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One Sentence Summary: Epileptiform electrical events occurring between human seizures 
propagate across the brain in directions that reflect the self-organizing structure of seizures.   
 
Abstract: Interictal epileptiform discharges (IEDs), also known as interictal spikes, are large 
intermittent electrophysiological events observed between seizures in patients with epilepsy. 
While seizures are infrequent and unpredictable, IEDs are far more common, often occurring 
several times per minute. Yet despite the abundance of IEDs, it remains unknown how they relate 
to seizures. To better understand this relationship, we examined multi-day recordings of 96-
channel microelectrode arrays implanted in human epilepsy patients. These recordings—spanning 
single cell action potentials to population field potentials—allowed us to study the microscale 
spatiotemporal organization of over 45,000 IEDs across 10 participants from 2 surgical centers. 
These recordings showed that the majority of IEDs propagate across neocortex as traveling waves. 
While all of these traveling wave distributions exhibited a predominant, consistent direction, the 
majority also exhibited a second, auxiliary, direction. Clustering the IED distributions revealed 
that their predominant and auxiliary distributions were antipodal, mimicking the spatial 
microstructure of seizure discharges (SDs) that we have previously reported. We thus compared 
spatial features of IED sub-distributions to those for SDs, showing a correspondence between ictal 
and interictal spatial properties in participants whose microelectrode arrays were recruited into the 
seizure from adjacent cortical tissue. These results reveal fundamental relationships between IEDs 
and seizures and suggest how IEDs could be used to infer spatial features of seizures.   
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Introduction 
 

While seizures are mostly unpredictable and rare, electrical recordings from people with 
epilepsy often show isolated epileptiform discharges between seizures (1–4). These IEDs are far 
more frequent, occurring up to several times per minute, and exhibit multidien variation in their 
frequency that correlates with seizure likelihood, making IEDs an attractive personalized 
biomarker for seizure risk (5). Intracranial recordings in epilepsy patients have shown evidence 
for some overlap between cortical areas with more IEDs and the areas where seizures originate, 
though IEDs are more widely distributed (4, 6, 7). Furthermore, some retrospective studies 
showed that removing brain areas with more IEDs was associated with improved surgical 
outcomes in patients with medically refractory epilepsy (8, 9). Despite these findings, the long-
debated relationship between IEDs and seizure generating tissue remains unresolved (2, 10–12). 
A functional explanation of the relationship between IEDs and seizures will inform how IEDs 
can be used to improve the diagnosis and treatment of medically refractory epilepsy.   

Microelectrode array recordings in epilepsy patients, which sample the activity of both 
individual neurons and field potentials, have revealed the spatiotemporal features of ictal self-
organization (13–17). These studies reported two classes of recordings, those in which neuronal 
firing is recruited into the ongoing seizure, and those in which neuronal firing is relatively 
unaffected, despite seizure-like field potentials appearing on the same microelectrodes. These 
classes correspond to two dynamically evolving regions known as the ictal core and penumbra, 
respectively (15). A slowly-propagating, narrow band of tonic action potential firing, the ictal 
wavefront (IW), delineates the transition between the core and penumbra (18, 19).  These 
dynamic seizure regions also exhibit distinct spatial features. The slowly traveling IW 
repetitively emits rapidly traveling SDs (also known as ictal discharges) toward the seizure core. 
Though, in some patients, SDs are also emitted outwards, towards the penumbra (14).  

Here we use similar microelectrode array recordings to understand how spatial features of 
IEDs relate to spatial features of seizures. This study was motivated by our recent theoretical 
model inspired by the aforementioned spatial dynamics of ictal self-organization discovered 
from microelectrode array recordings (21). One prediction of the model is that the repeated 
barrages of traveling synaptic activity during SDs eventually coopt mechanisms of synaptic 
plasticity, biasing local tissue to propagate IEDs in similar directions as SDs. We sought to 
empirically validate the model prediction that IEDs are traveling waves that are biased in the 
same directions as ictal discharges. This question is most relevant for microelectrode recordings 
in which both seizure expansion (i.e. IW expansion) and SD propagation could be measured. We 
hypothesized that IEDs have a predominant direction of propagation, towards the site of seizure 
onset, and antipodal to the direction of seizure expansion. The data supported this hypothesis, 
and further showed that, in the majority of participants, IEDs traveled bimodally on a linear axis 
with spatial features of IEDs echoing spatial features of SDs.  
 
Results  
 
Participants, data collection, and IED detection 
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Hypotheses were addressed via analysis of a multi-institutional dataset of Utah-style 
microelectrode array (UEA; 10 X 10 microelectrodes in 4 X 4 mm grid, penetrating 1 mm) 
recordings from 10 epilepsy patients (2 female, µ r V age: 29 r 5.24 years) undergoing 
monitoring for neurosurgical treatment of their medically refractory epilepsy (clinical details in 
Extended Table 1). In order to capture seizures (2.2 r 1.6 seizures recorded per participant; 22 
total), we recorded data continuously throughout the patients’ monitoring periods (Figure 1A; 4.3 
r 2.4 days per participant; 43 total). Searching through weeks’ worth of microelectrode data, we 
detected 45,623 candidate IEDs across the 10 participants (4,562.3 r 5,171.7 per participant) 
using an IED detection algorithm designed for microelectrode recordings, that operated on 
features of IEDs based on the American Clinical Neurophysiological Society’s definition, 
namely high-amplitude bursts of beta-range (20-40 Hz) local field potential (LFP) power 
occurring across multiple microelectrodes (Fig. S1; Algorithm S1) (1). Using this algorithm, we 

 
Fig. 1. IEDs are traveling waves. (A) A electron micrograph of an UEA and a picture of an 

UEA implanted next to an ECoG electrode. (B) A raster plot showing an example 
time course of semi-chronic microelectrode recording during and epilepsy patient’s 
hospital stay. Each gray dot represents the time of one IED (y-axis is arbitrary). (C) 
An example IED recorded across microelectrodes. Each gray line is the same IED 
recorded on a different microelectrode. The mean IED waveform is overlaid in white. 
(D) Mean spectrogram of the IED shown in (C) across microelectrodes. (E) A 
temporally expanded view of the IED shown in (C) color coded by when the IED 
occurs. Black dots indicate the location of the IED negative peaks for each 
microelectrode. (F) A raster plot of IED-associated MUA firing for the same IED as 
in (C) and the same timescale shown in (F). (G) IED voltage minima timings, color-
coded as in (E), superimposed across the footprint of the UEA. A white velocity 
vector derived from the multilinear regression model is also shown on the UEA 
footprint. (H) A polar histogram showing the distribution of all IED traveling waves 
from which the IED in (C) was taken.  
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detected an average of 0.43 r  0.51 IEDs per minute. The UEA enabled us to record both LFP 
data and multiunit action potential firing (MUA) across high-density spatial grid during each 
IED. These features of an example IED are shown in Figure 1C-G.  
 
IEDs propagate in predominant and auxiliary directions  
 

In order to determine whether the detected IEDs were traveling waves, and to measure 
wave speeds and directions, we fit a plane to the timings of both IED voltage extrema and MUA 
event times measured on each microelectrode using multi-linear regression (20). IEDs with 
regression slopes that were significantly different from zero were classified as traveling waves 
(permutation test against a distribution of 1000 spatially permuted timings; Fig. 1H, Fig. S2). 
Traveling wave speeds and directions were then derived from each significant model’s slope. 
Based on this operational definition, 30,278 IEDs (3,027.8 r 3,190.0 per participant) were 
classified as traveling waves (66.4%). 

Summary statistics for the spatiotemporal features of IEDs are shown in Table 1. IED 
speeds were on the same order as SDs before the passage of the ictal wavefront (14, 20). 
Traveling waves were also detected from MUA, independent of LFP recordings, though at a 
slightly reduced rate (2,215.7 r 3,237.6 per participant; 22,157 total; 48.6%; 𝜒2 = 2957, p < 
0.05). This result was expected, as LFP is a more reliable signal to record, and action potential 
firing during IEDs has previously been shown to be remarkably heterogeneous, particularly in 
areas further from the seizure onset zone (22). That there were significantly more IED traveling 
waves in UEA recordings that were eventually recruited into the seizure core, further supports 
the idea that more firing, closer to the seizure onset zone improves reliability of traveling wave 

 
Fig. 2. IED traveling wave distributions are non-uniform and bimodal. (A) polar 

histograms of IED traveling wave directions for all 10 participants. Each participant 
number is indicated in bold above and to the right of each histogram. (B) 
Classification index for bimodality of IED distributions across subjects. Criterion is 
indicated with a dashed line. (C) Difference in median angles of sub-distributions for 
bimodal IED distributions, with non-bimodal subjects omitted. 
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detection with MUA (McNemar Test, 𝜒2(1) = 2957,  p < 10−6). We therefore focus our 
analysis on IED traveling waves measured from LFP minima in order to understand IED 
propagation across participants.  

Having determined the majority of IEDs met the criteria to be classified as traveling 
waves, we next sought to understand whether IEDs from each participant exhibited a 
predominant propagation direction. We 
therefore tested whether distributions of 
IED traveling wave directions deviated 
from a uniform circular distribution (23), 
we found that each participant’s IED 
traveling wave distribution exhibited a 
dominant direction (Fig. 2A; Hermans-
Rasson Tests, 1000 permutations, all p < 
10-3). These results show that many IEDs 
are traveling waves with predominant, 
consistent directions of travel in each 
participant. 

In addition to a predominant 
direction common to all participants, many 
participants appeared to have a second, 
auxiliary, distribution of IED directions. 
We therefore fit each participant’s IED 
distribution into a mixture of two circular 
normal sub-distributions (von Mises 
distribution). The mixture model was 
compared to a single von Mises 
distribution model by using permutation-
based Kuiper tests (see Materials and 
Methods). IED traveling wave 
distributions were thus classified as 
bimodal in 8 of the 10 participants (Figure 
2B). The mean and s.d. angles between the 
two IED sub-distributions was 177.9 and 
10.7 degrees, respectively (Figure 2C). 
These results show that IEDs also 
frequently propagate antipodally to their 
predominant direction, suggesting that 
IEDs may travel both directions on a linear 
track through a fixed recording site.  

 
Spatial features of IED distributions 
reflect ictal self-organization 

 
We next sought to understand 

whether IED speed and direction related to 
the spatial self-organization of seizures. 

 
Fig. 3. IEDs reflect ictal self-organization. (A) 

mean voltage recorded across the UEA at 
the start of a seizure. (B) Mean MUA 
firing rate across microelectrodes. (C) A 
rastor plot ordered by time of recruitment 
and color coded to show the IW (blue) 
and ictal core (“recruited”, pink). (D) 
Slow firing rate dynamics on each 
microelectrode colored by time of 
maximum firing rate. (E) Times of 
maximum firing rate on each 
microelectrode superimposed on the 
footprint of the UEA, color-coded as in 
(D). (F) A polar histogram of IEDs and 
the direction of the IW. (G) Polar 
histograms showing probability densities 
of IEDs and SDs, and the direction of the 
IW. 
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We hypothesize that spatial features of IED 
traveling waves would correlate with seizure 
propagation direction and those of seizure 
discharges. We therefore measured the spatial 
features of seizures first.  Fast and slow spatial 
features of focal seizures were measured in both 
ictal LFP and MUA bands as in previous reports 
(14, 15, 20). Both of these features were measured 
using the same multilinear regression framework 
used to measure IED speed and direction.   

Following previous reports with 
microelectrode arrays, we confirmed that seizures 
could be divided into two classes based on ictal 
recruitment: “recruited” and “penumbral” (see 
Materials and Methods; 14, 24, 25). Recruited 
tissue exhibited a slow expansion of tonic neuronal 
firing, the ictal wavefront (Fig. 3D-E; Fig. S4A-D), 
followed by rapidly traveling SDs (Movie S1). 
Penumbral tissue showed neither an IW nor 
repetitive SDs associated with phase-locked firing 
(Fig. S4E-H). Six participants’ microelectrode 
arrays were recruited into the ictal core (10 seizures; 
Fig. 3A-C), while the four remaining participants 
were penumbral (12 seizures, Fig. S4E-H).  

As predicted by our theoretical work (21), 
similar patterns of IED and SD propagation were 
apparent in the majority of seizures in participants 
with “recruited” seizures. The majority of IEDs 
travelled opposite the direction of seizure 
expansion (i.e., the IW; direction difference from 
IEDs = 148.9 r 17.2 degrees; median tests between 
IW and IED distributions, all p < 0.05; Fig. 3F). 
Moreover, IEDs traveled in similar directions as 
SDs in these participants (example in Fig. 3G; mean 
r s.d. angle difference across participants = 23.7 r 
33.7 degrees). Direction distributions for IEDs, 
SDs, relative to the direction of the ictal wavefront 
are shown for all “recruited” participants in Figures 
4A-F, and direction summaries for these 
participants are shown in Figures 4G-H (raw 
directions shown in Fig. S5). In the “penumbral” 
category, where the tissue under the UEAs were not 
obviously recruited from adjacent cortex as in the 
“recruited” category, we could not reliably detect or 
measure the direction of seizure expansion.  
 

 
Fig. 4. IED and SD distributions in 

“recruited” UEA recordings. 
(A-F) Each lettered subpanel 
corresponds to one participant. 
Each polar histogram 
corresponds to one seizure. IED 
distributions are shown in gray 
and SD distributions are sown in 
black. Each distribution is 
plotted relative to the direction of 
the IW (blue line). (G) Direction 
difference summaries for each 
seizure ordered and color coded 
as in (A-F). Dots indicate 
median directions and lines 
indicate standard deviations. (H) 
Median and standard deviation 
IED direction summaries relative 
to median SD directions.  
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Only spatial features of IED sub-distributions 
correspond to SD sub-distributions 

 
Finally, we sought to further understand 

geometric features of bimodal IED 
distributions and how they related to patterns of 
SD propagation. Such an understanding was 
only relevant for the “recruited” participants 
with bimodal IED distributions (5 participants, 
7 seizures). Using the same bimodality 
classification strategy as for IEDs, we found 
that 5 of the 7 these seizures in these 
participants exhibited bimodal SD 
distributions, with similarly antipodal sub-
distribution directions (Fig. 5A-B; mean r s.d. 
angle difference = 135.2 r 24.6). Only 
participants with bimodal IED distributions 
had bimodal SD distributions, and only one 
participant, who had the least bimodal IED 
distribution, did not have clearly bimodal SDs.   

In order to determine whether IEDs in 
each sub-distribution came from 
neurophysiologically distinct IED populations, we tested for differences between IED waveforms 
and firing rates between IED sub-distributions. Such differences might indicate that each IED sub-
distribution reflected a separate population of IEDs propagating across the footprint of the UEA. 
However, neither firing rates nor IED waveforms differed between IED sub-distributions (Fig. 5C-
D; cluster-based permutation tests, all p > 0.05), indicating that neither IED waveforms nor firing 
rates between the two sub-distributions could be statistically distinguished.  

The aforementioned results indicate that both SDs and IEDs propagate antipodally through 
the same tissue. Differences between speeds and proportions of IED sub-distributions, 
corresponding to those we previously showed in SD sub-distributions (14), would support a 
learned relationship between IEDs and SDs, as predicted by the centripetal pattern of learning in 
the theoretical model (21). To address this question, we tested for differences in speed and relative 
size of SD and IED sub-distributions.  Speeds were significantly different between IED sub-
distributions within each participant (Fig. 5E; Mann-Whitney U, all p < 10-4). Speeds were also 
significant between SD sub-distributions in five of the seven seizures (Fig. 5E; Mann-Whitney U, 
p < 0.04 in 5 seizures; p > 0.62 in two seizures). Finally, the proportion of IED directions in each 
sub-distribution predicted the direction of each SD sub-distribution in four of the five participants 
(two sample proportion tests, 𝜒2 > 347.6, p < 10-6). More pre-recruitment discharges occurred in 
a fifth patient with nearly equivalent proportions of IEDs across sub-distributions. Importantly the 
directions of significant differences in these spatial features corresponded across IED and SD sub-
distributions. These results show that when IED and SD distributions were bimodal, their spatial 
features were similar, underscoring the extent to which IEDs mimic spatiotemporal features of 
ictal self-organization.  

 

 
Fig. 6. Schematic of how IEDs relate to 

ictal self-organization. A schematic 
of spatial features of ictal self-
organization is shown on the left. 
Schematics illustrating the 
correspondence between spatial 
features (speed, directions, and 
proportion) of IEDs and SDs is 
shown on the right.  
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Discussion 
 

Our results, using microelectrode array recordings in patients with epilepsy, show that 
IEDs are traveling waves that propagate in similar directions as SDs, along an axis intersecting 
the seizure core. This corroborates the predictions of our theoretical work, where a 
computational model incorporating spike-timing dependent plasticity and realistic connectivity 
between inhibitory and excitatory cells self-organized to produce IWs, SDs, and IEDs that echo 
through the pathways potentiated by the strong, repeated barrages of SD activity, antipodal to the 
IW (21, 26). Therefore these results suggest that the predominant IED direction could be used to 

 
Fig. 5. Correspondence between spatial features of IED and SD sub-distributions. (A) 

Example IED sub-distributions from one participant. (B) Example SD sub-
distributions from the same participant as in (A). Numbers of IEDs in each sub-
distribution are displayed in the color of each sub-distribution. (C) Mean IED 
waveforms from each sub-distribution, color coded as in (A). (D) Mean firing rates 
from each IED sub-distribution, color coded as in (A). (E) Scatter and box plots for 
IED and SD propagation speeds, separated by sub-distribution across subjects, and 
color coded as in (A-B). Boxes indicate median, quartiles, and whiskers indicate 1.5 
times the interquartile range. Speeds greater than 350 cm/s are not shown for display 
purposes.  Asterisks indicate significant differences (p < 0.05). (F) Distribution 
summaries for IED and SD traveling wave directions, separated by sub-distribution 
across subjects, and color coded as in (A-B). For the two participants with more than 
one seizure (P4, P6), each seizure is shown separately in (E) and (F). 
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localize the seizure source. Moreover, the empirical results reported here extend our 
understanding of the geometric properties of epileptic tissue, beyond the model predictions, in 
showing that IEDs travel largely bidirectionally on a linear axis. The bidirectional propagation of 
IEDs is similar to the bidirectional traveling waves we have previously observed during seizures 
(14, 20). The bidirectional pattern of traveling waves during seizures emanated  from a slowly 
expanding, motile source of ictal activity—the IW—passing through a fixed recording site (14). 
The data presented here show that IEDs travel in similarly oriented, bimodal distributions, even 
in the absence of an IW or ictal self-organization (Fig. 6).  

The theoretical model predicted that the directional preferences of IEDs were learned 
from SDs via spike-timing dependent plasticity (27). While we cannot address the specific 
learning mechanism with this dataset, in participants whose UEAs were recruited into the seizure 
core from adjacent cortical tissue, we showed correspondences between several spatial properties 
of IEDs and SDs. The speeds, directions, and relative sizes of IED sub-distributions echoed those 
of SDs. Moreover, predominant IED and SD directions opposed the directions of the ictal 
wavefronts in “recruited” UEAs. These relationships were unable to be determined from UEAs 
that were not recruited into the seizure core (“penumbral” recordings). Together, these results 
suggest that spatiotemporal biases exist in epileptic tissue. Whether spatiotemporal biases in 
IEDs arise from learning during SDs or vice versa remains to be determined. While the 
theoretical model indicates that several seizures must occur before IEDs begin to form, 
electrographic discharges, similar to IEDs, often appear before seizures in animal models of 
epilepsy (28).  

While we show that the majority of IEDs are traveling waves whose directions overlap 
with those of SDs, it is important to recognize the small spatial scale of the recordings analyzed 
here. Additional, more eccentric populations of IEDs could be propagating from distant areas 
that are connected to the seizure onset zone, though not necessarily from adjacent tissue on the 
cortical surface (29). Higher density ECoG that spans a larger cortical territory than the UEA 
would be useful in gaining more context on where IEDs arise, and how IEDs propagate across 
the cortical surface. On the other hand, there is currently no evidence that the ictal wavefront can 
be detected without action potential recordings, though the time of seizure recruitment can be 
roughly estimated on each ECoG electrode from high-frequency LFP (25, 30). Precise IED 
propagation patterns are also difficult to measure with the relatively low sampling density of 
ECoG. Animal studies using calcium indicators capable of imaging neuronal activity across large 
cortical territories may overcome these limitations (31, 32). Such animal studies are also poised 
to understand how learning and plasticity contributes to the geometric relationships reported 
here.  

While these microelectrode array recordings inform fundamental geometric relationships 
between IED propagation and ictal self-organization, additional spatial context may inform our 
understanding of “penumbral” tissue (30). Future work will therefore focus on translating these 
microelectrode array results to a more clinically relevant spatial scale. For example, using ECoG 
(33, 34) with vector field or convolutional methods (35), or examining propagation of source-
localized IEDs in stereo-EEG. Such approaches will be useful for linking the micro results 
reported in this paper to the coarser spatial resolutions and broader coverages encountered with 
typical intracranial recordings. Integrating these multi-scale geometrical understandings of how 
IEDs relate to the seizure onset zone could then provide an additional piece of information to 
inform diagnosis and treatment of medically refractory epilepsy, and potentially enable 
localizing the seizure source without having to directly observe seizures.  
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Materials and Methods 
 
Participants, Ethics Statement, and Data Acquisition 
 

The data for this study were acquired from Utah-style microelectrode arrays (UEAs) that 
were implanted in 10 human patients across two surgical sites who were undergoing 
neurophysiological monitoring for surgical treatment for medically refractory seizures. Clinical 
details for all participants are shown in Extended Table 1. The Institutional Review Boards at the 
University of Utah (IRB_00114691) and Columbia University Medical Center (IRB-
AAAB6324) approved these studies. All participants provided informed consent prior to surgery 
for implantation of the clinical electrocorticography (ECoG) electrodes and UEA (10 x 10 
electrodes in 4 x 4 mm, penetrating 1 mm). Methodological details of surgical implantation of 
UEAs into human epilepsy patients area described in detail in House et al. (36). During 
implantation of ECoG electrodes, UEAs were pneumatically inserted into areas that were most 
likely to be in the seizure onset zone, and therefore most likely to be resected. 
Electrophysiological data were pseudodifferentially amplified by 10 and acquired at 30 
kilosamples per second using a neural signal processing system (Blackrock Microsystems, Salt 
Lake City, UT) semi-chronically, that is throughout the duration of the participants’ hospital 
stays. Throughout the manuscript, numerical quantities are presented as mean r standard 
deviation (s.d.). 
 
IED Detection and signal processing 
 

In order to detect IEDs from continuous data recorded on each UEA channel, we developed 
a simple algorithm for detecting IEDs across a microelectrode array (Algorithm S1). For each 
channel on each UEA, we first resampled the data at 400 samples per second and zero-phase 
filtered the data between 20 and 40 Hz using a 4th order Butterworth filter. We then detected any 
peaks in the absolute amplitude of this signal that were greater than 8 times the standard deviation 
of the remainder of the recording segment (2-hour median duration; Fig. S1A). In order to remove 
redundant detections, those following any other detection by less than 250 ms were discarded. 
Only detections that occurred within the same 250 ms window across at least 10 electrodes on the 
UEA were retained for further analysis (Fig. S1B).  

Multiunit action potentials (MUA) were detected on each microelectrode by filtering each 
channel between 0.3 and 3 kilohertz and detecting peaks in the filtered signal less than -4 times its 
root mean square. The times of these peaks were retained for further analysis. Example retained 
detections are shown in Fig.  S1C-E.  

We employed several post-detection processing steps to ensure the quality of this 
expansive data set, and reject artifacts. First, temporally outlying voltage extrema were removed 
in order to constrain extrema detection into a temporally focused window (approximately 50 
millisecond duration) around the time of IED detection and to exclude broken microelectrodes or 
those without IED signal. Next, we excluded any discharges with outlying amplitudes, defined as 
double the interquartile range of the distribution of IED voltage ranges (Fig. S1F-G).  
 
Traveling Wave Measurement 
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In order to measure IED traveling wave speed and direction, we fit a plane to the timings 
of IED voltage minima, and MUA event times, using ordinary multilinear regression, regularized 
via the absolute deviation of the signal (Fig. S2). This methodology is described in detail and 
validated for measuring traveling waves during ictal discharges in Liou et al. (20). Briefly, the 
regression model for each IED yielded three coefficients, describing the best-fit plane to the timing 
of IEDs across the UEA in spacetime. Traveling wave direction was determined by the gradient 
direction of the plane and speed was defined as the inverse of that gradient norm. Each IED was 
operationally defined as a traveling wave if its model significantly deviated from a plane with zero 
slope. Statistical significance for this measure was determined by a permutation test in which the 
model was reevaluated 1000 times with the microelectrode spatial locations randomly permuted. 
Differences in IED speed across and within participants were tested using a two-way Kruskal-
Wallis Test with a participant factor (10 levels; one for each participant) and a signal factor in 
which the two levels were the speed measurements derived from LFP and MUA. Only MUA times 
from 50 ms before and after the median time of the LFP negative peak were included in the 
regression model (20). Post-hoc pairwise comparisons were carried out using Dunn’s test (37). 
The significance criterion was chosen as 0.05 for all of these tests.  
 
Directional Statistics 
 
 Polar histograms were plotted using 18 bins. Circular normal distributions were fit using 
the circular statistics toolbox (38). These distributions defined by two parameters, P and N, which 
describe the central angle and concentration of the distribution, respectively. P and 1/N are 
analogous to the mean and variance parameters that define a standard normal distribution. 
Directional statistics were carried out using modified functions from the circular statistics toolbox 
(38). These modifications were such that statistical significance was evaluated using permutation 
tests from which p-values were derived by comparing the circular test statistic with a distribution 
of circular test statistics from 1000 permuted datasets. As an example, testing for differences 
between IED and SD means would involve comparing the test statistic from the true data to a 
distribution of 1000 test statistics in which the measurement categories were permuted. The 
significance criterion was chosen to be 0.05. Hypotheses that within-participant IED propagation 
directions were non-uniform, were tested with Hermans-Rasson tests of circular non-uniformity, 
again with 1000 permutations (39).  
 
Assessing bimodality and clustering IED sub-distributions 
 
 In order to determine whether two, unimodal distributions better fit the ostensibly bimodal 
IED and SD distributions we observed, we first fit von Mises Mixture (vMM) Models to overall 
distributions of IED and SD directions using the Matlab function fitmvmdist 
(https://github.com/chrschy/mvmdist). Overall IED direction distributions were then clustered into 
two component vMM distributions using the Matlab function cluster. We did not observe 
distributions that appeared to have more than two modes and therefore set an upper limit on the 
number of hypothesized clusters, ℎ, at two. These vMMs yielded three parameters for each sub-
distribution, ℎ ∈  ℕ, such that ℎ ≤ 2: the sub-distribution means, 𝜇ℎ, concentration parameters, 
𝜅ℎ, and probability densities, 𝜃ℎ.  

Rather than assuming these vMM models better fit overall IED and SD distributions, we 
assessed whether the overall distribution or each vMM sub-distribution better fit the distributions 
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defined by 𝜇ℎ and 𝜅ℎ. The permutation-based Kuiper tests used to assess goodness-of-fit were 
carried out as follows. We first estimated 𝜇ℎ, 𝜅ℎ, and 𝜃ℎ for both the overall and vMM sub-
distributions. We then carried out permutation-based Kuiper tests, to compare empirical 
distributions of 60 randomly sampled IED directions to theoretical circular normal distributions 
derived from 𝜇ℎ and 𝜅ℎ from both the original and vMM sub-distributions. We repeated this 
procedure 1000 times in order to create a permutation distribution. In this way, we were able to 
measure the extent to which randomly sampled IED angles deviated from theoretical circular 
distributions defined by the overall and vMM parameters. This is akin to cross-validating vM 
parameters and choosing ℎ corresponding to the highest log-likelihood, yet in a model-free way. 
Comparing Kuiper test statistics to a permutation distribution, rather than zero (the null hypothesis 
of a uniform distribution), makes the tests more conservative and allows us to determine whether 
the distribution cannot be determined to be non-normal (40). We then defined our circular 
bimodality index as the minimum difference between the Kuiper test statistic for the overall 
distribution and each vMM sub-distribution. Positive bimodality indices thus indicated that overall 
traveling wave distributions were better modeled as two vMM sub-distributions, and negative 
bimodality indices indicated that overall traveling distributions were better modeled as a single 
von Mises distribution. The Matlab functions for implementing these classifications are 
highlighted in the online code repository.  
 
Seizure Characterization 
 
 In order to study the propagation patterns of IEDs relative to seizures, it was necessary to 
quantify spatial features of SDs and seizure expansion for each recorded seizure. These measures 
have also been described in previous publications (14, 15, 17, 30). The ictal wavefront is the slowly 
expanding edge of the seizure representing the spatial signature of failure of feedforward 
inhibition, and therefore defines recruitment of the tissue surrounding an electrode into the ictal 
core (24). This biomarker of seizure recruitment and expansion has thus far only been detected 
with recordings of multiunit firing rates (14), and can also be detected on single microelectrodes 
by observing widening of action potential waveforms (17, 41). We followed methods from our 
previous manuscripts to generate multiunit firing rates, i.e. filtering the broadband data between 
300 and 3000 Hz and detecting any peaks larger than the median absolute value of the signal 
divided by 0.6745 (42).  

For all seizures, we looked for tonic multiunit firing spreading across the array that would 
suggest the presence of an ictal wavefront, and phase locked multiunit bursting associated with 
ictal discharges. We detected the ictal wavefront feature of seizures by smoothing the firing rates 
on each microelectrode with a 250 millisecond Gaussian kernel and fitting a multilinear regression 
model to the peaks of these slow firing rate estimates across the UEA (14, 20). We detected ictal 
discharges by detecting peaks in multiunit firing rates, calculated with a 25 millisecond Gaussian 
kernel, as we have previously (14, 20). We quantified the propagation direction and speed of ictal 
discharges using the same methods used to determine IED traveling wave speeds and directions, 
as in Liou et al. (20). IED speeds and directions were measured in a manner that was blinded to 
each microelectrode array’s recruitment classification. We defined the presence of ictal phase-
locked firing with a Hermans-Rasson test of circular uniformity on MUA action potential times 
across microelectrodes relative to the phase of the mean LFP recorded across the UEA, similarly 
to (15). Using these measures, we operationally defined two patterns of ictal self-organization, 
based on observed patterns in these fast and slow spatial features of seizures: “recruited” seizures 
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were operationally defined as those with a significant ictal wavefront multilinear regression model 
and significant phase-locked multiunit firing (Fig. S4A-D). “Penumbral” seizures were 
operationally defined as those seizures in which we were unable to detect an ictal wavefront on 
the microelectrode array (Fig. S4E-H). Similar classifications of adjacent and non-adjacent 
recruitment have been reported by other groups (24, 43). For seizures that were associated with 
secondary generalization, we only included discharges up to the clinically defined point of 
secondary generalization in order to constrain our study to the dynamics of focal seizure onset and 
spread.  
 
Comparing IED and SD sub-distributions 
 

For distributions that were determined to be bimodal, we used cluster-based permutation 
tests to test for differences between median IED waveforms and firing rates between IEDs from 
the two component vMM distributions for each participant. Mean firing rates were estimated by 
binning MUA event times into one-hundred 10-ms bins across microelectrodes. In order to test 
for different directions of overall distributions and sub-distributions of IEDs and SDs, we used 
Watson-Williams multi-sample tests for equal means. To test for differences in IED speed 
between different sub-distributions, we used within-participant Mann-Whitney U tests. In order 
to test differences in the proportion of IEDs from predominant and auxiliary sub-distributions we 
used two-sample proportion tests. We employed a significance criterion of 0.05 for all of these 
tests.  
 
Supplementary Materials 
 
Fig. S1. IED detection and artifact rejection. 
Fig. S2. Classifying IED traveling waves. 
Fig. S3. Procedures for clustering and evaluating the goodness-of-fit of overall and VonMises 
mixture distributions.  
Fig. S4. Examples of each class of microelectrode seizure recording. 
Fig. S5. Raw IED and SD distributions in “recruited” UEA recordings. 
Table S1. Clinical details for research participants. 
Algorithm S1. IED detection with microelectrode array data.  
Movie S1. Video of IEDs and ictal recruitment. 
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Table 1. Summary statistics for spatiotemporal features of the dataset.  
 

participant 
Seizure 

Class 

N 
detected 

IEDs 

N (%) 
traveling 

waves 
(LFP) 

N 
traveling 

waves 
(MUA) 

median 
speed 
(cm/s) Bimodal? 

N 
Seizures 

1 recruited 1761 
1567 
(89.0) 640 20.9 yes 1 

2 recruited 1532 
1217 
(79.4) 131 59.2 no 3 

3 recruited 17988 
10220 
(56.8) 10380 25.3 yes 1 

4 recruited 2806 
1429 
(50.9) 284 63.7 yes 1 

5 recruited 2148 
1538 
(71.6) 1131 108.3 yes 2 

6 recruited 3502 
3143 
(89.7) 2006 69 yes 2 

        

7 penumbral 4348 
2132 
(49.0) 2236 76.8 yes 5 

8 penumbral 8369 
7351 
(87.8) 4977 134.7 no 0 

9 penumbral 834 
296  

(35.5) 50 80.5 yes 3 

10 penumbral 2335 
1385 
(59.3) 322 70.7 yes 4 

Totals   45623 30278 22157    22 
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Supplementary Materials: 
 

Figure S1. IED detection and artifact rejection. (A) Raster plot of IED detection times across 
UEA channels during a segment of data (approximately half an hour duration). (B) mean IED 
waveforms for the retained detections shown in (A). These appear as rasters occurring across more 
than 10 channels in (A). (C) Recordings of a single IED across all microelectrodes. (D) Raster plot 
of IED-associated MUA firing. (E) Mean spectrogram across microelectrodes for the IED shown 
in (C). Prominent Beta power, upon which the detection algorithm operated, is clearly visible. (F) 
A scatter plot of the mean IED negative peak versus the median range of recorded voltages for 
each IED in one participant after rejecting outliers. (G) Mean IED waveform before amplitude 
rejection. (H) Mean IED waveform after IED rejection. (G) and (H) show that many large 
amplitude detections were also highly noisy.   
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Figure S2. Classifying IED traveling waves. (A) Example IED recorded across microelectrodes. 
Each colored line represents the voltages recorded form a single microelectrode. (B) Scatter plot 
of IED extrema over time. Black dots show local minima and green dots show absolute minima. 
The weighted histogram of these points that was used to define the time window used for extrema 
detection is shown in gray. (C) Three-dimensional scatter plot of voltage minima timings plotted 
across the spatial footprint of the UEA. The plane from the multilinear regression model, 
regularized via least absolute deviation, is shown as a grid in spacetime colored by time of 
occurrence (earlier: black; intermediate: orange; later: yellow). (D) Scatter plot of IED extrema 
and slope line of the linear regression model projected into two dimensions. (E) Visual 
representation of the permutation test that was used to operationally define IED traveling waves. 
The true residual absolute deviation is shown in red and residual absolute deviations from spatially 
shuffled data are shown in black. 
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Figure S3. Procedures for clustering and evaluating the goodness-of-fit of overall and von 
Mises Mixture distributions. (A) An example IED distribution for one participant.  (B) a 
distribution of the same number of directions sampled from the circular normal distribution with 
the same mean direction, and concentration parameter as the distribution in (A). (C) The first 
clustered distribution of angles from (A). (D) a distribution of the same number of directions 
sampled from the circular normal distribution with the same mean direction, and concentration 
parameter as the distribution in (C). (E) The second clustered distribution of angles from (A). (F) 
a distribution of the same number of directions sampled from the circular normal distribution with 
the same mean direction, and concentration parameter as the distribution in (C). (G) the 
permutation distribution of Kuiper test statistics comparing subsamples of angles from real IED 
distributions and circular normal distributions with the same parameters. The black line shows a 
gaussian fit to the distribution and colored lines represent the test statistics from the true data 
distributions. (H) A description of the classification rule for unimodal vs bimodal IED 
distributions.
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Figure S4. Examples of each class of microelectrode seizure recording. (A) Mean LFP around 
the time of UEA recruitment for the “recruited” category. Scale bar shows 10 s. (B) Mean MUA 
firing rate across the microelectrodes for the same time period shown in (A). (C) Raster plot of 
MUA event times for each microelectrode on the UEA sorted by recruitment time. (D) MUA firing 
rates on each microelectrode colored by order of recruitment from black to copper. (E) Mean LFP 
for a seizure in the “penumbral” category. Scale bar shows 10 s. (F) Mean MUA firing rate across 
microelectrodes for the same time period shown in (E). (G) Raster plot of multiunit event times 
for each microelectrode. (H) Multiunit firing rates for each microelectrode colored by the timing 
of maximal firing during the seizure window.  Note the lack of spatiotemporal organization in the 
“penumbral” example. 
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Fig. S5. Raw IED and SD distributions in “recruited” UEA recordings. (A-F) Each lettered 
subpanel corresponds to one participant. Each polar histogram corresponds to one seizure. Gray 
histograms show IED distributions. Black histograms show SD distributions, and blue lines show 
the directions of IWs. (G) direction summaries for each seizure ordered and color coded as in (A-
F). Dots indicate median directions and lines indicate standard deviations. 
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Algorithm S1. Algorithm for detecting IEDs from microelectrode recordings. 
 
Input: A matrix of microelectrode voltage recordings, 𝑉(𝑐, 𝑡), where measured voltage is a 
function of time, 𝑡, and which microelectrode array channel it was recorded on, 𝑐. 
Output: A vector of IED times, 𝐼(𝑡). 
  1: 
  2:  
  3:  
   
  4:  
  5: 
  6:  
  7: 
  8:  
   
 
 
 
 
  9: 
 
 
 
 
 
 

for each 𝑐, do: 
    filter data between 20 and 40 Hz (non-causal, 4th order Butterworth filter) 
    detect peaks, 𝑝, in filtered signal greater than 8 times the standard deviation of the beta 
power in the data.  
    discard peaks that occur within 250 ms of a preceding detection 
for each 𝑝, co-occurring within 250 ms, across more than 10 microelectrodes. 
    find all local minima of 𝑉(𝑐, 𝑡) in time, across all 𝑐. 
    bin local minima in time, across all 𝑐. 
    convolve the resulting histogram with a modified Heaviside function, 
     

        𝐻(𝑡): {
0,     0 ≥ 𝑛 < 0.4

10𝑡,   0.4 ≥ 𝑛 < 0.5
−𝑡, 0.5 ≥ 𝑛 < 1 

 

 
find absolute minima of 𝑉(𝑐, 𝑡) within the bin containing the most local minima. 
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Table S1. Clinical details for research participants.  
 

Participant Age sex Epileptogenic 
zone 

UEA implant site Pathology Outcome 

1 30 male right lateral and 
mesial temporal 

lobe; 
nonlesional 

Right middle 
temporal gyrus, 4 
cm posterior to the 

temporal pole 

Mesial temporal 
sclerosis 

Engel 2 
at 22 

months 

2 25 male Left mesial 
temporal lobe 

Left middle 
temporal gyrus, 3 
cm posterior to 
temporal pole 

Non-specific Engel 1a 
at 7 

months 

3 32 male Right mesial 
temporal lobe 

right inferior frontal 
gyrus 

Normal 
hippocampus 

Engel1a 
at  2.5 
years 

4 30 male left 
supplementary 

motor area 

left supplementary 
motor area 

N/A (multiple 
subpial transections 

performed) 

Engel 3 
at >2 
years 

5 39 male left frontal 
operculum 

left lateral frontal, 2 
cm superior to 
Broca's Area 

Nonspecific Engel 1a 
at >2 
years 

6 32 female left inferior 
temporal lobe 

inferior temporal 
gyrus, 2.5 cm from 

temporal pole 

1 neuronal loss; 
lateral temporal 

nonspecific 

Engel 1a 
at 55 

months 
7 19 female right posteriror 

lateral temporal 
Right posterior 
temporal, 1cm 

inferior to angular 
gyrus 

Non-specific Engel 1a 
at >2 
years 

8 28 male left dorsal 
posterior 
prefrontal 

cortex 

left posterior 
middle frontal 

gyrus 

Mild reactive 
astrogliosis, patchy 

microgliosis, 
Chaslin’s marginal 

sclerosis 

Engel 3a 
at 32 

months 

9 26 male left middle 
subtemporal 

left posterior 
inferior temporal 

gyrus 

Diffusely 
infiltrating low 

grade glioma, IDH-
1 negative 

Engel 4a 
at 2 
years, 5 
months 

10 30 male right middle 
inferior 

temporal gyrus 

right middle 
temporal gyrus 

Mild astrocytosis Engel 1a 
at 12 
months 
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Movie S1. Video of IEDs and ictal recruitment. A movie showing several pre-ictal IEDs 
propagating in the opposite direction of seizure expansion, in the same direction as SDs. The top 
trace shows the mean LFP across all microelectrodes for the beginning of one seizure. The lower 
three panels show three types of data superimposed across the footprint of the microelectrode 
array. The lower left panel shows LFP voltages recorded on each microelectrode. The lower 
middle panel shows the slow multiunit firing dynamics, in which the slow propagation of the 
ictal wavefront can be observed. The lower right panel shows the fast multiunit firing dynamics. 
The movie progresses at 1/8th the speed of real time and the red bar shows the passage of time, 
with three seconds indicated by the temporal scale bar.  
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