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Abstract (250 words) 14 

Vibrio vulnificus is a naturally-occurring, potentially lethal pathogen found in coastal waters, 15 

fish, and shellfish. Sewage spills in coastal waters occur when infrastructure fails due to severe 16 

storms or age, and may affect bacterial populations by altering nutrient levels. This study 17 

investigated effects of sewage on clonal and natural V. vulnificus populations in microcosms. 18 

Addition of 1% sewage to estuarine water caused the density of a pure culture of V. vulnificus 19 

CMCP6 and a natural V. vulnificus population to increase significantly, whether measured by 20 

qPCR or culture. Changes in the transcription of six virulence- and survival-associated genes in 21 

response to sewage were assessed using continuous culture.  Exposure to sewage affected 22 

transcription of genes that may be associated with virulence. Specifically, sewage modulated the 23 

oxidative stress response by altering superoxide dismutase transcription, significantly increasing 24 

sodB transcription while repressing sodA. Sewage also repressed transcription of nptA, which 25 

encodes a sodium-phosphate cotransporter. Sewage had no effect on sodC transcription or the 26 

putative virulence-associated genes hupA or wza. The effects of environmentally relevant levels 27 

of sewage on V. vulnificus populations and gene transcription suggest that sewage spills that 28 

impact warm coastal waters could lead to an increased risk of V. vulnificus infections. 29 

 30 

Importance (150 words max) 31 

Vibrio vulnificus infections have profound impacts such as limb amputation and death for 32 

individuals with predisposing conditions. The warming climate is contributing to rising V. 33 

vulnificus prevalence in waters that were previously too cold to support high levels of the 34 

pathogen. Climate change is also expected to increase precipitation in many regions, which puts 35 

more pressure on wastewater infrastructure and will result in more frequent sewage spills. The 36 
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finding that 1% wastewater in estuarine water leads to tenfold to 1000-fold greater V. vulnificus 37 

concentrations suggests that human exposure to oysters and estuarine water could have greater 38 

health impacts in the future.  Further, wastewater had a significant effect on gene transcription 39 

and has the potential to affect virulence during the initial environment-to-host transition. 40 

  41 
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Introduction 42 

Billions of gallons of sewage are discharged into the environment and recreational waters 43 

in the U.S. annually as a result of storms, infrastructure failure, and chronic leaks from aging 44 

infrastructure (1). Sewage contains an abundance of allochthonous human pathogens which pose 45 

a direct risk to individuals who contact the water during recreation or other activities such 46 

commercial fishing, and also contaminate aquatic fisheries (1–4).  Sanitary sewer overflows 47 

(SSOs) that often occur after heavy rains overwhelm local infrastructure, and may impact 48 

microbial communities if sewage enters local water bodies. Sewage and runoff contain high 49 

levels of dissolved organic carbon (DOC), nitrogen (N), phosphate (P), heavy metals, and sub-50 

inhibitory concentrations of antibiotics which contribute to eutrophication and degraded water 51 

quality (5, 6). These nutrient pulses could further degrade local water bodies by stimulating the 52 

growth of autochthonous bacteria including human pathogens such as the leading cause of 53 

seafood borne illness fatalities, Vibrio vulnificus (7). 54 

The presence of nutrients, heavy metals, and pharmaceuticals in sewage, and in other 55 

forms of wastewater, can cause disturbances in the local bacterial and phytoplankton populations 56 

when they are released to the environment. Algal blooms have been observed following heavy 57 

storms, or sewage discharge,  and have been correlated with proliferation of Vibrio spp. resulting 58 

from increased DOC and other nutrients (8–10). Pathogenic Vibrio spp., (e.g. V. cholerae, V. 59 

parahaemolyticus, and V. vulnificus) can also proliferate following these events (8, 11, 12). In 60 

contrast, vibrio concentrations did not correlate with fecal indicator bacteria, which signal 61 

pollution from sewage and other sources of fecal contamination (e.g. birds (13)), in Apalachicola 62 

Bay, FL (14). One study correlated V. parahaemolyticus levels with the amount of wastewater 63 

treatment plant (WWTP) effluent released into Narragansett Bay, RI (15).  64 
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V. vulnificus is an opportunistic human pathogen that is closely related to the pathogens 65 

V. cholerae and V. parahaemolyticus (16). Humans are typically infected with V. vulnificus after 66 

eating contaminated oysters, which can result in septicemia and up to a ~50% mortality (17). 67 

Exposure of wounds to estuarine water or animals (e.g. shellfish or fish) can result in cutaneous 68 

infections and necrotizing fasciitis, which may necessitate limb amputation (17). Naturally-69 

occurring V. vulnificus populations consist of three major biotypes;  biotype one causes the 70 

majority of human infections (18, 19). Within biotype one, V. vulnificus is grouped into 71 

environmentally-associated (16S rRNA A or vcgE) and clinically-associated (16S rRNA B or 72 

vcgC) genotypes. The 16S rRNA A/B and vcgC/E typing methods are both used frequently and 73 

have a high degree of concordance (20–23). The clinically associated-genotype 16S rRNA B 74 

genotype is more frequently isolated from human infections and is correlated with more severe 75 

disease outcomes compared to the environmentally-associated 16S rRNA A genotype (20, 23, 76 

24). Differential expression of genes by each genotype may contribute to the observed genotype 77 

bias in clinical specimens. The sodium phosphate cotransporter nptA is differentially expressed 78 

by V. vulnificus genotypes (25) and may support growth under changing phosphate 79 

concentrations as observed in Staphylococcus aureus (26). 80 

Expression of virulence genes in bacteria has been shown to respond to environmental 81 

conditions including temperature (27–29), salinity (25, 30), carbon sources (31–33), nutrients 82 

(25), heavy metals (34), and antibiotics (33, 35, 36). Sewage represents a source of numerous 83 

organic carbon molecules (37) inorganic nutrients, and metals (38). Iron is found in high 84 

concentrations in wastewater and can be a limiting nutrient in seawater for algae (39, 40), but 85 

also is potentially toxic, inducing oxidative stress in bacteria (41, 42). hupA expression in V. 86 

vulnificus is important for iron acquisition during infections (43). Antioxidant-related changes in 87 
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gene expression (e.g. sodA-C) can promote survival and virulence under acid stress and 88 

phagocyte engulfment in V. vulnificus, V. alginolyticus, and Salmonella enterica (42, 44–46). 89 

Changing nutrient levels, resulting from sewage, can affect the expression of genes related to 90 

nutrient acquisition and contribute to virulence potential. Similarly, expression of a capsule (e.g. 91 

wza) increases survival of V. vulnificus in the presence of serum (47–49) and is affected by 92 

environmental conditions (e.g. temperature and oxygen availability) (50, 51). 93 

Sewage could directly influence the probability of human infection by V. vulnificus if it 94 

stimulated growth of the pathogen. On the other hand, sewage could indirectly increase pathogen 95 

infectiousness by altering the expression of genes related to virulence and the environment-to-96 

host transition through multiple mechanisms. This study’s purpose was to investigate the effects 97 

of sewage on V. vulnificus growth and gene transcription using both laboratory cultures and 98 

natural populations of bacteria present in estuarine water in Tampa Bay, FL. The objectives were 99 

to 1) determine if sewage can serve as a nutrient source for autochthonous V. vulnificus 100 

populations; and 2) determine if sewage alters the transcription of virulence- and survival-101 

associated genes. 102 

 103 

Methods 104 

Strains and culture conditions. Vibrio vulnificus strain CMCP6 was maintained on Luria-105 

Bertani agar (Difco). V. vulnificus CMCP6 broth cultures prepared for inocula in microcosm and 106 

gene transcription experiments were incubated for 20-24 h in Luria-Bertani (LB) broth at room 107 

temperature (22°C).  108 

 109 
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Sample collection and processing. Sewage influent was collected from Falkenburg Advanced 110 

Wastewater Treatment Plant, Tampa, FL, transported on ice, and held for a maximum of two 111 

hours before being frozen at -20°C. Sewage was held in the freezer for a maximum of one month 112 

prior to thawing and filter sterilization with a Rexeed 25-S hollow-fiber filter (Asahi Kasei). 113 

Estuarine water was collected from Ben T. Davis Beach (BTD) Tampa, FL 27°58’12.9’’N, 114 

82°34’42.9’’W (pH 7.9, salinity 16-22 ‰) and Hudson Beach, Hudson FL 28°21'46.3"N 115 

82°42'33.6"W (pH 7.8, salinity 20 ‰) and used to construct microcosms, or sterilized by hollow 116 

fiber filtration as above and frozen, within 4 h of collection.  117 

Assessing the effects of sewage on growth of V. vulnificus CMCP6. The ability of sewage to 118 

serve as a nutrient source was assessed by incubating V. vulnificus CMCP6 in microcosms with 119 

and without sewage. V. vulnificus concentrations were measured by qPCR of the vvhA gene 120 

(Table 1) (52).  All microcosms were prepared in triplicate. V. vulnificus CMCP6 inoculum was 121 

grown at room temperature for ~22 h in LB broth and diluted to ~10
3
 CFU/mL in phosphate 122 

buffered saline (pH 7.4) (53). A 100 µL aliquot of diluted culture was added to each 20 mL 123 

microcosm to reach a starting concentration of ~10
1
 CFU/mL and incubated at 37°C with 124 

shaking at 150 rpm for ~22 h.  125 

Effects of the macronutrients nitrogen, phosphorous, and organic carbon in sewage on V. 126 

vulnificus CMCP6 growth were investigated by preparing a defined modified M9 (MM9) 127 

medium lacking these macronutrients. MM9 was amended with sterile sewage to serve as the 128 

sole source of the missing nutrients to determine their effects on culture density. Control 129 

(nutrient-replete) microcosms contained 20 ml of MM9 media consisting of 50 mM tris HCl (pH 130 

7.5), 10 mM NH4Cl, 0.1 mM CaCl2, 1 mM MgSO4, 1 mM KH2PO4, 0.1 mM ferric citrate 131 

(C6H5FeO7), 10 ‰ NaCl, and 11.1 mM (2 g/L) glucose. A medium depleted of nitrogen, 132 
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phosphorous and carbon was prepared by omitting NH4Cl, KH2PO4, and glucose from MM9. 133 

Estuarine water from Hudson Beach, FL (pH 7.8, salinity 20 ‰) was sterilized using hollow-134 

fiber filtration (Rexeed 25-S) for microcosms made with environmental water. Sewage-amended 135 

treatments received 1% (vol/vol) sterile sewage influent. An undiluted sterile sewage treatment 136 

was amended with NaCl to a salinity of 10 ‰. Twenty milliliters of culture, 1 mL for turbid 137 

cultures, were filtered through a 0.45 µm nitrocellulose filter to concentrate bacteria. Membrane 138 

filters were stored at -80°C until DNA could be extracted using a DNeasy Power Water kit 139 

(Qiagen) and bacteria were quantified using qPCR of the vvhA gene. 140 

 141 

Assessing the effect of sewage on the growth of autochthonous V. vulnificus. The effects of 142 

nutrient amendment on culturable concentrations of autochthonous V. vulnificus populations in 143 

estuarine water was assessed in batch cultures. Microcosms (500 mL) were constructed in 144 

triplicate using estuarine water from BTD (pH 7.9, salinity 22 ‰). We used a control treatment 145 

(natural estuarine water only), a low-level glucose amendment (3.0 mg/L glucose)(54), and a 146 

sewage amendment (1% filter-sterilized sewage influent). Microcosms were incubated at 30°C 147 

with shaking at 140 rpm for 20-24 h. Culturable V. vulnificus were enumerated using membrane 148 

filtration by filtering 1 mL of serially diluted culture through 0.45 µm nitrocellulose membrane 149 

filters and plating on modified cellobiose-polymyxin b-colistin agar (mCPC) (55). Plates were 150 

incubated at 37°C for 22-24 h and then counted.  151 

 152 

Effects of sewage on virulence- and survival-associated genes. Changes in transcription of six 153 

virulence- and survival-associated genes (hupA, nptA, sodA-C, tufA, and wza) by V. vulnificus 154 

CMCP6 in response to sewage were assessed using an Infors-HT II bioreactor in a chemostat 155 
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(continuous flow) configuration. Genes were selected based on their potential dual roles in 156 

survival in the environment and the human host, or known importance for virulence expression. 157 

Defined minimal medium containing 23.3 mM Na2HPO4, 11 mM KH2PO4, 9.35 mM NH4Cl, 158 

85.6 mM NaCl, 1 mM MgSO4, and 2.25 mM glucose (0.405 g/L) with pH adjusted to 7.5 was 159 

used as a growth medium. The 1 L culture vessel and 4 L reservoir were filled with medium and 160 

the bioreactor was set to pH 7.5, temperature 37°C, dissolved oxygen >70%, 150 rpm stir rate, 161 

and a flow rate of 3 L/d. The V. vulnificus CMCP6 inoculum was grown at room temperature for 162 

~22 h in LB and 1 mL of culture was added to the bioreactor to reach a starting concentration of 163 

10
6
 CFU/mL After inoculation, the bioreactor was run continuously for 48 h prior to sampling 164 

under control (no sewage added) conditions. Sampling under control conditions occurred thrice 165 

over the course of 4 h. After sampling under control conditions, the nutrient reservoir was 166 

replaced with minimal medium amended with 1% (vol/vol) sterile sewage and allowed to run for 167 

another 48 h. After 48 h, the sewage treatment was sampled thrice over the course of 4 h.  168 

Immediately after each sample collection RNA was extracted using a Quick-RNA 169 

Miniprep Kit (Zymo) followed by a dnase treatment using a TURBO DNA-free Kit (Invitrogen). 170 

Briefly, RNA was diluted to 10 ng/µL and used for reverse transcriptase qPCR (RT-qPCR) of 171 

the following genes: hupA, nptA, sodA-C, tufA, and wza (Table 1). Thermo Scientific™ Verso™ 172 

1-Step RT-qPCR Kits with low ROX (Thermo Scientific) was used for one step reverse 173 

transcription in an ABI 7500 qPCR thermocycler. Twenty microliter qPCR reactions consisted of 174 

1x Verso master mix, 1 μL enhancer per reaction, 0.2 μL Verso Enzyme per reaction, 0.15 μM of 175 

each primer (Table 1), 2 μL of template RNA (10 ng/ μL) per reaction, and nuclease free water. 176 

Cycling conditions were as follows: 1 cycle of 50°C for 15 min followed by 1 cycle of 95°C for 177 

15 min followed by 40 cycles of 95°C for 15 s and 60°C for 30 s. Dnase treatment was verified 178 
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using a no enzyme control (reactions lacking Verso Enzyme). Fold gene transcription was 179 

calculated using the 2
-ΔΔC

T method, which normalizes transcription to a reference gene, (56) with 180 

tufA serving as the reference gene (57).  181 

 182 

Statistical analyses. Statistical analyses on culturable bacterial concentrations, qPCR, and RT-183 

qPCR data were performed in R v3.6.3 and Graphpad Prism v8. ANOVA followed by Tukey’s 184 

honest significance tests was performed using Graphpad and the package multcomp in R.  185 

 186 

Results 187 

Sewage promotes V. vulnificus CMCP6 growth. We sought to determine if sewage could 188 

support the growth of V. vulnificus CMCP6 in a minimal medium and in sterile estuarine water. 189 

Culture density in microcosms containing nutrient replete MM9 (4.67 x 10
9 
GC/100 mL) was not 190 

significantly different from MM9 with 1% added sewage (5.47 x 10
9 
GC/100 mL) or from 191 

cultures grown in undiluted sewage (5.33 x 10
9 
GC/100 mL) (Fig. 1). V. vulnificus CMCP6 in 192 

nutrient depleted MM9 (lacking a nitrogen, phosphorus and carbon source) amended with 1% 193 

sewage (NPC lim + 1% Sew) reached a density of 6.81 x 10
7 

GC/100 mL, while V. vulnificus 194 

concentrations in NPC-depleted medium without sewage were below the limit of detection (< 10 195 

GC/mL) (data not shown). The addition of 1% sterile sewage to sterile estuarine water caused a 196 

significant 1.16 log10 GC/100 mL increase in V. vulnificus density to 4.21 x 10
7 
GC/100 mL 197 

compared to the sterile estuarine water (2.88 x 10
6 
GC/100 mL) (Fig. 1). V. vulnificus levels in 198 

nutrient-depleted MM9 amended with sewage were not significantly different than those in 199 

sterile estuarine water amended with sewage. 200 

 201 
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Sewage supports the growth of natural V. vulnificus populations. We explored the potential 202 

for sewage to increase the density of a natural population of V. vulnificus by incubating 203 

autochthonous populations in natural estuarine water + 1% sterile sewage for 24 h (Fig. 2). The 204 

effect of 3.0 mg/L (16.7 µM) glucose, used to simulate organic carbon resulting from primary 205 

production, on the growth of V. vulnificus was also examined. The autochthonous V. vulnificus 206 

population grew to a significantly greater density as measured by culture in the sewage-amended 207 

microcosms in 24 h; i.e. 2.17 x 10
6
 CFU/100 mL in the sewage treatment compared to 8.49 x 10

2
 208 

CFU/100 mL in the un-amended estuarine water (Fig. 2). Added glucose caused no significant 209 

difference in culturable V. vulnificus concentrations compared to the un-amended estuarine water 210 

(Fig. 2).  211 

 212 

Effects of sewage on gene transcription. The possibility that compounds in sewage could affect 213 

the transcription of virulence- and survival-associated genes was tested using V. vulnificus 214 

CMCP6. V. vulnificus CMCP6 was maintained as an actively growing culture using a bioreactor 215 

in a chemostat configuration with nutrient replete medium. A stable continuous culture was 216 

established and sampled before being exposed to 1% sewage to determine changes in the 217 

transcription of virulence- and survival-associated genes (sodA-C, hupA, nptA, and wza). Sewage 218 

exposure significantly increased Fe SOD (sodB) transcription 2.7-fold over the control (Fig. 3). 219 

Conversely, transcription of sodA, which encodes Mn SOD, significantly decreased 5.4 fold 220 

upon exposure to sewage. nptA transcription was a significant 2.1-fold lower in the sewage 221 

treatment compared to the control. Changes in transcription of the remaining genes (sodC 222 

encoding the CuZn SOD, hupA, and wza) were not significant. While not significant at =0.05, 223 

sewage appeared to repress hupA (p = 0.08) transcription. 224 
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 225 

Discussion 226 

Contamination of surface waters by sewage and storm water is known to endanger human 227 

health by increasing the probability of human exposure to allochthonous pathogens, and also to 228 

degrade water quality through nutrient loading (58–60); however, the possibility that sewage 229 

promotes increased levels of autochthonous aquatic pathogens by providing nutrients has been 230 

infrequently addressed. Sewage is often accidentally discharged into the environment during 231 

heavy rains where storm drains and sewer systems are connected, or where leakage from aged 232 

septic and sewer systems occurs, resulting in millions of gallons of sewage contaminating the 233 

environment annually (61, 62). Demonstrated increases in Vibrio spp. concentrations following 234 

storm events have been attributed to reduced salinity and mixing of shallow and deep waters (8, 235 

12, 63). However, the effects of sewage on autochthonous, pathogenic Vibrio spp. (e.g. V. 236 

cholerae, V. parahaemolyticus, and V. vulnificus) are largely unexplored and may represent a 237 

threat to human health, as higher concentrations of pathogenic Vibrio spp. significantly increase 238 

the risk of infections (64).  239 

This study demonstrated that environmentally relevant sewage levels can significantly 240 

increase V. vulnificus density. The concentration of 1% sewage used here was selected as it 241 

represents a reasonable level of contamination following a recent, local sewage spill or chronic 242 

contamination. We base this assessment from a review of human associated Bacteroides genetic 243 

marker (HF183) which is commonly used to identify sewage contamination of surface waters 244 

(58, 65). HF183 levels of 6.31 x 10
5
 - 6.15 x 10

6
 GC/100 mL have been measured in  sewage 245 

diluted 100-fold (1%) (66–68) which is within the range of 1.80 x 10
3
 - 6.30 x 10

7
 GC/100 mL 246 

observed in moderately to severely impacted surface waters (13, 68–71).  A low level of organic 247 
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carbon (3.0 mg/L) was tested to simulate the level of organic carbon from primary production in 248 

an estuary (mean 3.07 mg/L) (54) but did not affect the observed population density in this study. 249 

We demonstrated that sewage promotes proliferation of both pure cultures of V. 250 

vulnificus CMCP6 and natural V. vulnificus populations. Growth of V. vulnificus CMCP6 in 251 

sterile estuarine water without sewage resulted in a population density  of ~10
6 
GC/100 ml, 252 

which is at the upper level of previous reports from Gulf of Mexico coastal waters (72, 73). The 253 

addition of 1% sewage in this study increased CMCP6 density by an order of magnitude, 254 

bringing it above the range observed in the aforementioned reports. Likewise, levels of natural V. 255 

vulnificus populations measured by culture in this study (~10
3 
CFU/100 ml) were similar to 256 

previously observed levels (72), but, with the addition of sewage, increased over three orders of 257 

magnitude  to levels rarely reported in environmental waters. The increase in natural populations 258 

associated with sewage amendment was corroborated in a continuous culture experiment where 259 

V. vulnificus was measured by qPCR of vvhA (74).  V. vulnificus concentrations increased over 260 

one hundred fold in 24 h following sewage addition, from ~10
5 
GC/100 ml to ~10

7 
GC/100 ml.  261 

While one would expect qPCR measurements to be higher than culture measurements, the 262 

magnitude difference in the effect of sewage among the different experiments was unexpected.   263 

It is possible that measurements of density of the autochthonous population by culture 264 

underestimated the initial quantity of V. vulnificus due to the presence of viable but 265 

nonculturable V. vulnificus, but the addition of sewage not only promoted proliferation, but also  266 

shifted a greater proportion of the cells to culturability (52).  267 

Based on the growth-promoting effects of sewage, and presence of bioactive compounds, 268 

we hypothesized that sewage would induce the transcription of several virulence- and survival-269 

associated genes which may facilitate the environment-to-host transition. Sewage represents a 270 
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rich source of iron with concentrations ranging from 1.9-17.3 mg/L to >70000 mg/kg in sludge 271 

(38, 75). Elevated sodB (Fe SOD) transcription and sodA (Mn SOD) repression observed here is 272 

consistent with fur-mediated gene regulation in the presence of iron observed in V. vulnificus and 273 

Escherichia coli (44, 76). Fe SOD expression has been shown to be more important for virulence 274 

expression in mice than either sodC (CuZn SOD) or sodA (42). Expression of Fe SOD was also 275 

demonstrated to be an important virulence factor in fish infections in the opportunistic human 276 

pathogen Vibrio alginolyticus (46). Elevated transcription of sodB may facilitate the 277 

environment-to-host transition and could be an important virulence factor in human infections. 278 

While not observed here, hupA transcription increases upon exposure to human serum, allowing 279 

for iron acquisition (77). Free iron provided by sewage may have repressed transcription of hupA 280 

(29). nptA transcription was repressed in response to sewage. Phosphorus concentrations in 281 

sewage are approximately three orders of magnitude higher (3 mg/L or 31.6 µM (78)) than those 282 

in estuarine water in Florida Bay (0.02-0.04 µM (79)), which could explain the effect on 283 

phosphate transporter transcription. However, it was reported that phosphate concentration does 284 

not affect nptA (25), and it is possible that other or multiple constituents of sewage contributed to 285 

the observed effect. While the function of nptA in V. vulnificus pathogenesis is not well 286 

understood, its expression under varying environmental conditions (25) may support the 287 

transition to a human host, as proposed for nptA expression in Staphylococcus aureus (26), by 288 

enabling rapid phosphate uptake in the new environment. 289 

This study has shown that sewage represents a threat to human health beyond direct 290 

deposition of allochthonous pathogens. Sewage can alter the autochthonous V. vulnificus 291 

population in multiple ways by stimulating growth and increasing the transcription of multiple 292 

virulence associated genes. The response of V. vulnificus and other pathogenic Vibrio species to 293 
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sewage may also enable better modeling of human health risks. Studies comparing opportunistic 294 

pathogens to obligate pathogens will be important to understand the broader impacts of sewage 295 

on waterborne pathogens and risk to human health. 296 
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Table 527 

1. 528 

qPCR 529 

and 530 

RT-531 

qPCR 532 

primers 533 

used in 534 

this 535 

study. 536 

 537 

Target Function Primer Name  Primer Sequence 5'-3' Reference 

qPCR Primers    

vvhA  FqPCR TGTTTATGGTGAGAACGGTGACA (52) 

  RqPCR   TTCTTTATCTAGGCCCCAAACTTG  

Gene Transcription Primers   

hupA TonB-dependent heme and 

hemoglobin receptor 

hupA_F1 CATGTCCCGGATTGTCATAG This study 

 hupA_R1 ACAAGGTAGCGCAAGAAG  

nptA Sodium phosphate cotransporter qNptA2_F TTTCTCTTGGCCACGTACGCTGTA (38) 

 qNptA1_R GCCGAACATCATTTCCAAAGGAAGG  

sodA Manganese superoxide dismutase sodA_F1 CCCACGCGATTCAAGAAA This study 

 sodA_R1 CACCCTCTTTGACCACTAAC  

sodB Iron superoxide dismutase FeSOD_F1 TCATGTAGTCTGGACGTAGG This study 

 FeSOD_R1 ACACCAATCACTGAAGAAGG  

sodC Superoxide dismutase [CuZn] 

precursor 

CuZnSOD_F1 AGATCGCCAAGGTGATTG This study 

 CuZnSOD_R1 AGACGGCAAAGTGGTATTAG  

tufA Elongation factor tufA_F TTCCCAGGTGATGACCTACC (49) 

 tufA_R TAGATCGATTGCACGCTCTG  

wza Capsular polysaccharide 

transporter 

wza_F AGACGATTTGGCTTACATGG (49) 

 wza_R GGATAGATGTGAGCCGGGTA  

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.04.27.441721doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.27.441721


27 
 

 538 

 539 
 540 

 541 
Figure 1. Effects of sewage on the density of V. vulnificus CMCP6 measured by qPCR of vvhA. 542 

V. vulnificus CMCP6 was grown in the following media with or without 1% sterile sewage 543 

added: nutrient replete minimal media (MM9), MM9 without added nitrogen, phosphorous, and 544 

carbon (NPC lim), and sterilized estuarine water (HF-EW). It was also grown in undiluted sterile 545 

sewage (Sew). Treatments listed with “+ 1% Sew” received a 1% (vol/vol) sterile sewage 546 

amendment to growth medium. V. vulnificus density in the NPC limited media without sewage 547 

was below the limit of detection (not shown). Error bars represent the standard deviation of the 548 

mean between replicates and letter codes indicate a significant difference between treatments 549 

when letters are not shared (p < 0.05). 550 

 551 

 552 
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 553 

 554 

Figure 2.  Density of an autochthonous V. vulnificus population measured by culture after 24 555 

hours of growth in natural estuarine water (EW) from Ben T. Davis Beach, FL. Treatments were 556 

unamended EW, EW amended with 3.0 mg/L glucose (EW + Glucose), and EW amended with 557 

1% sterile sewage (EW + 1% Sew). Error bars represent the standard deviation of the mean 558 

between replicates and letter codes indicate a significant difference between treatments when 559 

letters are not shared (p < 0.05). 560 
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 562 

 563 

 564 

Figure 3. Changes in fold-transcription of virulence- and survival-associated genes in response to 565 

amendment with 1% sewage was assessed by RT-qPCR: sodC (CuZn superoxide dismutase 566 

(SOD)), sodA (Mn SOD), sodB (Fe SOD), hupA, nptA and wza. Cultures were grown using a 567 

bioreactor in unamended minimal medium (control, □ on left) or in minimal medium + 1% 568 

sterile sewage (sewage, ■ on right). Error bars represent the standard deviation of the mean 569 

between replicates and asterisks represent a significant difference in the mean between 570 

treatments (with or without sewage) (p < 0.05). 571 
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