.6 (https://github.com/konstantint/matplotlib-venn). Figure

3 panel C and D were generated within the IPSA website. Workflow figure (Figure 1) was

created using BioRender.com.

Results

Comprehensive plasma proteome spectral library generation

To reduce the sample complexity and facilitate the detection of low abundant proteins upon

proteomic analysis, we first performed a depletion of high abundant proteins (Figure 1) and

then individual aliquots of the depleted plasma were digested using either trypsin, AspN,

or GluC. Finally, we applied a reversed-phase tip-based fractionation scheme (see method

for details) under basic pH to generate orthogonal fractions and analyze each fraction in

DDA-PASEF mode using a novel ion-mobility mass spectrometer.22

The resulting spectral library encompassed in total unique 30,400 peptides of which 20,567

are derived from the trypsin digested samples, 2,924 from the AspN, and 6,942 from the

GluC (Figure 2A). These numbers translate into 3,309 protein groups being identified across
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Figure 1. Schematic of the experimental workflow employed.

all proteases (Supplementary Table 2), with additional proteins being identified by digestion

with either GluC or AspN (Figure 2B), possibly due to the generation of peptides more

amenable for proteomics analysis.23,24 As expected, we observed an averaged increase in

sequence coverage (7%) when combining AspN and GluC to the tryptic digested samples

(Figure 2C). For 70% of the identified proteins we found annotation of their existence in

plasma either in the Human Protein Atlas16 or Peptide Atlas,25 while 40% were found in both

of these databases (Supplementary Figure 1). Notably, these databases are a combination of

several hundred experiments, while we recapitulated a large portion of the identified proteins

within a less than a day of MS acquisition.

Proteins were detected across 8 orders of magnitude based on their reported concentrations

from the Secretome Atlas,16 ranging from 3 ng/L (HUWE1 ) to > 8e8ng/L (CP); showcasing

the great sensitivity of the TimsTOF Pro for detection of low abundant proteins (Figure 2D).

We observed linearity between MS response and concentration (R2 = 0.88) over 5 orders of

magnitude, suggesting a great degree of quantitative accuracy, which is essential for large

scale biomarker studies.
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Figure 2. Description of the plasma spectral library derived from the
combination of multiple proteases. A Barplot showing the number of peptides for
each protease (AspN, GluC, Trypsin) and their combination. B Venn diagram showing the
overlap of identified proteins for each protease. C 2D scatterplot illustrating the increase in
sequence coverage by combined results from ApsN, GluC, and trypsin (Y axis) compared
to only trypsin digestion (X axis). Each dots represents an individual protein. Color
represents the percentage of increase in sequence coverage. D 2D scatterplot showing the
estimated protein concentration from Human Protein Atlas16 on the X-axis and the MS
response on the y axis.

Identification and quantification of Mtb proteins

Mycobacterium tuberculosis (Mtb) proteins have been challenging to detect in plasma due to

their intrinsic low abundance, estimated to be in the picomolar range,26 and their possible

clearance by the immune system in immunocompetent individuals. In our samples from

immunocompetent patients, we detected 10 Mtb proteins (Figure 3A) across all enzymes
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remaining proteins in the spectral library (red density). C, D Annotated MS2 spectrum
for two proteotypic mtcA2 peptides identified using Trypsin (C) or AspN (D).

employed.

We proceeded to estimate the concentration of the Mtb proteins using generalized additive

models (see Method for details). Among these proteins we identified those known to be

secreted such as the tyrosine phosphatases PtpB 27 for which we observed one of the lowest

estimated concentrations among all TB proteins detected (≈ 6−7µg/L). Interestingly, while

the proteins expressed at the highest abundance in the infection site (lungs) are reported

to be the component of the cholesterol metabolism and nitrogen processing pathways,28 we

identified additional metabolic enzymes such as nrdB and mtcA2, potentially suggesting

these proteins are secreted or more likely released after clearance of Mtb by immune cells.
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To further support the presence of mtcA2 in the analyzed plasma sample, we manually

extracted all identified peptides using Skyline17 for all proteases employed (Figure 3C and

D). Comprehensive fragment coverage and the presence of two proteotypic peptides for this

protein are observed, confirming its presence in our samples. Among the other proteins

detected, we observed the transporter Rv2994 which is an uncharacterized Mtb protein

recently shown to be clinically valuable for Mtb serodiagnosis.29 Lastly, Rv2204c has also

been shown to be a marker of active and latent Mtb infection.30,31

DIA analysis of multi-protease digested Mtb infected samples
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Figure 4. Comparison between in-silico pooled sample and MS acquired pooled
sample A Cumulative number of identified proteins and peptides from all proteases (in
silico pooled sample), MS acquired pool and trypsin B Density plot for peptide intensities.

DIA analysis of each protease sample individually resulted in the combined detection (in

silico pool of 14,665 peptides (636 proteins), the majority of which resulted from trypsin

digestion (Figure 4A). Each sample was analyzed also both using a short (50 minutes) or

a longer (90 min) chromatographic gradient. We found the number of proteins or peptide

did not significantly increase with longer gradients (Figure 5A, Supplementary Figure 2),

highlighting the fast duty cycle of qTOF mass spectrometers.32
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Figure 5. Differential analysis of Mtb infected samples using DIA-MS. A.
Boxplot showing the number identified peptides by trypsin and the MS pooled sample
using 50 and 90 minutes chromatographic gradients. Box represents the interquantile range
(IQR) and its whiskers 1.5×IQR. Each dot represents one individual sample. P value
represents the results of a paired Student t-test. B. Lineplot illustrating the number of
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BH-adjusted p-value. D. Barplot showing the enriched GO terms for upregulated proteins.
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We also mixed samples from each protease into a single samples and performed DIA of this

pooled samples (MS pool). Comparison of the MS-pooled sample to the in-silico generated

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.28.441706doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.28.441706
http://creativecommons.org/licenses/by-nc-nd/4.0/


one showed a recovery of 73% (10,572/14,465) at the peptide level compared to the in-silico

pooled sample (as depicted in Figure 4A) albeit at a reduced number of proteins identified

(489) compared to trypsin (581). We hypothesized this effect was dependent on the presence

of several high-abundant peptides in each protease-digested sample, and that such pooling

masked the detection of low abundance peptides due to an increase in the total fraction of

the sample comprised of high abundance peptides. Indeed, when comparing the distribution

of detected peptides in the MS-pooled sample and the in-silico pooled sample, we observed

a decrease in identification of low-abundant peptide precursors in MS-analyzed sample, with

an increase in high-abundant peptides (Figure 4B) corroborating our hypothesis.

Additionally, the MS-pooled DIA data showed great consistency of protein identification

(Figure 5B) and quantitation resulting in only 17% of incomplete features (defined here

as peptides not consistently identified across all samples), which outperforms the trypsin

digested samples by ≈ 6% in the 50 minutes gradient and ≈ 20% in the 90 minutes gradient.

This consistency resulted in an average coefficient of variation (CV) of 38% (Supplementary

Figure 3A) for the pooled data, approximately 8% less of the tryptic samples (p = 1.5×10−5)

and an overall lower number of missing values across samples (Supplementary Figure 3B).

While statistically underpowered due the small number of samples analyzed, we identified

34 proteins being enriched in the TB diagnosed samples compared to the control samples.

Among the top dysregulated proteins we found several proteins which are known to be

involved in TB pathology. For example, we observed elevated (Log2 fc = 2.97) Macrophage

mannose receptor 1 (MRC1 ) protein which is a C-type lecitin responsible for recognition

of bacterial infection.33 Additionally, we found the protein cluster of differentiation 163

(CD163 ) increased upon active TB. This protein mediates the transition from monocyte to

macrophages and has been previously reported to be of clinical relevance as a biomarker

of treatment efficiency and overall diseases progression.34 Unsurprisingly, the majority of

the upregulated proteins are part of inflammatory pathways (Figure 5D) which shows the

burden of the immune system in Mtb infected individuals. Gene-disease association analysis
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revealed the enriched proteins to be primarily associated with pneumonia (Supplementary

Figure 4). When analyzing the downregulated proteins, we observed several immunoglobulins

having lower abundance in our TB cohort compared to the healthy controls. Interestingly,

this has also been observed in another proteomics study.7 Overall our analysis recapitulates

previous findings and showcases the applicability of DIA and multi-protease digestion for

robust analysis of clinical samples.

Discussion

Clinical proteomics play an important role in understanding the pathogenesis of human dis-

ease and identifying new biomarkers for diagnosis and treatment monitoring. As plasma

is easy to obtain and commonly used in diagnostic testing, we developed a novel protocol

that utilizes orthogonal proteases coupled with DIA-MS to improve dynamic range, protein

coverage, and quantification. While mass spectrometry has not been routinely used in large

scale clinical trials and biomarker discovery cohorts, it has the potential to be a key tech-

nology for robust protein detection and quantification in a variety of clinical settings. We

have demonstrated its utility in TB disease, which triggers a large host response and creates

a complex plasma sample that can challenge standard mass spectrometry approaches.

From a biological perspective, our results recapitulate several previous transcriptomic and

proteomic analyses from TB patient samples, such as the upregulation in inflammatory

pathway components reported to be specific for TB disease.35 The sensitivity of our meth-

ods enabled the recovery of nearly half of the previously reported plasma proteins within a

single fractionation experiment and resulted in the identification and quantification of diag-

nostic Mtb proteins in plasma, which were previously accessible primarily by antibody-based

assays. Interestingly, this included the detection of intracellular Mtb proteins not expected

to be secreted and suggests the intriguing hypothesis that, even before treatment, a fraction

of Mtb is cleared and the proteins are released in the circulation. The recent discovery of
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several mechanisms by which the pathogen releases extracellular vesicles36 (EVs) could also

provide an explanation for our observation. While none of the Mtb proteins detected here

have been reported in Mtb vesicles,37 EVs composition is known to vary38 thereby more work

is needed to highlight the compositional heterogeneity of Mtb vesicles. Thus, these findings

highlight the need for unbiased analysis of biofluids to gain insights into TB biology.

The rapid development of DIA-MS shows great potential towards biofluid analysis, however

previous studies were limited in the number of proteins identified due the lack of comprehen-

sive spectral assay libraries. Here we shown the use of non-conventional proteases combined

with DIA-MS to increase coverage of the plasma proteome. The combination of multiple

proteases within a single sample improved identification and quantification robustness, which

are key features for technologies currently applied in modern diagnostic (PCR, NGS, etc).

While we observed a slight decrease in protein identifications upon pooling proteases in DIA

analysis, the proteins additionally identified by trypsin were not consistently found across

samples and are thus unlikely to have potential clinical utility.

Altogether, we showcase the applicability of library-based DIA-MS for plasma proteomics

for consistent recovery of hundreds of proteins with a great degree of quantitative accuracy.

We anticipate our spectral library can serve as a useful as a base for future biomarker studies

utilizing the timsTOF Pro, or complemented with additional assays to increase proteome

coverage. While our approach showed improvements over previous methods, a limitation is

that current tools for DIA analysis, and more broadly DIA acquisition, have been developed

specifically for tryptic digests. Thereby it is conceivable to develop ad-hoc DIA windows

schemes which exploit differences between proteases (e.g. z, m/z, etc.) to more comprehen-

sively sample the precursor space while reaching an optimal duty cycle. Further advances in

software could also include FDR models trained on non-tryptic sets or novel decoy-generation

methods may also significantly improve the number of peptides which are possible to extract

from DIA data using alternatives proteases. Looking forward, the application of alternative
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proteases could be beneficial to perform deep proteomic profiling of clinical specimen and to

increase the confidence in identified proteins in large clinical cohorts.

Conclusions

We used digested plasma from different proteases and acquired them in DIA-MS using a

library derived from a tip-based fractionated representative plasma sample. We showed

increased sequence coverage, robustness, and reduced missing values for the combination of

AspN, GluC, and trypsin compared to a standalone tryptic digested sample.
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pooled DIA data using 50 minutes chromatographic gradient A Violin plot
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Table 1. Reverse phase fractionation scheme employed

Fraction number ACN%

1 5%
2 7.5%
3 10%
4 12.5%
5 15%
6 17.5%
7 20%
8 50%

Table 2. Description of spectral library derived from AspN, GluC and Trypsin
digested plasma

Enzyme Assays Peptides Protein groups

AspN 69557 2924 411
GluC 155787 6942 519
Trypsin 540657 20567 3272

Combined 765411 30400 3309
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