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Abstract 

 

Conventional molecular recognition elements, such as antibodies, present issues for the 

development of biomolecular assays for use in point-of-care devices, implantable/wearables, and 

under-resourced settings. Additionally, antibody development and use, especially for highly 

multiplexed applications, can be slow and costly. We developed a perception-based platform based 

on an optical nanosensor array that leverages machine learning algorithms to detect multiple 

protein biomarkers in biofluids. We demonstrated this platform in gynecologic cancers, which are 

often diagnosed at advanced stages, leading to low survival rates. We investigated the platform for 

detection in uterine lavage samples, which are enriched with cancer biomarkers compared to blood. 

We found that the method enables the simultaneous detection of multiple biomarkers in patient 

samples, with F1-scores of ~0.95 in uterine lavage samples from cancer patients. This work 

demonstrates the potential of perception-based systems for the development of multiplexed sensors 

of disease biomarkers without the need for specific molecular recognition elements.   
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Introduction 

 

Current biomolecular identification methodologies rely heavily on one-to-one recognition 

via specific proteins and nucleic acids such as antibodies, peptides, and aptamers to bind analytes.1-

5 However, the development of highly sensitive and specific binding moieties in a quantity 

sufficient to detect target molecules with one-to-one recognition has multiple challenges that delay 

the development of a robust, versatile, and cost-effective platform for multiple analyte detection. 

The challenges of using antibodies include long-term stability/robustness, transient/real-time 

applications, and production difficulties, especially when many different antibodies must be 

developed.6-8 Hence, technologies that replace antibodies could enhance the development of 

certain types of point-of-care assays, medical devices such as wearable sensors, and aid diagnostics 

in under-resourced settings, where cold chain storage is limited.9, 10 

Perception-based machine learning platforms, modeled after the complex olfactory system, 

can isolate individual signals through an array of relatively non-specific receptors.11 Each receptor 

captures certain features and the overall ensemble response is analyzed by the neural network in 

our brain, resulting in perception. Biofluids such as blood, urine, saliva, and sweat are indicative 

of physiological conditions and enable biomarker detection in their native state.12, 13 Recent 

advances in machine learning (ML) methodologies have made complex algorithms more 

accessible, facilitating the integration of perception systems into materials science.14, 15 We believe 

that perception-based sensors can be developed to enable the successful, multiplexed detection of 

analytes without the need for antibodies.  

Previous attempts to develop perception-based sensing platforms have had limited success. 

Prior works include the "electronic nose" 16-19 for gas sensing based on conducting polymers, 

DNA-decorated field-effect transistors,20, and protein recognition using simple data analytic 
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techniques.21 “Optical” noses have been developed as well.22, 23 However, these developments are 

limited in their ability to detect molecules such as proteins and in physiological conditions and 

complex biofluids. To overcome limitations associated with one-to-one recognition elements, we 

are investigating the development of a perception-based methodology that uses ML processes 

coupled with a sensor array, where each element exhibits moderate selectivity for a wide range of 

molecules.  

The prognosis and quality of life of cancer patients are significantly affected by the ability to 

accurately diagnose diseases at an early stage. One such example is ovarian cancer (OC), the fifth-

leading cause of cancer-related deaths among women in the United States and first among 

gynecologic malignancies,24 with 22,000 new cases and 14,000 deaths per year.24 The five-year 

relative survival rate for patients diagnosed with ovarian cancer is 44%,25 while detection at stage 

I can increase the five-year survival rate to more than 90%.26 However, there are no methods to 

date that achieve early, accurate diagnoses, nor are there strategies to rapidly determine patient 

response to treatment in order to inform the choice of therapy.  

To detect gynecologic cancers, such as high-grade serous ovarian carcinoma (HGSOC)27-29, 

and endometrial cancers,30, 31 FDA-approved serum biomarkers such as cancer antigen 125 (CA-

125) and human epididymis protein 4 (HE4) have been used as well as ultrasonography. However, 

these methods lack the sensitivity to detect early-stage cancer and have had little impact on 

survival.32, 33 A recent study of uterine lavage (or uterine washings, fluids removed from the uterus 

after perfusion with saline) discovered significantly higher levels of biomarkers, such as HE4, CA-

125, chitinase-3-like protein 1 (YKL-40), and mesothelin (MSN) than those found in serum.34 

Therefore, the use of uterine lavage has the potential to improve early detection. 
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Single-wall carbon nanotubes (SWCNTs) have unique optical properties and sensitivity 

which make them valuable as sensor materials.35 SWCNTs emit near-infrared (NIR) 

photoluminescence with distinct narrow emission bands that are exquisitely sensitive to the local 

environment.36 In addition, the emission is photostable, enabling quantitative and long-term 

monitoring of small-molecules, proteins, nucleic acids, and enzymatic activities both in vitro and 

in vivo.37-41 Individual SWCNT species (or chiralities) have distinct bandgaps, which contribute to 

their varying sensitivities to the redox and charge phenomena.42-44 Coatings such as DNA can 

confer not only colloidal stability in an aqueous solution but also selectivity by modulating the 

surface coverage and bandgaps.45 The use of DNA-wrapped SWCNTs (DNA-SWCNTs) has been 

used for the detection of a wide range of analytes in biological media, including in live cells and 

animals.41, 46   

In this study, we investigate a machine-perception (MP)-based sensing system to detect 

multiple biomarkers in human biofluids (Fig. 1). We developed a DNA-SWCNT-based 

photoluminescent sensor array wherein the optical responses were used to train machine learning 

models to detect gynecologic cancer biomarkers HE4, CA-125, and YKL-40 in laboratory-

generated samples and patient fluids. Distinct changes in fluorescent peak position and intensity 

values from each DNA-SWCNT combination were observed in response to the protein analytes. 

Machine learning algorithms support vector machine (SVM), random forest (RF), and artificial 

neural network (ANN) enabled the prediction of both the presence (classification) and 

concentration (regression) of each biomarker. In uterine lavage samples, the classification results 

were highly accurate, producing F1-scores of ~0.95 in laboratory-generated samples and 

classification successes of 100% for HE4 and CA-125 and 91% for YKL-40 in cancer patient 
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samples. This work suggests that a nanosensor/perception-based sensing system can accurately 

detect multiple disease biomarkers in patient biofluids.  

 

 

Figure 1. Machine-Perception Nanosensor Platform. (1) Eleven single-stranded DNA 

oligonucleotides wrap SWCNT chiralities to form DNA-SWCNT sensor complexes. (2) The array 

of sensors is incubated in the sample of interest. (3) The optical response of the sensors is 

interrogated by high-throughput near-infrared spectroscopy. (4) The spectroscopic data are fitted 

to determine the wavelength and intensity of each sensor emission band. (5) The sensor responses 

are processed into a feature vector training set. (6) Machine learning algorithms are trained and 

validated for each target protein and their combinations. (7) Prediction results are evaluated.  
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Results  

 

DNA-SWCNT array 

We characterized multiple DNA-SWCNT complexes to form the basis of a sensor array. 

Eleven DNA sequences ((AT)11, (AT)15, (AT)20, (GT)12, (ATT)4, (TCT)5, T3C3T3C3T3, C3T9C3, 

C3T3C9, CT2C3T2C, and (AC)15) were chosen because many of them are recognition sequences of 

specific SWCNT chiralities, which suggest ordered wrapping on their surface, while others confer 

some degree of specificity to proteins or other analytes.47-50 Twelve semiconducting SWCNT 

species present in the HiPCO preparation ((6,5), (8,4), (10,3), (7,5), (7,6), (8,3), (9,5), (9,4), (8,6), 

(8,7), (10,2), and (9,7)) were evaluated due to their high concentrations in the sample and bright 

photoluminescence in the serum/water optical window of 900-1400 nm (Fig. S1A, B). The 

combinatorial possibilities of 12 SWCNT species and 11 DNA sequences resulted in the formation 

of 132 distinct DNA-SWCNT complexes that were investigated within the context of a sensor 

array. The DNA-SWCNT complexes exhibited high colloidal stability and strong 

photoluminescence, as previously reported.51-53 We characterized the complexes using UV-Vis-

NIR absorbance, NIR fluorescence spectroscopy, atomic force microscopy, and zeta potential 

measurements (Fig. S1). The measurements confirmed the emissive properties of at least 12 

SWCNT chiralities (Fig. S1B), a highly negative zeta potential of DNA-SWCNT complexes 

formed with all 11 DNA sequences (Fig. S1C), and a DNA banding pattern along the SWCNT 

surface for all sequences (Fig. S1D-H). 

The optical responses of the DNA-SWCNT complexes to known gynecologic cancer 

biomarkers were assessed via spectroscopy. High-throughput, near-infrared spectroscopy (in the 

range of 900-1400 nm) was conducted on all DNA-SWCNT complexes introduced to lab-

generated samples of the protein biomarkers HE4, CA-125, and YKL-40 in 10% FBS solutions 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.28.441499doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.28.441499
http://creativecommons.org/licenses/by-nc-nd/4.0/


(to provide a relevant background of interferent molecules). The spectroscopic bands of all 

SWCNT chiralities were fitted to extract peak wavelength shift (Δλ) and intensity ratio (I/I0) with 

respect to a control sample in 10% FBS. As a representative example, the (7,5) chirality emission 

peak blue-shifted (Δλ<0) and its intensity was attenuated (I/I0 <1) in response to HE4 (Fig. 2A), 

while brightening and red-shifting were observed upon exposure to CA-125 and YKL-40 (Fig. 2A 

and inset). Similar analyses found diverse optical responses to single biomarkers across SWCNT 

chiralities (Fig. 2B, C) and DNA wrappings (Fig. 2D, E). There were no obvious correlations 

between the response and conditions in which they were challenged (Fig. 2F, G, and Fig. S2).  

To study the physical properties of the DNA-SWCNT complexes that could contribute to 

the distinct responses, we analyzed the SWCNT surface charge and DNA wrapping patterns on 

the SWCNT surface. Zeta potential measurements of the DNA-SWCNTs showed that surface 

charge varied between approximately -44 and -55 mV, depending on the DNA sequence (Fig. 

S1C), likely a result of differences in DNA packing densities. To further investigate, we conducted 

atomic force microscopy (AFM), which revealed significant differences in the density of 

observable height maxima/peaks on the SWCNTs of approximately 40% (Fig. S1D- H), ascribable 

to the DNA. These findings suggest that the unique responses of each DNA-SWCNT to the 

proteins are likely due in part to the distinct DNA wrapping patterns on each SWCNT chirality.  

Next, we investigated the specificity of the DNA-SWCNTs by examining the response to 

HE4 in the presence of interferents (i.e. bovine serum albumin (BSA) and fetal bovine serum 

(FBS)). We found that some DNA-SWCNTs responded differently to the analyte and interferents, 

but the specificity of any one complex appeared marginal (Fig. 2H, I). To assess the distinctness 

of DNA-SWCNT responses to a protein biomarker vs. interferents, we applied principal 

component analysis (PCA). The analysis of DNA-SWCNT responses to HE4 and interferent 
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proteins failed to separate distinct optical responses of HE4 (Fig. 2J). We thus concluded that more 

sophisticated data analyses were needed to determine whether the DNA-SWCNT array could 

correctly identify analytes within a complex environment.  

 

Figure 2. DNA-SWCNT optical responses to gynecologic cancer biomarkers. (A) 

Representative spectra of DNA-SWCNT complexes in response to cancer protein biomarkers. 

Inset: normalized spectrum of the (7,5) chirality. (B) Wavelength modulation of (AC)15-SWCNT 

complexes upon incubation with 100 nM of HE4; n=3. (C) Intensity modulation of (AC)15-

SWCNT complexes upon incubation with HE4; n=3. (D) Wavelength modulation of DNA-(7,6) 

complexes upon incubation with HE4; n=3. (E) Intensity modulation of DNA-(7,6) complexes 

upon incubation with HE4; n=3. (F) Heatmap of total wavelength modulations of DNA-SWCNT 

complexes upon incubation with HE4; n=3. (G) Heatmap of total intensity modulations of DNA-
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SWCNT complexes upon incubation with HE4; n=3. (H) Wavelength of (AT)11-(8,6) complex 

upon incubation with PBS, HE4, BSA, and FBS in PBS; n=3, mean ± SEM; ****P < 0.0001, 

unpaired t-test. (I) Intensity of (AT)11-(8,6) complex upon incubation with PBS, HE4, BSA, FBS 

in PBS; n=3, mean ± SEM; ****P < 0.0001, unpaired t-test, “ns” denotes not significant. (J) PCA 

plot of the DNA-SWCNT response to HE4 versus interferents.     

 

ML feature vector construction  

In order to differentiate the biomarkers via the DNA-SWCNT optical responses, we 

investigated several machine learning strategies. We tested two different feature vector (FV) 

methods to represent experimentally measured data matrices composed of DNA sequences and 

SWCNT chiralities (Fig. 3A). Each vector was constructed with two components: "Example ID" 

– SWCNT chirality or DNA sequence, and "Features" – the DNA-SWCNT complex emission 

intensity and wavelength response. In addition, the vector corresponds to a specific label that 

indicates the presence of each biomarker in the sample. The first feature vector (FV1) is focused 

on chirality (Fig. 3A(1)) and uses DNA sequences as the example IDs and chirality-dependent 

optical responses as features. Underlying this choice of feature is the hypothesis that the 

spectroscopic response of multiple SWCNTs in combination with a single DNA sequence is 

sufficient to determine the presence or concentration of biomarkers.  DNA sequences were 

encoded into IDs as either bi-gram or tri-gram term frequency vectors.47 Therefore, the total 

number of features is 40 using a bi-gram representation (16+2*12) and 88 using a tri-gram 

frequency vector (64+2*12).  

The second feature vector (FV2) uses chiralities as the example IDs (Fig. 3A(2)) combined 

with sequence-dependent optical responses as features. Underlying the FV2 is the hypothesis that 

a single SWCNT in combination with a number of DNA sequences is sufficient to determine the 

presence or concentration of biomarkers. SWCNTs were represented using the one-hot encoding 
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(‘1’ for specific chirality and ‘0’ for the other chiralities)54 hence, the total number of features used 

for FV2 is 34 (12+2*11).      

Input data formatted according to FV1 and FV2 were used to train several classification 

algorithms for the detection of individual biomarkers or combinations thereof (Fig. 3B). Three ML 

algorithms, support vector machine (SVM), random forest (RF), and artificial neural network 

(ANN), were trained using an initial dataset and were evaluated by 10-fold cross-validation. 

Bayesian optimization was used for hyperparameter tuning. The resulting F1-scores were used to 

assess model performance (Fig. S3). 
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Figure 3. Feature vector construction. (A) The feature vector contains two parts – example 

encoding (red) and optical response-based features (purple) – with each vector corresponding to a 

label that indicates the biomarker conditions (blue). The total features of FV1 are described by 4n 

+ 2M, where tf denotes an n-gram term frequency vector (i.e n=2 in bigram and n=3 in trigram), 

and M denotes the number of chiralities. The total features of FV2 are described by M + 2N, where 

cf denotes SWCNT chirality features, N denotes the number of sequences and M denotes the 

number of chiralities. a is an indicator function for the analyte presence (either 0 or 1). The 

subscripts C, H, and Y represent CA-125, HE4, and YKL-40, respectively. (B) Each feature vector 
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is processed by a multi-label classifier (black box) in order to classify (detect) each biomarker. IR 

is the intensity ratio and defined as IR=I/I0. 

 

Classification model training and validation 

We investigated the potential for the platform to detect the presence/absence of a single 

biomarker, HE4, using binary classification algorithms. We introduced the DNA-SWCNT 

complexes to solutions of HE4 and background/interferents FBS, BSA, and mixtures, all in PBS. 

We classified the data using several approaches such as bi-class (+/-HE4), multi-class (HE4, 

HE4+/-FBS, FBS, HE4+/-BSA, BSA), and multi-label (+/-HE4 and +/-FBS and +/-BSA). Criteria 

for excluding certain feature vectors were wavelength shifts higher than 20 nm or poor peak fitting, 

both most likely caused by low signal intensities. We found that RF resulted in better F1-scores 

than ANN and SVM (> 0.93) (Fig. S4A). The performance of bi-class classifiers was slightly better 

than multi-class and multi-label classifiers. Overall, the algorithms provided high F1-scores 

(>0.92). While using FV2, all algorithms provided high F1-scores (1.0 for bi-class and 0.9-1.0 for 

multi-class/multi-label classification). The high values of F1-scores raised concerns with 

overfitting, which could occur with small sample sets. Another concern is the high initial 

concentration of analytes in the training sets. 

To alleviate those concerns and determine the detection limit of the platform for HE4 

classification using the model trained with high concentrations, we tested against several lower 

HE4 concentrations. Fig. 4A shows F1-scores for the three algorithms using both FVs for 10 and 

50 nM HE4 thresholds (as these concentrations are relevant to the cancer diagnosis). Both FVs 

generated high values for F1-scores on cross-validation at 50 nM HE4 concentration (F1-score > 

0.89 in FV1 and F1-score > 0.98 in FV2) and in the range of 0.79-0.85 at 10 nM HE4. While both 
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FVs continued to predict with high F1-scores, the performance of FV2 was better than FV1 and 

provided good results for all three algorithms. 

To investigate the potential for the platform to detect other/multiple cancer biomarkers, we 

optimized multilabel classification methodologies. We trained the ML algorithms using the optical 

response of the DNA-SWCNT complexes to a single and multiple combinations of HE4, CA-125, 

and YKL-40 with various concentrations, ranging from 0 nM to 100 nM (Fig. 4B, Table S1). In 

order to generate as comprehensive a dataset as possible, we screened over 17 different biomarker 

combinations, which resulted in more than 200 examples for each FV. We incubated the DNA-

SWCNT complexes in FBS and PBS to assess the biomarkers in complex environments. We 

constructed three types of multi-label ML models: adaptive algorithm (AA), binary relevance 

(BR), and label powerset (LP) 55, 56. Cross-validation results (Fig. S4B) show that the F1-scores 

using FV2 were significantly higher (>0.96) compared to FV1 (>0.68) across all the models, with 

RF and ANN outperforming SVM (with F1-scores of 0.97). To validate the F1-scores of the top-

performing algorithms, we generated receiver operating characteristic (ROC) curves for the three 

biomarkers (Fig. 4C, D). The areas under the curve (AUC) were all greater than 0.97. Individual 

analyses of each biomarker showed high F1-scores for HE4 (1 and 0.99 in RF and ANN 

respectively), CA-125 (1 and 0.91 in RF and ANN respectively), and YKL40 (0.96 and 0.84 in RF 

and ANN respectively). These results demonstrate the ability of the model to detect single and 

multiple biomarkers in mixtures with high precision (Fig. S4C). In addition, the accuracy of 

detection was mostly high, depending on the biomarker (Fig. S4D). 

Based on these results, we decided to proceed with FV2 as the feature vector used for the 

classification and RF and ANN as the ML algorithms. The better performances of FV2 suggest that 

the collection of spectroscopic features from a single SWCNT, in combination with a number of 
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DNA sequences, is better than a feature vector that comprises data from a single DNA sequence 

on a number of SWCNTs.  

To evaluate the concentration of each biomarker in each sample, we also conducted 

regression analysis. Regression results of RF and ANN using FV2 achieved R2 values of 0.93 and 

0.92 respectively (shown in Fig. S4E).  

 

ML feature importance 

To understand the relationship between the nanosensor array composition and the ML 

predictions, we used feature importance analysis to investigate the DNA-SWCNT properties that 

influence the prediction.  We extracted the feature importance values from the algorithms using 

both FV1 and FV2 (Fig. 4E, F). We found that the relative importance of nanotube chiralities on 

the marker prediction appeared to correlate with chiral angle of the nanotube species, as defined 

by Pearson’s correlation coefficient (Fig. 4G). There also appeared to be some dependence on 

nanotube mod (Fig. S5 A,B), wherein nanotube chirality vectors (n,m) calculated via mod(n-m, 3) 

gives a value of 1 or 2 for semiconducting carbon nanotubes.57, 58 We also found some correlation 

between the importances of wavelength shifting responses of mod 1 chiralities with the nanotube 

optical bandgap (E11) (r = -0.86) and intensity responses of mod 2 chiralities with optical bandgap 

(r = 0.82) (Fig. 4H, Fig. S5C-F). These correlations suggest that nanotube structure contributed to 

the differences in the optical responses of the nanosensors that enabled enough response diversity 

to result in positive predictive value.   

Among DNA wrapping sequences, C3T3C9 and CT2C3T2C presented the highest and 

second highest feature importance values, respectively (Fig. 4F). Interestingly, the intensity ratio 

feature exhibited higher importance values than the wavelength shifting responses across all 
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sequences. Using this feature importance analysis, we narrowed down the array to the five most 

important DNA sequences ((AC)15, (AT)11, (AT)15, CT2C3T2C, and T3C3T3C3T3) to reduce the 

number of features, and, therefore, the number of experimental conditions. The optimized model 

generated F1-scores of 0.98 for classification and R2 of 0.78 for regression. The combined results 

suggest that the sensitivity of this platform for the biomarkers is dependent on both the nanotube 

structure and the unique morphology of the DNA adhesion on the nanotubes due to sequence-

dependent π-π stacking of the base pairs on the graphitic sidewall of the SWCNTs. 
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Figure 4. Machine-Perception Nanosensor Results and Analysis. (A) F1-scores of three 

algorithms for each FV corresponding to different thresholds. (B) Schematic of training/testing 

method for different concentrations of biomarker combinations. (C) ROC of each biomarker via 

RF model. AUC values for each biomarker. (D) ROC of each biomarker via ANN model. AUC 

values for each biomarker. (E) Feature importance of SWCNT chiralities generated by FV1. (F) 

Feature importance of DNA sequences generated by FV2. (G) Intensity change feature importance 
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vs SWCNT chiral angle. (H) Normalized feature importance values of wavelength shift (Δλ) and 

intensity change vs. SWCNTs emission wavelength.  

 

Uterine lavage patient samples 

Uterine washing samples were collected from consenting cancer patients with diagnoses 

of several gynecologic conditions, including ovarian and endometrial cancers (Fig. S6).30, 59-61 To 

investigate the ability of the platform to detect multiple biomarkers in a patient biofluid sample, 

we tested the optimized MP platform in uterine washings. We incubated the DNA-SWCNT 

complexes in uterine lavage samples (N=22). The conventional clinical laboratory measurements 

showed a high biomarker distribution (Fig. 5A), with mean concentration values (in nanomolar) 

of HE4, CA-125, and YKL-40 equaling 2.75 ± 0.63, 3.62 ± 1.52, and 0.15 ± 0.08, respectively. 

Due to the sub-nanomolar range of the biomarkers in the patient samples, we retrained the 

algorithms with lower concentrations of all biomarkers (1 pM-100 nM) and used the sensor array 

responses from the uterine lavage patient samples as a test set (Fig. 5B). The F1-score of the 

training set was improved as the threshold was decreased below 100 pM (0.95 increased to 0.97). 

In addition, the F1-score of the test set was significantly improved (0.93 increased to 0.99). This 

result indicates that several sample concentrations below 100 pM were inaccurately classified with 

the higher threshold. It is interesting to note that there was a negligible difference between the F1-

scores when using a 10 pM or 1 pM threshold. This may be due to the fact that there was only one 

measurement below 10 pM. We further evaluated the F1-score of individual biomarker predictions 

(Fig. 5C). While there was an improvement in the F1-scores of each biomarker when the threshold 

was decreased to 10 pM (> 0.95), there were much more significant improvements in the 

sensitivities to CA-125 and YKL-40 (0.87 increased to 1 and 0.89 increased to 0.95 in CA-125 

and YKL-40 respectively). 
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To evaluate the prediction strength, we examined the success of classification results for 

each threshold by comparing them to the actual levels of each biomarker measured by the clinical 

laboratory (Fig. 5D). We defined success as the percentage of correct classification (either true 

positive or true negative) for each biomarker. In all the biomarkers, the classification prediction 

was significantly improved when the threshold was decreased below 100 pM (Fig. 5E). HE4 

presented the most successful classifications and showed improvement from 95% to 100% success 

with both 10 pM and 1 pM thresholds. CA-125 was initially predicted with 82% success but 

significantly improved to 100% success when the threshold was changed to 1 pM. The most 

significant change was observed with YKL-40, from 50% success with a 100 pM threshold to 91% 

success with a 1 pM threshold. The machine-perception platform was able to accurately classify 

the patient biofluid samples, indicated by the high F1-scores and classification success values. 
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Figure 5. Biomarker detection in uterine lavage samples. (A) Concentrations of HE4, CA-125, 

and YKL-40 were measured by ELISA in uterine lavage samples. (B) Classification F1-scores for 

detection of the three biomarkers in lavage samples from training and test data sets, applying 

different protein concentration thresholds. (C) Classification F1-scores of nanosensor detection of 

each biomarker, applying different protein concentration thresholds. (D) The success of the 

detection of each biomarker via classification, applying different concentration thresholds. (E) 

Improvement in classification success, relative to the threshold of 100 nM.  
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Discussion  

 

Current diagnostic methodologies are one-to-one recognition assays that mainly use 

antibodies. Herein, we described a new approach for the detection of multiple biomarkers in 

biofluids for disease diagnosis using an artificial molecular perception system. We developed an 

array of relatively non-specific DNA-SWCNT sensors, containing individual hybrids of 132 DNA-

wrapped SWCNTs. The use of multiple SWCNT chiralities enabled us to generate a large set of 

sensors that could be interrogated rapidly via high-throughput near-infrared spectroscopy to form 

a wide diversity of responses when they were exposed to different target proteins. Based on several 

studies,34, 62-64 we initially targeted gynecologic cancer biomarkers HE4, CA-125, and YKL-40.  

Advantages of the method include the high optical sensitivity of SWCNTs to diverse 

analytes and the ability to modify their environmental sensitivities/specificities. We introduced a 

diverse set of SWCNT environmental responsivities via surface coatings of different DNA 

sequences which modulated the optical bandgaps and surface morphologies. Machine learning 

algorithms enabled training from DNA-SWCNT spectral response data to detect biomarkers in 

both lab-generated samples and cancer patient uterine lavage samples. 

Notably, the classification success rate in patient samples was high even in sub-nanomolar 

ranges, with a rate of 100% for HE4 and CA-125 and 91% in YKL-40. These results support the 

conclusion that the perception mode of sensing can successfully generate accurate predictions. 

Combining detection and quantification will allow this technology to better screen and categorize 

patients based on the levels of markers for early detection.  

This platform could be continuously improved by increasing the sizes of datasets and 

analyzing feature importance. For example, interpreting the feature importance values can aid with 

DNA sequence design and expanding the library of DNA-SWCNT complexes. Also, expanding 
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the spectroscopic range may increase the number of SWCNT chiralities, and thus, sensors that can 

be measured. While increasing the number of features (nanosensors) may contribute to the 

sensitivity of the platform, the number of examples (conditions) should be increased as well (to 

prevent overfitting). We also recognize the need to increase the number of patient samples to 

continually validate and increase the robustness of the model. 

Finally, due to the flexibility and the non-specific nature of the individual sensor elements, 

the proposed MP platform is not restricted to ovarian cancer biomarkers and can potentially be 

trained to detect other disease biomarkers without the need to engineer different arrays of 

nanosensors. This platform enables antibody-free detection that would be useful when an 

especially robust or long-term measurement is needed, such as in wearable/implantable devices, 

point-of-care diagnostics, and for under-resourced situations where cold chain storage may not be 

available.  

 

 

Materials and Methods 

 

Materials 

Single-walled carbon nanotubes (SWCNTs) produced by the HiPco process were 

purchased from Unidym (Sunnyvale, CA, USA). Single-stranded DNA (ssDNA) oligonucleotides 

(T3C3T3C3T3; C3T9C3; C3T3C9; (TCT)5; (GT)12; (AT)11; (AT)15; (AT)20; (ATT)4; (AC)15 and 

CT2C3T2C) were purchased from IDT DNA (Coralville, IA, USA).  Human epididymis protein 4 

(HE4) was purchased from RayBiotech. Human cancer antigen 125 (CA-125), also known as 

MUC16, and Human chitinase 3-like 1 (YKL-40) were purchased from R&D Systems. Bovine 

serum albumin was purchased from Sigma Aldrich. Fetal bovine serum was purchased from 
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Thermo Fisher Scientific. Uterine washings from IRB consented cancer patients were provided by 

the Department of Laboratory Medicine at Memorial Sloan Kettering.  

 

Preparation of DNA-Wrapped Single-Walled Carbon Nanotube Complexes 

Single-walled carbon nanotubes (SWCNTs) were mixed with a specific DNA 

oligonucleotide at a 1:2 mass ratio, respectively, in 1 mL of IDTE buffer. The sample was 

ultrasonicated continuously for 45 minutes at 40% of maximum amplitude, using a 3 mm titanium 

tip (SONICS Vibra Cell). The mixture was ultracentrifuged (Sorvall Discovery 90SE) for 30 

minutes at 250,000xg. The top 80% of the supernatant was collected and the concentration of 

suspended SWCNTs was determined by UV/Vis/NIR spectrophotometry (JASCO V-670) using 

the extinction coefficient A910 = 0.02554l mg-1cm-1; where the path length l is 1 cm. In order to 

remove excess free DNA, 300 µL of the sample was filtered twice using a 100 kDa Amicon 

centrifuge filter (Millipore) at 5,000xg for 10 minutes. Following filtration, the DNA-SWCNT 

complexes were tested at a concentration of 5 mg/L SWCNT in 100 µL solution in 96 well plates. 

Zeta potential of the DNA-SWCNT complexes was measured using a Zetasizer ZSP (Malvern). 

The samples were diluted to a concentration of 0.5mg/L using double distilled water.  

 

Near-Infrared Fluorescence Spectroscopy of DNA-SWCNTs 

Near-infrared fluorescence spectroscopy was used to measure the photoluminescence 

emission from the DNA-SWCNT complexes, as described previously.65 For solution 

measurements, spectra were acquired using an apparatus built in-house consisting of a continuous 

wave 730 nm diode laser with an output power of 2 W or a SuperK EXTREME supercontinuum 

white-light laser source connected to a Varia variable bandpass filter accessory capable of tuning 
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the output from 490–825 nm with a bandwidth of 20 nm (NKT Photonics). The laser was injected 

into a multimode fiber that was fed into the back of an Olympus IX-71 inverted microscope where 

it passed through a 20x LCPlan N, 20x/0.45 objective (Olympus, USA) and a dichroic mirror (875 

nm cut-off; Semrock). The light was f-number matched to the spectrometer using several lenses 

and injected into an IsoPlane spectrograph (Princeton Instruments) with a slit width of 410 µm 

which dispersed the emission using a 86 g mm-1 gating with a 950 nm blaze wavelength coupled 

to a NIRvana 2D InGaAs near-infrared detector (Princeton Instruments) or a Shamrock 303 

Spectrometer with Andor iDus 1D InGaAs Array Camera (Oxford Instruments). An HL-3-CAL 

EXT halogen calibration light source (Ocean Optics) was used to correct for wavelength-

dependent features in the emission intensity arising from the excitation power, spectrometer, 

detector, and other optics. A Hg/Ne pencil-like calibration lamp (Newport) was used to calibrate 

spectrometer wavelengths. Data were obtained from each well of a 96-well plate using the custom 

LabVIEW (National Instruments) code. Another custom program, written in MATLAB 

(MathWorks) software was used to subtract background, correct for abnormalities in excitation 

profiles, and fit the data with Lorentzian functions. Smoothing, where applicable, was done by 

applying a Savitzky-Golay filter. 

 

Atomic Force Microscopy 

DNA-SWCNT complexes were plated on a freshly cleaved mica substrate (SPI) for 4 minutes 

before washing with 10 ml of distilled water and blowing dry with argon gas. An Asylum Research 

MFP-3D-Bio instrument equipped with an Olympus AC240TS AFM probe in alternating-current 

mode was used. Data were acquired at 2.93 nm pixel -1 x-y resolution and 15.63 pm z resolution. 
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The images were analyzed using Gwyddion software. To measure height or length distributions, 

at least 20 ROIs were analyzed. 

 

Machine Learning Method Development  

The dataset comprises the photoluminescence spectra of each combination of DNA-SWCNT 

complex exposed to different combinations of a small number of analytes (HE4, CA-125, YKL-

40, BSA, FBS). That is, we had total N·M·L combinations where N is the number of DNA 

sequences, M is the number of SWCNT chiralities, and L is the number of analyte combinations. 

The spectra were analyzed to yield two parameters for each SWCNT type: the wavelength peak 

shift (Δλ) and intensity ratio (IR): 

Δλi =𝛥𝜆𝑖 = 𝜆𝑖 − 𝜆0   (i) 

and  

𝐼𝑅 =
𝐼𝑖

𝐼0
                      (ii) 

 

where λ0 and I0 are the wavelength and intensity of a control sample (DNA-SWCNT without 

analyte); λi and Ii are the wavelength and intensity of DNA-SWCNT with analyte combination, i.  

Input and output (target) variables were identified for the machine learning algorithms. The input 

variables include DNA sequence, SWCNT chirality, and the two spectroscopically measured 

parameters (Δλi, IR). The output variable either represents the presence (for classification) or 

concentration (for regression) of each analyte. Three classification approaches were examined: bi-

class (+/- biomarker), multi-class (+/ biomarker combination), and multi-label (+/- each 

biomarker).  

To train the models, categorical data (such as SWCNT chirality and analyte type) were 

transformed to numeric values, using the one-hot encoding technique 54. DNA sequences were 
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encoded as term-frequency vectors, using subsets of two or three bases as a term and calculating 

the frequency of that term in the sequence.47 Fig. S3 depicts the overall scheme for the input feature 

construction. Two feature vectors were constructed to emphasize the sensitivity of each component 

in the DNA/SWCNT complex and find a balance between the number of features and examples. 

For each feature vector, one component of the DNA/SWCNT complex was encoded as an ID of 

the example while the other components' responses were defined as features. In feature vector 1 

(FV1), the DNA sequences were encoded as the IDs and the chirality-dependent optical responses 

as features. In feature vector 2 (FV2) the SWCNT chiralities were encoded as the IDs and the 

sequence-dependent optical responses as features.  

 Three algorithms, support vector machine (SVM), random forest (RF), and artificial neural 

network (ANN) were trained and tested with FV1 and FV2 for both classification and regression. 

Each model was evaluated by 10-fold cross-validation. All machine learning algorithms were 

implemented using the Scikit-learn machine learning library.55 In order to find hyperparameters 

that maximize performance, Bayesian hyperparameter optimization was implemented using 

HyperOpt.66 

Each model was evaluated by the produced F1-score and accuracy values for classification 

and R2 value for regression. Accuracy (Eqn. S1) calculates the percentage of correctly classified 

examples. F1-score, which is a composite value of precision (Eqn. S2) and recall (Eqn. S3), gives 

a measure of accuracy but takes the false positives and negatives into account as well (Eqn. S4). 

Accuracy =
True Positive+True Negative

True Positive+False Positive+True Negative+False Negative
   (Eqn. S1) 

 

Precision =
True Positive

True Positive+False Positive
       (Eqn. 

S2) 

Recall =
True Positive

True Positive+False Negative
       (Eqn. S3) 
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F1 − score = 2 ∗
Precision∗Recall

Precision+Recall
           (Eqn. S4) 

 

CA-125 Concentration Unit Conversion 

The concentration unit of CA-125 used in the clinic, Units/ml, was converted to nanomolar by 

titrating CA-125 and measuring using an ARC i2000 instrument. A linear concentration curve with 

R2=0.9997 was generated. The resulting unit conversion is as follows: [Unit/ml] = 0.18*[pM]. 

 

Statistical Analysis  

In vitro experiments were analyzed by two-sided t-tests. Reported p-values were assigned **** = 

p < 0.0001, *** = p < 0.001, ** = p < 0.01, * = p < 0.05 and exact p-values are reported in captions. 
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Figure S3. Overall scheme for input feature construction. 

Figure S4. F1-scores of MP models. 

Figure S5. Feature Importance Analysis. 

Figure S6. Patients’ diagnosis distribution. 

Figure S7. Concentration unit conversion of CA-125. 

Table S1. Data used to construct the plot in Figure 4B.  
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