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ABSTRACT 
 
Background 
 
RNA sequencing has been widely used as an essential tool to probe gene expression. While 
standard practices have been established to analyze RNA-seq data, it is still challenging to detect 
and remove artifactual signals. Several factors such as sex, age, and sequencing technology have 
been found to bias these estimates. Probabilistic estimation of expression residuals (PEER) has 
been used to account for some systematic effects, but it has remained challenging to interpret 
these PEER factors.  
 
Results 
 
Here we show that transcriptome diversity – a simple metric based on Shannon entropy – 
explains a large portion of variability in gene expression, and is a major factor detected by PEER. 
We then show that transcriptome diversity has significant associations with multiple technical 
and biological variables across diverse organisms and datasets. This prevalent confounding factor 
provides a simple explanation for a major source of systematic biases in gene expression 
estimates. 
 
Conclusions 
Our results show that transcriptome diversity is a metric that captures a systematic bias in RNA-
seq and is the strongest known factor encoded in PEER covariates. 
 
 
BACKGROUND 
 
Gene expression is a fundamental process required by all life forms and its high-throughput 
quantification has been an active area of research for over 25 years[1]. A key step in this process 
is the transcription of DNA into RNA.  
 
A myriad of methods have been developed over the past decades to assess RNA levels, including 
low-throughput techniques like RNA hybridization (e.g. northern blots, FISH) and Sanger 
sequencing, as well as high-throughput methods like DNA microarrays and next-generation RNA-
sequencing (RNA-seq). Each of these methods presents a unique set of advantages and technical 
difficulties. The main advantage of RNA-seq is its ability to measure expression levels of all non-
repetitive genes in the genome, resulting in its widespread adoption for biological research [2]. 
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Due to its simplicity and commercialization, researchers can readily prepare RNA and send it to 
sequencing centers, obtaining data in a matter of hours to a few days.  
 
Even though there are multiple experimental methods to generate bulk RNA-seq data, it is now 
considered to be a standard practice, with most of them generating raw data in the form of short 
sequencing reads [2]. Similarly, while there are multiple computational tools to transform these 
sequencing reads into gene expression values, they generally follow these standard steps [3]: (1) 
performing quality control on the experiment and individual reads, (2) mapping reads to a 
reference genome to identify their gene-of-origin, (3) creating gene counts, and (4) transforming 
those counts into gene expression values to be compared across genes and/or experiments. This 
last step has proven to be non-trivial because gene counts in RNA-seq are of relative nature by 
design [4], i.e. the number of reads that are sequenced is many orders of magnitude smaller than 
the number of RNA transcripts in a cell population [5]. Thus, the read count of a gene depends 
on the counts of all other genes. 
 
Computational methods have been developed to normalize and/or transform raw read counts to 
account for undesired effects caused by the relative nature of RNA-seq [4]. While the Transcripts 
Per Million (TPM) normalization has been used extensively, it has been shown to be problematic 
when there are major disparities in gene expression levels or sequencing depth across 
experiments [3]. The two most widely adopted methods that attempt to overcome issues of TPM 
are the “Trimmed Median of Means” (TMM) [6] and the “Median of Ratios” [7]. Despite some 
differences between the two, they both rely on creating a shared pseudo-reference expression 
vector (1 x # genes) from an expression matrix (# samples x # genes), and this vector is then used 
as a normalization factor across all samples. Since their conception, TMM and Median of Ratios 
have been extensively used for differential gene expression analysis and eQTL discovery, and they 
have been incorporated into the best practices of large consortia like the use of TMM in the 
Genotype-Tissue expression project (GTEx) [8].  
 
Many factors can globally affect gene expression estimates. These include extremely highly 
expressed genes, sequencing depth differences among samples, ancestry, sex, age, sequencing 
technology, and RNA integrity [3,9–11]. In a heterogenous sample collection, not controlling for 
these effects can cause spurious results in downstream analysis.  
 
In addition, there are other unmeasured and unknown systematic effects influencing gene 
expression estimates that need to be corrected prior to expression analyses [12]. This has been 
supported by the inference of broad variance components of gene expression matrices by 
probabilistic estimation of expression residuals (PEER) [13]. PEER can find one-dimensional 
arbitrarily scaled “hidden” factors that as a whole explain much of the global variation in gene 
expression across multiple samples. It has become a common practice for gene expression 
quantitative trait locus (eQTL) studies of heterogenous samples (e.g. GTEx) to use PEER hidden 
factors as covariates in models for eQTL discovery. This pipeline increases the sensitivity of eQTL 
mapping [8], but has remained challenging to interpret because PEER factors a priori are not 
associated with any known biological or technical source. 
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In this manuscript we show that Shannon entropy – a simple metric that assesses the 
transcriptome diversity of an RNA-seq sample [14] – explains much of the global variability in 
gene expression; is a major factor that PEER identifies; and is linked to a myriad of technical and 
biological variables. Shannon entropy was first developed as part of information theory to 
measure the level of “surprise” in a random variable [15], and has since been adopted in many 
different fields. In the biological sciences, Shannon entropy has been used in ecological studies 
to measure species diversity of a population, and it has been applied to gene expression to assess 
transcriptomic diversity [14]. For instance, the least diverse transcriptome would have all 
transcripts from only one gene and the most diverse transcriptome would express an equal 
number of transcripts across all genes (Fig. 1). In other words, diversity reflects our ability to 
predict what gene a randomly chosen RNA-seq read comes from—less diverse transcriptomes 
are dominated by highly expressed genes, and are therefore more predictable. 
 
 
RESULTS 
 
Transcriptome diversity explains a large portion of the variability in global gene expression 
estimates of RNA-seq samples 
 
While analyzing published D. melanogaster RNA-seq data [16] for unrelated research, we 
observed that transcriptome diversity as measured by Shannon entropy [14] (Fig. 1; see 
Methods) across RNA-seq samples strongly correlates with the expression of many genes. An 
example of one gene is shown in Figure 2a (Spearman’s r=0.77, n=851 flies, p-value=2.4x10-170).  
 
To determine the extent to which transcriptome diversity predicts genome-wide gene expression 
levels, we performed a whole-genome scan which strikingly showed that in this D. melanogaster 
dataset [16] 80.9% of genes had a significant correlation with transcriptome diversity (Benjamin-
Hochberg False Discovery Rate (BH-FDR)<0.05) when using TPM-based expression estimates. 
 
TPM values have been shown to not properly account for sequencing depth differences across 
samples and for the influence of highly expressed genes on the rest of genes (usually referred to 
as RNA composition) [4]. TMM (and the similar Median of Means) is a more effective 
normalization method that in theory accounts for those effects and has been widely adopted for 
comparing gene expression across samples. However, we observed that most TMM-based 
expression values were also correlated with transcriptome diversity (68.9% of genes at BH-
FDR<0.05, Fig. 2b; Additional file 1: Fig. S1). Interestingly, 96% of the TPM significant correlations 
are positive (Fig. 2c; i.e. higher expression in samples with higher transcriptome diversity); this 
bias was reduced but not eliminated by TMM normalization (64% positive correlations; 
Additional file 1: Fig. S1b).  
 
In agreement with the single gene correlations, a principal component analysis (PCA) shows that 
a substantial fraction of gene expression variation across samples can be explained by their 
transcriptome diversity (Fig. 2d,e). PC1 mainly separates flies based on sex (which is known to 
affect expression levels in D. melanogaster [17]), but to a certain extent it is also correlated with 
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transcriptome diversity (Fig. 2d,e; Spearman’s r=-0.44, p-value= 4.9x10-62), and PC2 is even more 
highly correlated with diversity (Fig. 2d,e; Spearman’s r=-0.84, p-value= 2.7x10-233). Overall, 
transcriptome diversity explains 26% of the TPM gene expression matrix variance and 4% of the 
TMM variance (Additional file 2: Table S1). 
 
In sum, these results show that gene expression variation across RNA-seq samples can be partially 
explained by variation in transcriptome diversity across those samples. 
 
PEER “hidden” covariates encode for transcriptome diversity 
 
Probabilistic estimation of expression residuals (PEER) is a method that was developed to extract 
a set of variables that explain maximal variability in a gene expression matrix with heterogenous 
samples [13]. These PEER factors may represent unmeasured global technical or biological 
information which can be used as covariates to reduce their confounding effects. While 
controlling for PEER covariates has proven to be useful in studies performing eQTL scans or 
differential expression analyses, the sources of these factors are unknown.  
 
Based on the results of the previous section, we reasoned that PEER factors could partially 
encode for transcriptome diversity. To test this hypothesis, we computed 60 PEER factors (as 
recommended for this sample size [8]; see Methods) across the 851 flies in this dataset and 
performed correlation analysis with the corresponding transcriptome variability values of each 
sample. Out of the 60 PEER factors, 28 showed a significant correlation with transcriptome 
diversity (BH-FDR<0.05, Fig. 3a left panel). Those 28 PEER covariates explain a substantially higher 
variance of the gene expression matrix (Fig. 3a right panel; see Methods), compared to the rest 
of the covariates which only explained a small fraction of the variance (Fig. 3a right panel; see 
Methods).  
 
We devise a strategy to assess how much of the gene expression variance explained by PEER is 
accounted for by transcriptome diversity (see Methods). Results show that transcriptome 
diversity accounts for 27.6% of the variance explained by PEER in TPM expression (Fig. 3b; 
difference of median r2 values;). Repeating the analysis with TMM expression estimates also 
shows the same trend, albeit to a lesser extent (Fig 3b; 9.2% of the variance explained by PEER is 
accounted for by transcriptome diversity). 
 
In sum these results suggest that a component of PEER “hidden” factors originates from 
differences in transcriptome diversity across samples. To our knowledge this is the first example 
of a known source of variability explaining PEER covariates to such an extent. 
 
Transcriptome diversity explains a large portion of the variability of gene expression in GTEx 
 
Given the extent to which transcriptome diversity explains gene expression variability in D. 
melanogaster, we wondered whether this might hold for other RNA-seq datasets as well. We 
thus decided to analyze GTEx data as this is one of the largest RNA-seq projects to date [8].  These 
data provide an excellent platform to perform comparisons across multiple individuals and 
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tissues as it provides RNA-seq data for more than 17,000 samples across 948 human donors and 
54 tissues.  
 
We calculated transcriptome diversity values across samples in GTEx (excluding tissues with low 
number of samples, see Methods) and then assessed how much of the within-tissue variation in 
the expression matrices could be explained by transcriptome diversity. We first took the PCA 
approach described above for D. melanogaster data. When performing PCA using TPM 
expression estimates, we found that PC1 was usually the PC with the strongest correlation with 
transcriptome diversity (43 out of 49 tissues; Fig. 4a), and these correlations tended to be strong 
(median Spearman’s |r|=0.91). PCs based on TMM expression estimates had less extreme but 
still quite strong associations with transcriptome diversity (Additional file 1: Fig S2a; 28 out of 49 
tissues have the strongest correlation with PC1, median Spearman’s |r|=0.56; 10 out of 49 
tissues have the strongest correlation with PC2, median Spearman’s |r|=0.48).  
 
In line with our PCA results, most genes across all tissues in GTEx showed a significant correlation 
(BH-FDR<0.05) between TPM expression estimates and transcriptome diversity (median 92.4% 
of genes per tissue; Fig. 4b), and as seen in D. melanogaster most of the significant correlations 
were positive (median 97.4% positive correlations; Fig. 4b). TMM estimates were somewhat less 
strongly associated with transcriptome diversity than TPM estimates (median 63.7% of genes per 
tissue; Additional file 1: Fig S2b). 
 
Overall, transcriptome diversity explains a significant proportion of the global gene expression 
variance across GTEx tissues (median 22% TPM variance; median 7% TMM variance; Additional 
file 2: Table S1), with some exceptional cases like the brain putamen basal ganglia (62% TPM 
variance; 15% TMM variance) and heart left ventricle (54% TPM variance; 10% TMM variance). 
 
Similar to the D. melanogaster data, the PEER covariates that explained the most GTEx gene 
expression variance were significantly correlated with transcriptome diversity (Additional file 1: 
Fig S3). As an example, Figure 5a (top) shows that 20 out of 60 PEER covariates from blood were 
significantly correlated with transcriptome diversity and those covariates explained high levels of 
the gene expression variability (Fig. 5a bottom; for all tissues see Additional file 1: Fig S3). 
 
To assess how much of the gene expression variance explained by PEER is accounted for by 
transcriptome diversity, we performed gene-based associations between expression and intact 
PEER factors, as well as PEER factors where transcriptome diversity was regressed out (identically 
to our D. melanogaster analysis, see Methods).  Since GTEx data is heterogeneous we repeated 
this analysis regressing other metadata out of PEER factors (sex, sequencing platform, PCR 
amplification method, and the first 5 PCs from the genotype matrix).  
 
We found that among all variables we tested, transcriptome diversity accounted for the most 
variance explained by PEER factors from TPM expression values (see Methods). For example in 
blood, transcriptome diversity accounted for 50.2% of the variance explained by PEER (Fig. 5b), 
in muscle 30% (Additional file 1: Fig S4), and in skin 14.2% (Additional file 1: Fig S4, see Additional 
file 3: Table S2 for all tissues). Repeating the analysis with TMM expression estimates shows a 
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similar trend with somewhat less explanatory power (Fig. 5b and Additional file 1: Fig S4; whole 
blood 6.8%, muscle 6.3%, skin 4.8%). 
 
Overall, these results suggest that transcriptome diversity explains a significant amount of gene 
expression variance in RNA-seq data from diverse species, and is also a major component of PEER 
covariates. 
 
 
Transcriptome diversity is associated with a variety of technical and biological factors 
 
As an attempt to understand better the interconnection between transcriptome diversity and 
other features from RNA-seq we made use of published datasets (see Methods) that were 
designed to probe the relationship between technical and biological influences on gene 
expression estimates. 
 
Among all variables tested for associations with transcriptome diversity we observed that 
sequencing depth was consistently and positively correlated with transcriptome diversity (Fig. 
6a,b). This association was not a simple consequence of read depth affecting transcriptome 
diversity, as random sampling of reads to equalize sequencing depth across samples did not 
change the relative transcriptome diversity values of samples. Interestingly, we also found that 
RNA integrity was strongly associated with transcriptome diversity, with more fragmented RNA 
having an overall lower transcriptome diversity (Fig. 6c). This suggests that factors making some 
samples more “sequenceable” (such as RNA integrity – as a consequence of sample condition 
and preparation) may affect both read depth and transcriptome diversity. 
 
We then asked whether biological replicates lead to differences in transcriptome diversity. Lin et 
al. [16] performed 3 biological replicates of 17 D. melanogaster strains; within each biological 
replicate, they also included technical replicates and a mixture of both males and females were 
included for each strain. Comparing transcriptome diversity distributions across biological 
replicates revealed significant differences (Fig. 6d). While there was a significant difference in 
transcriptome diversity values when comparing male vs female flies, the magnitude of this 
difference was smaller compared to differences among biological replicates (Fig. 6d). 
 
We then compared different RNA-seq library preparation methods by analyzing data from a study 
of mouse liver that compared three methods: Illumina, Clontech-V4, and Clontech-Pico [18]. We 
observed clear differences between these three methods, as Illumina produced the highest 
transcriptome diversity values, followed by Clontech-V4, and then Clontech-Pico (Fig. 6e). The 
original study examined differential expression after Interleukin 1 beta (ILB) treatment, and 
interestingly we observed that all ILB-treated samples had overall lower transcriptome diversity 
values (Fig. 6e) 
 
We also examined the variation of transcriptome diversity values among tissues in GTEx data. 
We found that some tissues had a much wider distribution of transcriptome diversity values than 
others (Additional file 1: Fig S5). For example, samples from blood and all 13 sampled brain 
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regions had substantial variation of transcriptome diversity values, suggesting that the effects of 
controlling for transcriptome diversity may be most pronounced in these tissues.  
 
Finally, we asked whether different processing pipelines could affect transcriptome diversity. 
Arora et al. [19] compiled data from different sources that re-processed GTEx data from raw 
sequencing reads to gene counts (GTEx  v6 [20], Xena from UCSC [21], Recount2 from John 
Hopkins [22], mskcc from cBio and mskccBatch from cBio [23]). These pipelines differ in quality-
control filters, mapping procedures and counting techniques. We observed consistent and clear 
differences of transcriptome diversity values among these pipelines (Additional file 1: Fig S6). 
When analyzing all samples by PCA, we observed that separation of samples in PC1 and PC2 was 
heavily influenced by processing pipeline and to a lesser extent by tissue, suggesting that these 
pipelines have substantial effects on gene expression estimates (Fig. 7a,b). Importantly, 
controlling for transcriptome diversity yielded better clustering by tissue (Fig. 7c). These results 
suggest that differences in gene expression estimates introduced by processing pipeline can be 
at least partially controlled for using transcriptome diversity. 
 
Altogether these results show that transcriptome diversity has complex associations with 
biological and technical aspects of RNA-seq, both from the experimental and computational 
sides.  
 
DISCUSSION 
 
Despite much research over the last decade, it has proven difficult to provide appropriate 
normalization methods to estimate gene expression from RNA-seq read counts. At the core of 
the problem lays a major limitation of RNA-seq: the number of sequenced reads is typically less 
than 0.01% of the total number of transcripts in a sample [5]. As a result, RNA-seq expression 
levels are relative quantities (referred to as compositional data [4]) where an increase in one 
gene’s expression leads to a decrease in the relative expression of all other genes. As a 
consequence, comparing the expression of any given gene across different samples becomes a 
non-trivial issue, and multiple normalization methods have been developed to account for the 
relative nature of sequencing data. Ultimately, any differences (even minor) between any two 
samples in the distribution of reads across genes may cause global systematic changes in gene 
expression estimates. 
 
Transcripts per million (TPM) was one of the first widely adopted normalizations, but it has been 
shown to be heavily affected by unusually highly expressed genes and sequencing depth 
differences [3]. While TMM [6] and the Median of Ratios [7] addressed some of these issues, they 
were not designed to account for overall sample differences in the distribution of reads across 
genes. In this manuscript we provide evidence that these differences result in pervasive effects 
on gene expression estimates that confound gene expression analysis. 
 
To investigate the source of these confounding effects, we have used a metric that captures the 
distribution of reads across genes in an RNA-seq sample – transcriptome diversity based on 
Shannon entropy. Shannon entropy was first formulated to measure the level of surprise of a 
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random variable, and when applied to read counts it represents the diversity of the 
transcriptome. The transcriptome diversity value we used ranges from 0 (a sample with all reads 
mapping to one gene) to 1 (a sample with reads equally distributed across all genes; see 
Methods). Throughout this study we showed that in a collection of samples, the expression of a 
gene across samples strongly correlates with transcriptome diversity and while correlations were 
more pervasive with TPM estimates (Figs. 2,3), they are still prevalent in TMM estimates (Fig. 2b, 
Additional file 1: Figs S1, S2). Moreover, these associations held for the vast majority of genes 
and across datasets that spanned different organisms (Figs. 2,3,7), and tissues (Fig. 3, Additional 
file 1: Fig S2). Overall, our results show that current normalization methods fail to account for the 
systematic effects captured by transcriptome diversity differences among samples. 
 
Systematic effects on gene expression had been previously shown to exist. The PEER method was 
designed to produce a set of vectors that captures these effects from a multi-sample expression 
matrix [13]. We reasoned that since transcriptome diversity was capturing large portions of 
systematic effects on global gene expression, then PEER covariates could be capturing this 
information. Indeed, a substantial portion of PEER covariates significantly correlates with 
transcriptome diversity, and those covariates with the strongest correlations also explain the 
highest levels of gene expression variance (Figs. 2f, 4; Additional file 1: Fig S3). As a result, a 
significant fraction of the gene expression variance explained by PEER can be accounted for by 
transcriptome diversity (Figs. 3b, 5b; Additional file 3: Table S2). Thus, a major factor that PEER is 
capturing can be encoded by this simple metric – transcriptome diversity. 
 
CONCLUSIONS 
 
Here, we are not aiming to claim that transcriptome diversity should be used in place of PEER 
covariates or be the ultimate solution to normalize gene expression. Instead our goal is to bring 
researchers’ attention to transcriptome diversity, a prevalent confounding factor that could be 
used as a simple explanation for a major source of systematic artifactual signal in gene expression 
studies. While PEER remains a powerful approach for correcting unknown confounding factors, 
a deeper knowledge of the sources of confounding—including transcriptome diversity—could 
lead to more precise and interpretable normalization approaches that avoid overcorrection [24], 
as well as improved experimental practices that minimize confounding. 
  
 
FIGURE LEGENDS 
 
Fig. 1. Illustration of transcriptome diversity Transcriptome diversity (Hs) was computed per 
sample based on Shannon entropy. G is the total number of expressed genes and pi is the 
probability of observing a transcript for gene i. An example of two samples with three genes is 
shown, where one sample has a higher transcriptome diversity value (H1) with more evenly 
distributed sequencing reads aligned to genes than the other sample (H2) with one gene 
responsible for the majority of the sequencing reads. 
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Fig. 2. Transcriptome diversity is associated with global gene expression in D. melanogaster. a 
Example of a strong association between the TPM expression of a gene (Nca) and transcriptome 
diversity across samples from a large RNA-seq study [16]. b Percentage of genes whose 
expression was significantly associated with transcriptome diversity (as in a; BH-FDR < 0.05 in 
yellow) vs those that were not (BH-FDR >= 0.05 in blue). The actual number of genes is shown 
with white text. c Most significant associations using TPM estimates are positive, as shown here 
by the distribution of correlation coefficients (r) between transcriptome diversity and gene 
expression. d Loadings from the first two principal components (PCs) from a principal component 
analysis done on the full TPM expression matrix; samples are colored by transcriptome diversity 
(rankit-normalized to the standard normal distribution) and the point shape corresponds to sex. 
e Absolute Spearman correlation between rankit-normalized transcriptome diversity and rankit-
normalized loadings of the first 8 PCs (top), and variance explained by each of those PCs of the 
full expression matrix. 
 
Fig 3. Transcriptome diversity is a main factor encoded in PEER covariates. a Left: Spearman 
correlation coefficients between transcriptome diversity values and the values of all PEER 
covariates obtained from the full expression matrix (see Methods) and colored by significance of 
correlation using BH-FDR. Right: Variance explained by each PEER covariate of the full expression 
matrix (calculated using a PCA-based method; see Methods). b Boxplots showing the distribution 
of variance explained values (r2) from linear regressions done on the expression of each gene 
using intact PEER covariates, or the residuals of regressions performed on the same PEER 
covariates using transcriptome diversity (transcriptome diversity controlled, see Methods). The 
p-values from a Mann-Whitney test are shown.  
 
Fig 4. Transcriptome diversity is associated with the expression of most genes across human 
tissues. a For each GTEx tissue, the dot plot shows the absolute Spearman correlation coefficient 
between transcriptome diversity values and the loadings of a PC from a PCA performed on the 
full TPM expression matrix. To the right, the directionality of the correlation is shown (+/-) along 
with the PC used and its total variance explained. The PC with the highest correlation with 
transcriptome diversity is shown. b For each tissue, the percentage of genes whose expression 
TPM was significantly associated with transcriptome diversity (as in a; BH-FDR < 0.05 in yellow) 
vs those that were not (BH-FDR >= 0.05 in blue), the numbers on the right represent the 
directionality of the significant correlations (green are positive significant associations, and 
purple are negative significant associations). Significance was assessed using a linear regression 
approach (see Methods). 
 
Fig 5. In GTEx, PEER covariates mostly encode for transcriptome diversity. a Top: Spearman 
correlation coefficients between transcriptome diversity values and the values of all PEER 
covariates obtained from the full GTEx blood expression matrix (see Methods) and colored by 
significance of correlation using BH-FDR. Bottom: Variance explained by each PEER covariate of 
the GTEx Blood full expression matrix (calculated using a PCA-based method; see Methods). For 
all other GTEx tissues, see Additional file 1: Fig S3. b Boxplots showing the distribution of variance 
explained values (r2) from linear regressions done on the expression of each gene using either 
intact PEER covariates, or the residuals of regressions performed on the same PEER covariates 
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using the variables shown (controlled PEER rows, see Methods). Mann-Whitney tests against the 
intact PEER covariates were performed for each of the controlled PEER distributions and the 
corresponding p-values are shown.  
 
Fig 6. Other technical and biological factors are associated with transcriptome diversity.  a,b 
transcriptome diversity was consistently associated with RNA-seq sequencing depth, shown for 
D. melanogaster [16] and GTEx blood. c RNA integrity also exhibited significant correlations with 
transcriptome diversity as shown here for GTEx blood. d RNA-seq data from D. melanogaster [16] 
show that transcriptome diversity can differ across biological replicates (left) as well as sex (right). 
e Different sequencing library preparations and perturbations result in varying transcriptome 
diversity distributions as shown by these violin plots. UNT is untreated mouse liver samples and 
ILB is Interleukin 1 beta treatment. 
 
Fig. 7. Controlling for transcriptome diversity shows improved tissue-based clustering among 
different computational pipelines. a Left: PCA was performed on GTEx data for 15 tissues and 5 
pipelines from Arora et al. [19]. PC1 and PC2 were used for visualization. Right: PCA was 
performed after the dataset was normalized by transcriptome diversity values (see Methods). 
PCA results are labeled by tissue. b Same PCA analysis as in a, but PCA results are labeled by data 
processing pipelines. c Silhouette scores were computed per tissue to assess the clustering 
quality before and after controlling for transcriptome diversity (see Methods). Higher score 
represents tighter clustering, tissues are ordered based on the silhouette score. The blue dashed 
line represents the average random score expectation after permuting tissue labels (see 
Methods), and the blue stripes are ± two standard deviations. Error bars in points represent the 
95% confidence interval based on bootstrapping 10,000 times. 
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• Additional file 2. Table S1. Gene expression variance explained by transcriptome diversity 

for all datasets analyzed in this study. (TSV, 3 KB) 
• Additional file 3. Table S2. Median variance explained values (r2) from linear regressions 

done on the GTEx expression of each gene using either intact PEER covariates, or the 
residuals of regressions performed on the same PEER covariates using the indicated 
variables. (TSV, 23 KB) 

• Additional file 4. Note S1. Mathematical proof for transcriptome diversity equation from 
TPM values. 

• Additional file 5. All expression matrices used in this study (ZIP, 10.8 GB) 
• Additional file 6. Transcriptome diversity of all samples analyzed in this study (ZIP, 530 KB) 
• Additional file 7. PEER covariates (ZIP, 7.4 MB) 

 
 
METHODS 
 
Data sources and data retrieval 
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For reproducibility a snakemake pipeline is provided at this study’s github repo 
(https://github.com/pablo-gar/transcriptome_diversity_paper). This pipeline was used to 
download data from the original sources (see below). 
 
The original data were processed uniformly to produce standardized matrices of read counts, 
TPM and TMM estimates. PEER covariates were calculated for some of them as mentioned in the 
main manuscript. Uniformly processed expressing matrices can be found in the Additional Files 
section, the original data can be found in the following links:  
 

• Mouse data (Lin et al.). Raw count matrices and metadata were downloaded from GEO 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60314) 

• GTEx data. Raw counts, TPM estimates, eQTL-ready expression matrices, and metadata 
were downloaded from GTEx v8 web portal (https://gtexportal.org) 

• GTEx data from different processing pipelines (Arora et al.). These data were compiled 
by Arora et al. and made available at https://s3-us-west-2.amazonaws.com/fh-pi-holland-
e/OriginalTCGAGTExData/index.html 

• Mouse data (Sarantopoulou et al.) Raw count matrices and metadata were downloaded 
from GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124167) 

 
Transcriptome diversity calculation (Shannon entropy) 
 
Shannon entropy was introduced to RNA-seq elsewhere [14]. Shannon entropy is defined as:  

𝐻 =	−%𝑝!𝑙𝑜𝑔"(𝑝!)
!

 

Where i is an element (e.g. gene), and pi is the probability of observing element i. Thus, we define 
Shannon entropy as follows for an RNA-seq sample: 
 

𝐻 =	−%𝑝!𝑙𝑜𝑔"(𝑝!)
#

!

 

 

𝑝! =
𝑐!
𝑙!
	 ∙

1

∑
𝑐$
𝑙$

#
$

 

 
Where G is the total number of expressed genes in a sample, ci and li are the number of reads 
and effective length in base pairs of gene i, respectively. In words, pi is the probability of 
observing a transcript for gene i in the RNA-seq library, which is equal to the number of reads 
mapping to that gene normalized by its effective length, and further divided by the sum of those 
values across all genes in the library. 
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Since RNA-seq data is often reported in TPM values, we provide proof for the following in 
Additional File 4: Note S1. 
 

𝐻 =	−%𝑝!𝑙𝑜𝑔"(𝑝!)
#

!

=	−%
𝑇𝑃𝑀!

∑ 𝑇𝑃𝑀$#
$

𝑙𝑜𝑔" 3
𝑇𝑃𝑀!

∑ 𝑇𝑃𝑀$#
$

4
#

!

 

 
Since H ranges from 0 to log2(G), we define the following to be able to compare transcriptome 
diversity across samples: 
 

𝐻% =	
−∑ 𝑇𝑃𝑀!𝑙𝑜𝑔"(𝑇𝑃𝑀!)#

!

𝑙𝑜𝑔"(𝐺)
 

 
Hs ranges from 0 to 1 and this is the value that we refer as transcriptome diversity throughout 
the paper.  
 
Uniform processing 
 
Raw read count matrices were downloaded from public sources (see above), except for Arora et 
al. data. These count matrices were reformatted for uniform processing and the following 
calculations were done on them: 
 

• TPM: Transcripts per million were calculated by adapting functions from the R package 
“scuttle” [25]  Effective gene lengths were defined as the cumulative length of exons from 
the mapping transcript. 

• TMM: Trimmed median of means was calculated per each dataset using edgeR’s functions 
calcNormFactors and cpm [26]. 

• PEER covariates: As recommended [8], for each dataset we first filtered out lowly 
expressed genes (only keeping those genes with at least TMM = 1 in 20% of samples). We 
then calculated N PEER covariates from the TMM matrix using the “peer” R package 
(https://github.com/PMBio/peer). Following GTEx guidelines [8] N was dependent on the 
number of samples of the dataset, N=15 for up to 150 samples, N=30 for 151-250 samples, 
N=45 for 251-350 samples, and N=60 for more than 350 samples. PEER covariates for 
GTEx samples were directly downloaded from the GTEx portal (https://gtexportal.org). 

 
The code used for all of these calculations is available at this study’s github repo 
(https://github.com/pablo-gar/transcriptome_diversity_paper). 
 
Expression associations with transcriptome diversity 
 
To test for the association between transcriptome diversity and the expression of individual 
genes, we used linear regressions with the following model: 
 

𝑦 = 𝛽& + 𝛾𝑥 
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Where y is the expression of a gene across samples and x is the transcriptome diversity of the 
corresponding samples. Significance is measured based on the p-value of a t-test performed on 
g. P-values are adjusted using Benjamini-Hochberg False Discovery Rate.  
In all cases both y and x were normalized by converting the values into quantiles and mapping 
them to the corresponding values of the standard normal distribution quantiles. 
 
 
PCA and clustering analysis 
 
PCA was performed for each dataset matrix, both using TPM and TMM expression estimates. The 
R function prcomp was used without scaling and centering.  
 
Transcriptome diversity controlled PCA was performed by first normalizing the TPM expression 
matrices by the transcriptome diversity values respectively, then PCA was performed. 
 
To quantify the clustering among different groupings in the PCA results, we calculated a 
silhouette score (SS) for each group by first obtaining a silhouette score (si) for each sample in 
each group: 

𝑠! =	
𝑏! − 𝑎!

𝑚𝑎𝑥(𝑎! 	, 𝑏!)
 

 
Where ai is the average Euclidean distance of sample i to all other samples inside the group, and 
bi is the average Euclidean  distance of sample i to samples outside the group. We then calculated 
the average score s of all samples in a given group and the 95% confidence intervals based on 
bootstrapping 10,000 times. We performed the individual-based grouping by calculating 
silhouette scores for all tissues and then averaging them. The random expectation was calculated 
by permuting the tissue labels across samples 10 times, repeating the SS calculation across tissues 
and then averaging all SSs. 
 
Gene expression variance explained by PEER accounted by transcriptome diversity 
 
We first performed associations between PEER covariates and gene expression. We then 
regressed out transcriptome diversity from PEER factors using a linear regression and used the 
residuals to repeat the gene expression associations. The difference of r2 values from expression 
associations between the intact PEER vs the “regressed out” PEER factors divided by the variance 
explained by PEER represents the amount of variance explained by PEER that can be accounted 
for by transcriptome diversity. 
 
Variance explained of gene expression matrices 
 
Throughout the study for certain datasets we aimed to calculate how much variance of gene 
expression can be explained by each of these query factors: transcriptome diversity and PEER 
covariates. 
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To accomplish this, for a given dataset, we first performed PCA as described above. This allowed 
us to reduce the dimensionality of the expression matrix as well as know how much variance 
each of the PCs explains. For each of the query factors we calculated Pearson correlations 
between all PCs and one vector (e.g. transcriptome diversity). Multiplying the r2 from one of these 
correlations (e.g. transcriptome diversity vs PC1) by the variance explained by that PC provides a 
partial variance explained by the query vector, and adding these values across all correlations 
from that query vector (e.g. transcriptome diversity) provides the total variance explained by the 
query vector of the gene expression matrix. 
 
Pearson correlations were calculated on rankit-normalized vectors, i.e. mapping values to a 
standard normal distribution based on quantiles. 
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Fig. 1. Illustra�on of transcriptome diversity Transcriptome diversity (Hs) was computed per sample based on Shannon 
entropy. G is the total number of expressed genes and pi is the probability of observing a transcript for gene i. An example 
of two samples with three genes is shown, where one sample has a higher transcriptome diversity value (H1) with more 
evenly distributed sequencing reads aligned to genes than the other sample (H2) with one gene responsible for the 
majority of the sequencing reads.
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Fig. 2. Transcriptome diversity is associated with global gene expression in D. melanogaster. a Example of a strong 
associa�on between the TPM expression of a gene (Nca) and transcriptome diversity across samples from a large RNA-
seq study [16]. b Percentage of genes whose expression was significantly associated with transcriptome diversity (as in a; 
BH-FDR < 0.05 in yellow) vs those that were not (BH-FDR >= 0.05 in blue). The actual number of genes is shown with 
white text. c Most significant associa�ons using TPM es�mates are posi�ve, as shown here by the distribu�on of 
correla�on coefficients (r) between transcriptome diversity and gene expression. d Loadings from the first two principal 
components (PCs) from a principal component analysis done on the full TPM expression matrix; samples are colored by 
transcriptome diversity (rankit-normalized to the standard normal distribu�on) and the point shape corresponds to sex. e 
Absolute Spearman correla�on between rankit-normalized transcriptome diversity and rankit-normalized loadings of the 
first 8 PCs (top), and variance explained by each of those PCs of the full expression matrix.
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Fig 3. Transcriptome diversity is a main factor encoded in PEER covariates. a Le�: Spearman correla�on coefficients 
between transcriptome diversity values and the values of all PEER covariates obtained from the full expression matrix 
(see Methods) and colored by significance of correla�on using BH-FDR. Right: Variance explained by each PEER covariate 

of the full expression matrix (calculated using a PCA-based method; see Methods). b Boxplots showing the distribu�on of 
variance explained values (r2) from linear regressions done on the expression of each gene using intact PEER covariates, 
or the residuals of regressions performed on the same PEER covariates using transcriptome diversity (transcriptome 
diversity controlled, see Methods). The p-values from a Mann-Whitney test are shown. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.04.27.441712doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.27.441712
http://creativecommons.org/licenses/by/4.0/


●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●Artery Tibial

Uterus
Cells EBV−transformed lymphocytes

Nerve Tibial
Artery Aorta

Lung
Skin sun exposed

Ovary
Testis

Adipose Subcutaneous
Artery Coronary

Skin sun protected
Vagina

Adipose Visceral Omentum
Esophagus Mucosa

Colon Sigmoid
Colon Transverse

Thyroid
Small Intestine

Breast
Adrenal Gland

Pituitary
Prostate

Muscle
Minor Salivary Gland

Spleen
Esophagus Gastroesophageal Junction

Blood
Heart Atrial Appendage

Liver
Esophagus Muscularis

Stomach
Pancreas

Brain Amygdala
Brain Cerebellum

Brain Cerebellar Hemisphere
Kidney Cortex

Heart Left Ventricle
Brain Cortex

Brain Caudate basal ganglia
Brain Spinal cord cervical c1

Brain Hypothalamus
Brain Anterior cingulate cortex BA24

Brain Substantia nigra
Brain Hippocampus

Brain Nucleus accumbens basal ganglia
Brain Frontal Cortex BA9

Brain Putamen basal ganglia

0.00 0.25 0.50 0.75 1.00

−
−
−
+
−
−
−
−
−
+
−
+
−
−
−
+
+
+
+
−
−
−
+
−
−
+
−
+
+
−
+
+
+
−
+
+
−
−
−
−
+
+
+
−
+
−
−
+
−

PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC1
PC2
PC1
PC1
PC2
PC1
PC2
PC2
PC1
PC3
PC3

0.636
0.491
0.592
0.556
0.539
0.544
0.565
0.536
0.576
0.457
0.572
0.553
0.44

0.383
0.555
0.503
0.398
0.214
0.316
0.385
0.471
0.244
0.306
0.305
0.305
0.218
0.192
0.284
0.331
0.375
0.187
0.41

0.198
0.267
0.304
0.345
0.201
0.182
0.193
0.0905
0.173
0.198
0.146
0.161
0.0717
0.103
0.204
0.068
0.0778

PC var explained
Spearman's cor sign

Percentage of genes tested

FDR < 0.05 >= 0.05
Expression vs transcriptome diversity

0 25 50 75 100

16214

16948

15013

12827

14814

12695

13932

16759

16441

17544

18521

18240

16804

16851
17291
18210

17759
16663

18122

17028

17245

8415

10068

16333

14494

16511

16495

16149
16114

14246

16970

12480

16173

15717

13456

16647

13473

15098

16770

17515

16638

16597

16432

17445

15063

16883

18109

12419

15610

656

565

197

1706

712

644

221

72

85

74

135

247

135

128
68
69

78
64

62

58

1407

4794

334

459

3403

161

445

195
74

74

124

846

1408

715

533

697

901

112

496

420

262

438

2100

668

2254

5509

720

527

2054

a b

PC cor with transcriptome diversity
|Spearman's cor|

Cultured fibroblast cells

Fig 4. Transcriptome diversity is associated with the expression of most genes across human �ssues. a For each GTEx 
�ssue, the dot plot shows the absolute Spearman correla�on coefficient between transcriptome diversity values and the 
loadings of a PC from a PCA performed on the full TPM expression matrix. To the right, the direc�onality of the 
correla�on is shown (+/-) along with the PC used and its total variance explained. The PC with the highest correla�on 
with transcriptome diversity is shown. b For each �ssue, the percentage of genes whose expression TPM was significantly 
associated with transcriptome diversity (as in a; BH-FDR < 0.05 in yellow) vs those that were not (BH-FDR >= 0.05 in blue), 
the numbers on the right represent the direc�onality of the significant correla�ons (green are posi�ve significant 
associa�ons, and purple are nega�ve significant associa�ons). Significance was assessed using a linear regression 
approach (see Methods).
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Fig 5. In GTEx, PEER covariates mostly encode for transcriptome diversity. a Top: Spearman correla�on coefficients 
between transcriptome diversity values and the values of all PEER covariates obtained from the full GTEx blood 
expression matrix (see Methods) and colored by significance of correla�on using BH-FDR. Bo�om: Variance explained by 
each PEER covariate of the GTEx Blood full expression matrix (calculated using a PCA-based method; see Methods). For all 
other GTEx �ssues, see Addi�onal file 1: Fig S3. b Boxplots showing the distribu�on of variance explained values (r2) from 
linear regressions done on the expression of each gene using either intact PEER covariates, or the residuals of regressions 
performed on the same PEER covariates using the variables shown (controlled PEER rows, see Methods). Mann-Whitney 
tests against the intact PEER covariates were performed for each of the controlled PEER distribu�ons and the 
corresponding p-values are shown. 
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Fig 6. Other technical and biological factors are associated with transcriptome diversity.  a,b transcriptome diversity 
was consistently associated with RNA-seq sequencing depth, shown for D. melanogaster [16] and GTEx blood. c RNA 
integrity also exhibited significant correla�ons with transcriptome diversity as shown here for GTEx blood. d RNA-seq 
data from D. melanogaster [16] show that transcriptome diversity can differ across biological replicates (le�) as well as 
sex (right). e Different sequencing library prepara�ons and perturba�ons result in varying transcriptome diversity 
distribu�ons as shown by these violin plots. UNT is untreated mouse liver samples and ILB is Interleukin 1 beta 
treatment.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.04.27.441712doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.27.441712
http://creativecommons.org/licenses/by/4.0/


−100

0

100

200

300

Original Transcriptome diversity controlled

200 300 400 500 600 360 400 440 480 520

−300

−200

−100

0

100

200

PC1

P
C

2

Tissue

Bladder

Breast

Cervix

Colon

Esophagus Gas

Esophagus Muc

Esophagus Mus

Kidney

Liver

Lung

Prostate

Salivary

Stomach

Thyroid

Uterus

−100

0

100

200

300

Original Transcriptome diversity controlled

200 300 400 500 600 360 400 440 480 520

−300

−200

−100

0

100

200

PC1

P
C

2

Method

mskcc

mskccBatch

recount2

v6

xena

● ● ● ●

● ● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

●

0.0

0.2

0.4

0.6

Esophagus Muc

Esophagus Mus
Live

r

Esophagus Gas
Thyroid

Uterus
Kidney

Lung

Prostate
Breast

Saliva
ry

Cervix
Bladder

Stomach
Colon

A
ve

rg
ae

 s
ilh

ou
et

te

●●

●●

Controlled

Original

a

b

c

Fig. 7. Controlling for transcriptome diversity shows improved �ssue-based clustering among different computa�onal pipelines. a Le�: 
PCA was performed on GTEx data for 15 �ssues and 5 pipelines from Arora et al. [19]. PC1 and PC2 were used for visualiza�on. Right: PCA 
was performed a�er the dataset was normalized by transcriptome diversity values (see Methods). PCA results are labeled by �ssue. b 
Same PCA analysis as in a, but PCA results are labeled by data processing pipelines. c Silhoue�e scores were computed per �ssue to assess 
the clustering quality before and a�er controlling for transcriptome diversity (see Methods). Higher score represents �ghter clustering, 
�ssues are ordered based on the silhoue�e score.  The blue dashed line represents the average random score expecta�on a�er permu�ng 
�ssue labels (see Methods), and the blue stripes are ± two standard devia�ons. Error bars in points represent the 95% confidence interval 
based on bootstrapping 10,000 �mes.
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