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Abstract  
There is growing recognition that the composition of the gut microbiota influences behaviour, 

including responses to threat. The cognitive-interoceptive appraisal of threat-related stimuli 

relies on dynamic neural computations between the anterior insular (AIC) and the dorsal 

anterior cingulate (dACC) cortices. If, to what extent, and how microbial consortia influence 

the activity of this cortical threat processing circuitry is unclear. We addressed this question 

by combining a threat processing task, neuroimaging, 16S rRNA profiling, and computational 

modelling in healthy participants. Results showed interactions between high-level ecological 

indices with threat-related AIC-dACC neural dynamics. At finer taxonomic resolutions, the 

abundance of Ruminococcus was differentially linked to connectivity between, and activity 

within the AIC and dACC during threat updating. Functional inference analysis provides a 

strong rationale to motivate future investigations of microbiota-derived metabolites in the 

observed relationship with threat-related brain processes. 
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Neuroimaging; threat processing; anterior insula; dorsal anterior cingulate; microbiota; gut-
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1. Introduction 
Emerging work suggests that the composition and diversity of the intestinal (gut) microbiota 

plays a key role in altering brain activity and related behaviour (Cryan and Dinan, 2012). 

Microbiota-deficient and germ-free mice have provided initial accounts of the effect of 

microbiota on brain processes, including emotion and affect (Bravo et al., 2011), social 

behaviour (Sherwin et al., 2019), and cognition (Desbonnet et al., 2015). By extension, there 

is growing motivation to assess how microbial perturbations are linked to the expression of 

psychiatric symptoms including the ability to protect against (Clarke et al., 2013), or induce 

(Neufeld et al., 2011) stress and anxiety-like behaviour.   

 

A key feature underpinning anxiety is the impaired ability to flexibly respond to threat and 

modify behavioural responses in volatile learning environments (Schiller et al., 2008). Within 

a broader network of cortico-subcortical regions, the anterior insular cortex (AIC) and dorsal 

anterior cingulate cortex (dACC) have been the most consistently implicated regions in 

neuroimaging studies of human threat processing (Fullana et al., 2016). In this capacity, the 

AIC-dACC circuitry has been hypothesized to support the subjective experience of threat 

processing via cognitive-interoceptive appraisal mechanisms (Fullana et al., 2016; Harrison et 

al., 2015; Kalisch and Gerlicher, 2014). Specifically, the AIC is thought to be responsible for 

generating an awareness of the current emotional and internal physical state (Craig, 2009; 

Fullana et al., 2016), including gastrointestinal and cardiorespiratory bodily changes (Garfinkel 

et al., 2015; Rebollo et al., 2018). This information is relayed to the dACC, where its activity 

has been more directly linked to the cognitive appraisal of bodily sensations of anxiety 

(Harrison et al., 2015). Given their joint contribution in receiving and processing afferent 

visceral information, the AIC-dACC network represents a natural candidate to study gut 

microbiota interactions with higher-level brain function (Kano et al., 2018).  

 

Bidirectional communication between the microbiota and the brain is facilitated by several 

mechanisms, including immune, endocrine, vagal, and microbiota-derived metabolite 

signalling (Cryan and Dinan, 2012; Kaelberer et al., 2018; Mayer, 2011; Raybould, 2010). 

Microbial-derived metabolites like short-chain fatty acids (SCFAs) can activate receptors 

expressed on the colonic epithelium and within enteroendocrine cells, modulating vagal 

afferents or immunomodulatory pathways (Koh et al., 2016; Le Poul et al., 2003). Vagal 

signalling may represent the most direct route through which the microbiota can relay action 

potentials to cortical regions involved in threat processing (Forsythe et al., 2014; Kaelberer et 

al., 2018; Raybould, 2010; Rhee et al., 2009). The latency of onset to evoking afferent vagal 

responses occurs within minutes of intraluminal probiotic administration (Perez-Burgos et al., 
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2012), while the SCFA butyrate – a by-product of microbial metabolism – has been shown to 

elicit vagal responses within seconds (Lal et al., 2001). Afferent viscerosensory signals 

converge in the nucleus tractus solitarius (NTS) and are projected via nuclei in the brainstem 

– including locus coeruleus, parabrachial nucleus and dorsal raphe nuclei – to higher cortical 

regions, including the AIC and dACC (Azzalini et al., 2019). The proposed relationship 

between the viscera and the AIC-dACC network is also supported by the cellular substrate 

underpinning communication between these two cortical regions: the von Economo neurons 

(VEN) (Mayer, 2011). These cells contain receptors (serotonin 2b) and peptides (neuromedin 

B) that are also abundant in the enteric nervous system (Allman et al., 2010). The peculiar 

expression of receptors and peptides in both viscera and VENs suggest a likely role of the 

AIC-dACC network in linking brain and gut signals.  

 

Preclinical work has revealed how manipulation of the microbiota impacts threat-related 

processes (Chu et al., 2019). This work provides preliminary support for the notion that 

changes in the composition of the microbiota, and associated metabolite production, 

modulates neural activity in distinct brain regions. However, due to the large variability 

between the mouse and human microbiota, preclinical observations have not always 

replicated in human studies (Sherwin et al., 2019). It is also unclear whether human 

microbiota-brain interactions can be characterised by shifts in high-level ecological measures 

(e.g., alpha diversity), or whether they emerge within taxonomic scales at finer resolutions. To 

bridge this knowledge gap, we combined a threat processing paradigm (Savage et al., 2020) 

(Fig. 1a), 16S rRNA gene sequencing (of stool samples), functional magnetic resonance 

imaging (fMRI), and computational modelling.  Using established conditioning procedures, the 

adopted task facilitates the assessment of both general threat learning as well as threat 

updating responses in AIC and dACC. Recently, using this task, it was shown that threat 

updating responses in dACC were especially predictive of subjectively reported bodily anxiety 

sensations (Savage et al., 2020).  

 
Our first aim was to extend existing neuroimaging work by demonstrating the effective (causal) 

connectivity patterns between neural populations within the AIC and the dACC during the 

assessment of general threat acquisition, and subsequent updating processes.  To 

understand whether inter-individual differences in microbiota covaried with evoked AIC-dACC 

responses during threat processing, we adopted a Bayesian and multivariate statistical 

framework (Zeidman et al., 2019). Specifically, effective connectivity measures were assessed 

against (i) high-level ecological measures (α-diversity and phylum ratio) and (ii) specific 

(genus-level) measures to discern the resolution/s at which interactions emerge. High-level 
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microbial measures were selected a priori based on previous work (Ley et al., 2006; Lozupone 

et al., 2012; Mariat et al., 2009). At genus-level, we used a validated data-driven clustering 

approach (Arumugam et al., 2011) to discern features contributing to the largest variance 

among samples. The selection of genus-level candidates were consistent with previous 

literature (Tillisch et al., 2017; Valles-Colomer et al., 2019) and were assessed both 

independently (multiple regressions) and in the context of a multivariate microbiome-brain 

relationship (sparse canonical correlation analysis). Finally, guided by preclinical work, we 

assessed the predicted functional capacity of the microbiota - focusing on pathways involved 

in SCFA production. This last analysis aimed to provide support to previously proposed causal 

pathways linking microbiota to brain (Boehme et al., 2019; Lee et al., 2020; van de Wouw et 

al., 2018).  

 

2. Materials and Methods 

2.1 Participants  
The study was approved by the Human Research Ethics Committee of QIMR Berghofer 

Medical Research Institute (P3435). Written informed consent was obtained for all 

participants. Thirty-eight healthy adult participants (31.7 ± 8.8 years; 23 female) were recruited 

from the Brisbane (Australia) metropolitan area by an accredited practising dietitian (APD) 

(Supplementary Table 1). Exclusion criteria included: a BMI of < 18.5 or > 30.0; current or 

previous history of a major psychiatric illness or neurological disorder (assessed via 

neurocognitive assessments performed by a trained psychologist); chronic or clinically 

significant pulmonary, cardiovascular, gastrointestinal, hepatic, renal, or dermatological 

functional abnormality as determined by medical history; history of cancer (excluding 

medically managed squamous or basal cell carcinomas of the skin); history of active, 

uncontrolled gastrointestinal condition, disease, or irregular bowel movements (including 

persistent diarrhoea or constipation); history of psoriasis or recurrent eczema; major changes 

to dietary intake in the past month (self-report); consumption of ≥ 5 standard alcoholic drinks 

per day; recreational drug use ≥ 1 occasion in the past 3 months; acute disease at time of 

enrolment; pregnancy or lactation; and use of the following medications within the past 3 

months: antibiotics, antifungals, antivirals, antiparasitics, corticosteroids, cytokines, 

methotrexate or immunosuppressive cytotoxic agents, large doses of commercial probiotics, 

or selective serotonin reuptake inhibitors. Gastrointestinal and microbiota-related exclusion 

criteria were adapted from an existing framework provided by The Human Microbiome Project 

Consortium (Methé et al., 2012). Dietary assessments, including the Traditional 

Mediterranean diet (TMD) questionnaire, reported gastrointestinal symptoms, current 

medication use, and recent changes to major food groups were administered by an APD. Each 
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participant completed: i) a health and neurocognitive assessment; ii) home collection of a stool 

sample, and iii) structural (T1) and functional magnetic resonance (MR) scans. Study 

requirements were separated into two sessions; the second session completed no longer than 

14 days after the first (4.8 ± 3.9 days between sessions, mean ± standard deviation).  

 
2.2 Experimental Paradigm 

A validated framework to study threat learning and updating is a Pavlovian threat processing 

paradigm, wherein an emotionally neutral stimulus (CS) is differentially conditioned with an 

aversive auditory event (US) before the contingency is subsequently switched in a later 

reversal phase. The fMRI task, previously used by Savage et al. (Savage et al., 2020), lasted 

for 17 minutes and had three phases: baseline, acquisition, and reversal (Fig. 1a). Blue and 

yellow spheres, presented for two seconds against a black background, were used as the 

conditioned stimuli (CS). Between each CS presentation, a white fixation cross appeared, 

which served as a fixed inter-stimulus interval (ISI, 12 seconds). The unconditioned stimulus 

(US) was an aversive auditory (white noise) burst (50ms) presented at 75-100dB that 

occurred at the end of CS+ presentation and co-terminated with the CS. The US volume was 

determined during a pre-task calibration, where participants were asked to rate the 

unpleasantness/averseness of the white noise. The white noise burst serving as the US has 

been validated in previous fMRI studies (Harrison et al., 2017; Savage et al., 2020). During 

baseline, the CS were each presented 5 times and no US occurred. During acquisition, the 

US co-terminated with one of the CS (forming a CS+) and not with the other (forming a CS-, 

safety). The color of the CS+ was counterbalanced across subjects and the CS-US pairing 

occurred one third of the time, enabling the classification of CS+unpaired trials and the 

subsequent analysis of threat responses without US confounding. During the reversal phase, 

the pairing of the US and CS was switched. 10 presentations of the CS+ unpaired, 5 of the 

CS+ paired and 10 presentations of the CS- occurred during both acquisition and reversal 

task phases, with no more than two consecutive trials of the same stimuli. Throughout the 

paper, the CS+unpaired is simply referred to as threat (initial threat for the acquisition phase 

and updated threat for the reversal phase) for ease of readability. Immediately after each 

phase (in-scanner, as a continuation of the task phase), participants were asked to rate the 

spheres in terms of anticipatory anxiety and emotional valence on a five-point Likert scale 

(Self-Assessment Manikins, SAM) (Bradley and Lang, 1994). Upon completion of each task 

phase, participants were instructed to respond to questions assessing subjective anticipatory 

anxiety (“How anxious did the [blue or yellow] sphere make you feel?” Responses ranged from 

1 = ‘not at all anxious’ to 5 = ‘very anxious’); and emotional valence (“How unpleasant/pleasant 

did you find the [blue or yellow] sphere?” Responses ranged from 1 = ‘very unpleasant’ to 5 = 

‘very pleasant’). Responses were made using a hand-held button-press box held in the 
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participant’s dominant hand. Prior to the scan, participants were familiarized with the scales, 

response box, and the volume of the US. 

 

2.3 Image acquisition and pre-processing  
Images were acquired on a 3T Siemens Prisma MR scanner equipped with a 64-channel head 

coil. For the fMRI task, whole brain echo-planar images were acquired using a multiband 

sequence (multiband factor of 8, GRAPPA factor of 1). 1227 volumes were collected with the 

following parameters: voxel size = 2mm3; TR = 810ms; TE = 30mm; flip angle = 53o; FOV = 

212mm; slice thickness = 2mm; 72 slices; 0.63ms echo spacing. T1 and spin echo (anterior 

to posterior and posterior to anterior directions) images were also acquired to assist with pre-

processing of the functional data. Image pre-processing was performed using fMRIPrep 

version 1.3.2(Esteban et al., 2019) and Python scripts developed in-house (available online: 

https://zenodo.org/record/3556980#.XlZUr6j7TIU). Briefly, pre-processing involved head-

motion correction, susceptibility distortion correction, confounds estimation, coregistration, 

and regression of nuisance covariates including WM, CSF, and the six head motion 

parameters. Smoothing using a FWHM Gaussian filter (10mm) was performed with the SPM12 

software (Wellcome Trust Centre for Neuroimaging, UK).  

 

2.4 Stool collection 
Participants were provided with a stool collection kit customized for this study and were 

advised to collect and return the stool sample within 24-48 hours before/after the MR scan. 

The kit included a stool nucleic acid collection and preservation tube (Norgen Biotek Corp., 

Thorold, Ontario, Canada), written instructions on how and when to collect the stool sample, 

and a pair of plastic gloves. Upon return, each stool sample was labelled with a de-identified 

participant code, and transported and stored in a -80oC freezer until sample processing.  
 
2.5 DNA preparation and 16S rRNA gene sequencing  
Tissue homogenization was performed using tubes containing 1.4mm ceramic beads 

(Precellys Lysing Kit). DNA was extracted from samples and quantitated using Nanodrop 2000 

(Thermo Scientific). PCR amplification was performed on the V3-V4 hypervariable region of 

the 16S rRNA gene, and sequenced on a MiSeq sequencer (Australian Genome Research 

Facility, Brisbane). Paired-end reads were joined using PEAR v0.9.6 and PCR primer 

sequences were removed using Cudadapt. Sequence data were processed using Quantitative 

Insights Into Microbial Ecology (QIIME) software suite v1.9.1 using default settings. 

USEARCH v8.0 was used to cluster the sequences into Operational Taxonomic Units (OTUs) 

using the identity threshold of 97%. Only OTUs with at least two reads were included. 

Representative sequences of each OTU were taxonomically classified using USEARCH, and 
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aligned to the Greengenes reference alignment (v13.8) using PyNAST. The OTU table was 

normalized (total sum scaling) and square root transformed to account for the non-normal 

distribution of taxonomic count data. Samples were rarefied to a read depth of 5,511 for 

diversity analyses. For α-diversity indices, we calculated Chao1, Shannon, Simpson, and 

inverse Simpson measures. For our high level assessment linking microbiota to brain, we 

opted to use Inverse Simpson diversity due to its large inter-individual variability. The 

functional capacity of each sample was predicted using a computational modelling approach, 

called Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 

(PICRUSt) (Langille et al., 2013). Gene counts encoding enzymes were then predicted using 

the metagenome_predictions.py script which were then mapped onto Kyoto Encyclopaedia of 

Genes and Genomes (KEGG) pathways (Kanehisa and Goto, 2000). We focused specifically 

on gene counts encoding terminal enzymes (i.e., final conversions) involved in SCFA 

production, identified using the KEGG reference pathways for butanoate metabolism (KEGG 

ref: 00650) and propanoate metabolism (KEGG ref: 00640). Gene counts that were not 

represented in at least 50% of samples were excluded from further analyses. The contributions 

of OTUs were predicted using the metagenome_contributions.py script, and were further 

summarized into percent contributions at the genus, order, and phylum level.  Tutorial steps 

outlining the full PICRUSt pipeline can be found online (http://picrust.github.io/picrust/).   

 

2.6 Neuroimaging analyses 
For each participant, the pre-processed images were included in a first-level GLM analysis, 

performed with SPM12. For all three phases, the onsets of each CS event-type (baseline: n = 

5 per CS; acquisition and reversal: CS- (safety) = 10, CS+unpaired (threat) n = 10, CS+paired, 

n = 5) were modelled as a series of delta (stick) functions, convoluted to the canonical 

haemodynamic response function (HRF). Model parameters were estimated using Restricted 

Maximum Likelihood (ReML). The resulting set of first-level contrast images were carried 

forward to group-level random-effects analysis. The difference in percent BOLD signal change 

between the threat and safety signals was extracted from the AIC and dACC during the 

acquisition and reversal task phases using the Marsbar toolbox for SPM (Brett et al., 2002). 

To disentangle the effects within each phase, we independently examined the differences 

between early (first 5 CS+ unpaired presentations) and late (last 5 CS+ unpaired 

presentations) mean responses in both the acquisition and reversal task phases. 

Neuroimaging analyses were reproduced using an alternative smoothing kernel of 5mm and 

demonstrated consistent group-level GLM and DCM results (Supplementary Figure 7, 

Supplementary Table 2).  
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2.7 Specification and inversion of DCMs at the first level  
We used DCM, a computational framework to investigate the effective (directed) connectivity 

between and within (self-connections) cortical regions. To do this, DCM for fMRI couples a 

bilinear model of neural dynamics with a biophysical model of hemodynamics. Details 

regarding this method can be found elsewhere (Friston et al., 2003). Subject-specific regions 

of interest (ROIs) were defined as a 5mm sphere centred over each subject’s peak functional 

activation, constrained within the functional mask generated by the group-level contrast overall 

(acquisition and reversal) threat > safety (pFWE < 0.05 at cluster-level, high threshold of puncorr 

< 0.001; Fig. 1c). Subjects who had no or minimal task-related fMRI activation in AIC and 

dACC were excluded from the DCM analysis (puncorr < 0.1) (Supplementary Figures 8 and 9). 

Having identified the AIC (x=32, y=34, z=0) and dACC (x=2, y=20, z=28) coordinates at the 

group level, the spatially closest (Euclidian distance) peak coordinates for each individual 

subject were manually located and the time series were extracted as the peak eigenvariate 

for all remaining participants (n = 33, exclusion of 5). Inspection of the ROIs showed that they 

were all located within 10mm from the group level peak (Supplementary Figure 1) and were 

anatomically consistent with previous work (Savage et al., 2020; Tian and Zalesky, 2018). 

DCM, as a hypothesis-driven framework, operates on a user-defined model space specified 

through the choice of: (i) endogenous (context-independent average) connections, (ii) 

contextual (experimental) modulation of endogenous connections, and (iii) direct inputs (e.g., 

CS stimuli) to the system. We constructed three models, all of which considered bidirectional 

endogenous connections between the AIC and dACC, and intrinsic connections at both brain 

regions (i.e., a fully-connected A-matrix). The driving inputs (C-matrix) consisted of visual 

(threat/safety) and auditory (CS+paired) stimulus, modelling the possibility that input could 

enter at either the AIC or dACC. This allowed the US (white noise) to affect driving inputs 

separately from the CS+ for which there was a threat response but no auditory sound. The 

difference between models arises from the choice of contextual modulators (B-matrix). 

Specifically, the B-matrix was specified to test whether there were differential modulatory 

effects between the two task phases: acquisition and reversal. The first model accounted for 

the modulation evoked exclusively by the CS+ events during acquisition and reversal (each 

phase considered as a separate modulator, Fig. 2b, model 1). The second model accounts 

for the modulatory effects of all events (all trials of CS+, safety and ISIs) acquired during the 

acquisition and reversal task phases (i.e. to model tonic block effects from threat processing; 

Fig. 2b, model 2). Finally, the third model combines the two aforementioned models, 

accounting for both threat-related, and block-related events for acquisition and reversal task 

phases (Fig. 2b, model 3). Model inversion was performed for each subject using the DCM12 

routines implemented in SPM12. Bayesian model selection with random effects analysis was 
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used to select the most likely model given the data (as assessed by the highest exceedance 

probability).   

 
2.8 Second-level Parametric Empirical Bayes analysis 
The winning DCM model was brought forward to a second-level Parametric Empirical Bayes 

analysis to investigate where the mean endogenous (task-independent) and modulatory 

effects were expressed, as well as assessing inter-subject, microbiome-associated variability 

in responses. To do this, the PEB scheme begins by collating the estimated parameters of 

interest from all subjects, including the expected values of the parameters, their covariance 

matrices and approximate likelihoods. Next, Bayesian model comparison was performed 

using these first level model parameters to infer group effects. The group mean was modelled 

by including a constant term in the design matrix. Bayesian model reduction over the second 

level parameters was subsequently performed, which performs a greedy search over all 

parameters, and prunes away those that do not contribute to the model’s log evidence (Friston 

et al., 2016). With an understanding of the group-level effects, we then performed a second 

PEB, this time specifying a design matrix with three regressors. The first regressor modelled 

the group mean, and the second and third modelled the microbiota covariates (orthogonalized 

and mean-centred). High-level microbial measures including the ratio between 

Bacteroidetes/Firmicutes (B/F), and α-diversity - were selected a priori based on previous work 

(Ley et al., 2006; Lozupone et al., 2012; Mariat et al., 2009). We note that unlike previous work 

(Ley et al., 2006), we did not observe a significant relationship between B/F ratio and body 

mass index (BMI) (R = -0.21, p=0.25). PEB returns each parameter, where covariate-specific 

and group means are reported in terms of the expected values (Ep) and their corresponding 

posterior probabilities (Pp). Pp > 0.95 were considered to have a non-zero effect.  

 
2.9 Enterotype clustering  
To perform the brain-microbiota assessment at genus-level, we reduced the dimensionality of 

the microbiota into features that represented the greatest sources of variability in the data. 

Microbiota samples were clustered into enterotypes using methods previously described in 
Arumugam et al. (Arumugam et al., 2011), which are readily available online 

(http://enterotype.embl.de/enterotypes.html). We used the Calinski-Harabasz (CH) index to 

identify the optimal number of clusters (from k = 2 to k = 20). The silhouette index (SI) was 

adopted to assess how similar a sample was to its own cluster (cohesion), compared to other 

clusters (range of -1 to +1, where a high positive value indicates that samples are well aligned 

to its own cluster).  
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2.10 Co-abundance network construction 
Using the relative abundances at genus-level (total sum scaled and square root transformed), 

we computed the Pearson correlation coefficients between the four enterotype-driving genera 

(Bacteroides, Ruminococcus, Oscillospira, and Prevotella) and all other genera to generate 

an undirected, weighted co-occurrence network. Positive (co-occurrence) and negative (co-

exclusion or competitive) relationships, using cut-offs at > 0.39 and < -0.39 respectively, were 

visualized using the interactive platform Gephi (Version 0.9.2), using the force atlas template 

(Bastian et al., 2009). To confirm the robustness of network interactions, we also computed 

Sparcc correlations (Friedman and Alm, 2012) on count data collapsed at genus level 

(Supplementary Figure 6). 

 
2.11 Multiple regression analysis 
Multiple linear regression analysis was used to test the association between AIC-dACC 

responses with the relative abundance of each driving genera. To avoid overfitting the models, 

we used PCA to reduce the dimensionality of each of the normalized (z-scored) sets of brain 

measures. For PCA inputs, we used the DCM modulatory connections for threat conditioning 

(4 parameters) and reversal (4 parameters), as well as the percent signal change values for 

both task phases in the AIC (4 parameters) and dACC (4 parameters). If the first PCA 

explained < 50% variance, the 2nd PCA component was also included. This resulted in 7 PCA 

components (2 x threat conditioning; 1 x threat reversal; 2 x AIC percent BOLD signal change; 

2 x dACC percent BOLD signal change) representing our 16 brain measures (Supplementary 

Figure 4).   
 
2.12 Sparse Canonical Correlation Analysis 

𝑙𝑙1-norm regularized sparse canonical correlation analysis (sCCA) was implemented using 

default settings in the R package, “PMA” (Witten et al., 2009). This approach has been 

designed to partially alleviate modelling challenges in small sample sizes by introducing a 

penalty for the elements of the weight vectors (Wang et al., 2020). The aim of this analysis is 

to reduce the variable set according to their most important directions of linear variation, while 

allowing the microbiota-brain associations to be interpreted within the original variable space. 

In this implementation, the tuning parameter was automatically selected for each dataset 

(microbiota and brain) using a permutation scheme (n = 10,000), repeated across ten different 

candidate sparsity parameters (ranging from 0.1 – 0.7). The best penalty for each dataset was 

selected based on the highest z-statistic, and the sCCA was then repeated using this 

parameter (Supplementary Figure 5a). Leave-one-out (LOO) cross-validation was performed 

to confirm the absence of any single subject outliers (Supplementary Figure 5b). A secondary 

cross-validation was performed by randomly removing 15% of the total sample (permutations 
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= 1000) and assessing the stability of the (a) sCCA correlation and (b) brain and microbiota 

weights (Supplementary Figure 5b). An overview of the complete pre-processing and analysis 

pipeline is shown in Supplementary Figure 10. 

 

3. Results 

3.1 Behavioural Results  
Participants completed a differential threat conditioning task that involved initial learning 

(‘acquisition phase’) of threat (CS+) and safety (CS-) signal associations, and subsequent 

updating of these associations during a ‘reversal phase’ (Savage et al., 2020) (Fig. 1a). At the 

end of each task phase (including a baseline phase), participants rated the extent to which the 

threat and safety signals evoked bodily anxiety sensations, respectively, as well as their 

affective valence.  Consistent with previous work (Savage et al., 2020), results from the 

participants’ subjective in-scanner ratings confirmed that the threat signals induced 

significantly (p < 0.001) higher bodily anxiety sensations (anxious arousal) and were more 

unpleasant (negative valence) than the safety signals during both acquisition and reversal 

phases, as well as compared to the threat signals during baseline (pre-conditioning, where no 

US was present) (Fig. 1b, Supplementary Note 1). As expected, there were no significant 

differences in participants’ subjective ratings of the threat and safety signals at baseline (Fig. 
1b, Supplementary Note 1). Results from two-factor repeated measures ANOVAs and post-

hoc paired t-tests are reported in Supplementary Note 1.  

 

3.2 Computations within specialized brain regions 
As participants demonstrated successful differential learning across both the acquisition and 

reversal task phases, we examined the general neural correlates of threat learning by 

averaging responses to the threat and safety signals across these phases. That is, we 

assessed brain regions showing higher activity to the threat signals during acquisition and 

reversal, when compared to the safety signal. Results showed a robust group-level difference 

in the right AIC and mid dACC (pFWE < 0.05 at cluster-level, cluster isolated using puncorr < 

0.001, Fig. 1c). Additional brain regions, including the middle frontal gyrus, and ventral 

striatum were also more active in the overall (initial and reversed) threat > safety contrast 

(Supplementary Table 3). In line with our core aim, and existing evidence supporting their role 

in recruiting cognitive-interoceptive appraisal mechanisms, the right AIC and mid dACC were 

selected as our regions of interest (Supplementary Figure 1). While this contrast reflects the 

joint neural correlates of acquisition and reversal phases, we also examined the specificity of 

AIC and dACC activation patterns over time (comparing acquisition to reversal). To do this, 

we extracted the difference in mean fMRI percent signal change responses between threat 
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and safety signals relative to the baseline of the AIC and dACC (regions defined by two 5mm 

spheres using the peak maxima from the overall contrast) (Brett et al., 2002). In line with 

previous work using a similar task (Schiller et al., 2008), we separately assessed brain 

responses during the early (1st half) and late (2nd half) acquisition and reversal phases to 

examine putative learning-related changes (Brett et al., 2002). Results of a one-way repeated-

measures ANOVA showed a global difference across conditions for both dACC (F3, 99 = 13.99, 

p = 1.12 x 10-7, ηp
2 = 0.24) and AIC (F3, 99 = 3.01, p = 0.03, ηp

2 = 0.07) (Fig. 1d). In the dACC, 

post hoc paired t-tests (Bonferroni-corrected) showed a significant increase in response from 

early acquisition to late acquisition (t33 = -2.89, pFWE = 0.04), and from acquisition to reversal 

(early acquisition vs early reversal, t33 = -4.63, pFWE = 3.34 x 10-4; early acquisition vs late 

reversal, t33 = -4.84, pFWE = 1.75 x 10-4; late acquisition vs early reversal, t33 = -3.27, pFWE = 

0.02) (Fig. 1d). In the AIC, an increase in response was observed in the transition from early 

acquisition to late acquisition (t33 = -3.43, pFWE = 0.01) and early acquisition to reversal (early 

acquisition vs early reversal, t33 = -4.14, pFWE = 0.001; early acquisition to late reversal, t33 = -

4.46, pFWE = 5.30 x 10-4) (Fig. 1d). Stronger shifts in dACC and AIC responses were captured 

between task phases, rather than between early and late divisions within each phase. 

 

 
 
Fig. 1. Behavioural results and neural correlates of threat acquisition and reversal. (a) Design of 
the threat processing paradigm implemented in the MRI scanner. The fMRI task lasted for 17 minutes 
and had three phases: baseline (top row), acquisition (middle row), and reversal (bottom row). Blue and 
yellow spheres were used as the conditioned stimuli (CS). Between each CS presentation, a white 
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fixation cross appeared which served as a fixed inter-stimulus interval (ISI). The unconditioned stimulus 
(US, lightning bolt) was an aversive auditory burst. During acquisition, the US co-terminated with one 
of the CS (forming a threat, CS+) and not with the other (forming a safety, CS-). During reversal, the 
pairing of the US and CS was switched. Immediately after each phase (in-scanner, as a continuation of 
the task phase), participants were asked to rate the spheres in terms of subjective bodily anxiety 
sensations and affective valence on a five-point Likert scale (Self-Assessment Manikins, SAM) (Bradley 
and Lang, 1994). (b) Behavioural results for subjective in-scanner ratings of the threat and safety 
signals during baseline, acquisition and reversal for bodily anxiety sensations (left) and affective valence 
(right). The ratings confirmed the differential aversiveness of the threat relative to the safety signal, and 
the acquisition /reversal compared to the baseline stimulus (where no US was present). For post-hoc t-
tests (Bonferroni-corrected), ** denotes pFWE < 0.001 and *** denotes pFWE < 0.0001. (c) The contrast 
overall (combining acquisition and reversal task phases) threat (CS+) > safety (CS-) was associated 
with significant (pFWE < 0.05 at cluster level, high threshold of puncorrected < 0.001) group level activation 
in cortical and subcortical brain regions, including the mid dACC (white circle “1”) and right AIC (white 
circle “2”) (details in Supplementary Table 1). (d) The difference in mean percent BOLD signal change 
responses between threat and safety signals were assessed in the dACC and AIC during acquisition 
(1st and 2nd half) and reversal (1st and 2nd half). Solid dots and black lines represent the group-level 
mean percent BOLD signal change responses. For post hoc paired t-tests (Bonferroni-corrected), * 
denotes pFWE < 0.05, and *** denotes pFWE < 0.0001. 
 
3.3 Neural dynamics supporting threat processing 
We used Dynamic Causal Modelling (DCM, see methods) to study neural interactions between 

the AIC and dACC. We estimated three model variants for each subject, assuming 

bidirectional connections, modulatory effects on all possible connections, and allowing direct 

inputs at both nodes (Fig. 2a). The three models occupied distinct functional pathways that 

could be altered by threat and/or all task-related events (Fig. 2a-b). More specifically, the first 

model tested for modulatory effects evoked exclusively by the threat signals during acquisition 

and reversal (two regressors, as each phase was considered as a separate modulator, Fig. 
2b, model 1). The second model accounted for the modulatory effects of all trials occurring 

during the acquisition and reversal phases, including threat, safety, and inter-stimulus intervals 

(two regressors, Fig. 2b, model 2). The third model combined the two aforementioned models, 

accounting for both threat-related, and trial-related events for acquisition and reversal (four 

regressors, Fig. 2b, model 3). This approach allowed us to assess whether directed 

connectivity strengths within the AIC-dACC network were modulated exclusively by threat-

related stimuli, or whether a ‘tonic-like’ effect exists (responses to threat produces a constant 

or increasing modulatory response over the duration of the task).  

 

Bayesian model selection with random effects indicated the first model (threat-based signals) 

as the most likely given the data (as assessed by exceedance probability) (Fig. 2b). To identify 

significant connections within this model at the group-level, we applied Parametric Empirical 

Bayes (PEB). This uses Bayesian model reduction (BMR) to automatically search over all 

parameters and prune effects that do not meaningfully contribute to the model’s log evidence. 

Significant effects are here defined by parameters where the posterior probability (Pp) of a 

non-zero effect was ≥ 0.95. We started by assessing connection strengths independent of task 
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activation. These results showed that across all trials there was a positive connection from the 

dACC to the AIC, an inhibitory connection from the AIC to the dACC, and local responses at 

the AIC and dACC that were consistent across individuals (Fig. 2c). We next tested the effects 

of threat acquisition and reversal on all potential connections (AIC to dACC, dACC to AIC, AIC 

and dACC self-connections). In the acquisition phase, the threat-based signals enhanced 

bottom-up connectivity from the AIC to dACC, as well as local inhibitory responses at the AIC 

(Fig. 2d, blue). The same pattern of results was observed during threat reversal, but with 

stronger effects overall (Fig. 2d, pink). The expected values (Ep) and Pps for all parameters 

are presented in Supplementary Table 4.  

 
 

Fig. 2. Neural dynamics supporting threat learning and updating. (a) Specification of the DCM 
model space in terms of: (i) task-independent effective connectivity (grey, dashed lines) (A-matrix); (ii) 
modulatory connections (B-matrix) (blue), including threat signals in both acquisition and reversal task 
phases; and (iii) direct inputs to the system (C-matrix) comprising visual (all CS events) and auditory 
(US) stimuli (red). (b) Three models were estimated for each subject (see text for details). The difference 
between models arises from the specification of contextual modulators (threat signals, all trials, or both). 
Bayesian Model Selection showed that the exclusive modulation by threat signals (model 1) best 
explained the fMRI data (as accessed by the highest exceedance probability). (c) Results from 
Bayesian Model Reduction (BMR) on second level Parametric Empirical Bayes analysis of trial-
independent (fixed) connections across individuals. Results showed a positive modulation from the 
dACC to the AIC, a negative modulation from the AIC to the dACC, and local effects within both regions. 
(d) BMR results showed a significant modulatory effect of threat signals on patterns of effective 
connectivity during acquisition and reversal (left). Results highlight very consistent modulatory effects 
of task phase (from acquisition to reversal) on AIC  dACC (top, right) and AIC self-connections 
(bottom, right).   
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3.4 α-diversity covaries with AIC-dACC dynamics 
Addressing the first of our microbiota-brain aims, we investigated whether patterns of effective 

(modulatory) connections underpinning threat learning and updating covaried with high-level 

microbial properties. Emerging evidence suggests that high-level microbial measures, 

including the Bacteroidetes to Firmicutes (B/F) ratio and α-diversity (a joint measure of the 

richness and evenness of microorganisms), are important and distinct indicators of the 

promotion and maintenance of host health (Ley et al., 2006; Lozupone et al., 2012; Mariat et 

al., 2009). As there was sufficient variability in these measures across individuals, the B/F ratio 

and α-diversity constituted two group-level parametric covariates (Fig. 3a-b). To test for an 

effect of these covariates on directed patterns of connectivity, we again applied the Parametric 

Empirical Bayes method - this time testing for the presence of microbial covariation within the 

neural data. We assessed different combinations of covariates: group-level effects, a single 

microbiota covariate, or both microbiota covariates (Fig. 3c). Results indicated that the most 

likely model included the second microbiota covariate, α-diversity (model 3, posterior 

probability of 0.96, Fig. 3c). To confirm the validity of these findings, we repeated the analyses 

on surrogate models generated by permuting values within the microbiota covariates. The 

posterior probability of our winning model was significantly higher compared to the random 

surrogate models (n = 1000 permutations) (Fig. 3d). To isolate the significant parameters 

contributing to the model evidence, i.e. specific connections that covaried with α-diversity, we 

applied BMR on the winning model (Fig. 3e). Inter-individual measures of α-diversity covaried 

with regulatory (inhibitory) control from the dACC to AIC, and local inhibitory responses at the 

AIC during threat reversal (Fig. 3e-f). A confirmatory analysis further suggested that stronger 

signalling from the dACC to the AIC during reversal downregulates AIC activity (inhibitory 

modulation) (Supplementary Note 2). To control for common confounds often associated with 

human microbiota-based research, we adopted the relevant exclusion criteria from The 

Human Microbiome Project Consortium (Methé et al., 2012) and ensured that faecal samples 

were collected within a 48-hour window before or after the scanning session (see Methods). 

Furthermore, a confirmatory analysis controlling for the effects of sex and age showed highly 

consistent results.  
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Fig. 3. Effects of high-level microbial properties on threat learning and updating. (a) Inlet (left) 
shows the mean proportions of B/F, and the violin plot (middle) shows the distribution of α-diversity 
(Inverse Simpson diversity) scores in our samples (n = 38). These two microbiota features constituted 
our two regressors in the Parametric Empirical Bayes model (design matrix columns two and three, 
right). The first column models the group mean. (b) Specification of the model space showing all 
possible modulatory connections where the microbiota features can interact within the AIC-dACC 
network. (c) Model space (left) showing possible second level models (including a null model), where 
both covariates (model 1), one covariate (model 2 and 3), or no covariates (model 4, null) contribute to 
the model evidence. The winning second level model (right) included the second covariate (model 3), 
at a posterior probability (Pp) of 0.96. (d) Distribution of Pp results from surrogate testing. Dashed black 
line indicates the Pp (0.96) of the winning model for the original (non-permuted) data. (e) Results from 
Bayesian Model Reduction (BMR) showing the effect sizes (expressed in Hz) of modulatory connections 
associated with α-diversity during threat reversal. Significant parameters are those with a Pp > 0.95, 
indicated with an asterisk. The length of the bars corresponds to the expected probability (Ep) and the 
error bars are 90% Bayesian confidence intervals. SC represents self-connections. (f) Anatomical 
representation showing the significant modulatory connections associated with α-diversity during the 
threat reversal phase.   
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3.5 The human microbiota exhibits variability of enterotype-driving genera 
We next investigated whether similar patterns of microbiota-brain interactions emerged at 

lower levels of the taxonomic hierarchy (i.e., from coarse-level measures to genus level). To 

reduce the dimensionality of the microbiota into features that represent the greatest sources 

of variability in the data, we performed an enterotype analysis which uses the Partitioning 

Around Medoids (PAM) (Kaufman and Rousseeuw, 2009) clustering (Supplementary Note 3; 

Supplementary Figure 2). In line with previous work (Arumugam et al., 2011), between-class 

analysis revealed that clusters were driven by inter-individual variability in the following genera 

(Falony et al., 2016): Bacteroides (enterotype 1), Ruminococcus/Oscillospira (enterotype 2), 

and Prevotella (enterotype 3) (Supplementary Figure 2). While clusters were non-random 

(Supplementary Note 3; Supplementary Figure 3), they were also not exclusively discrete. 

Instead, visualization of the samples suggested that the data were distributed along a 

continuum (Supplementary Figure 2). Based on these findings, our subsequent analyses 

focused on a dimensional assessment of the link between the four discriminate genera and 

brain dynamics. This approach was also motivated by previous work, suggesting an 

interrogation of dominant taxa that drive separation between samples, rather than the 

enterotype classifications themselves, as features to link with clinical or behavioural variables 

(Cheng and Ning, 2019; Gorvitovskaia et al., 2016).   
 
3.6 Distinct effects of genus abundance on threat-processing brain dynamics 
We first assessed whether AIC-dACC network strengths were linearly correlated with the 

abundance of each driving genus independently. Specifically, separate multiple linear 

regressions were used to assess the association between the abundance of each candidate 

genus (Bacteroides, Oscillospira, Ruminococcus, and Prevotella) with distinct brain indices 

(threat-induced connectivity strengths and percent BOLD signal change). To reduce the 

dimensionality and improve interpretability, a principal components analysis (PCA) was 

separately applied to the values of (a) AIC-dACC connectivity during threat acquisition; (b) 

AIC-dACC connectivity during threat reversal; and percent BOLD signal change responses in 

the (c) AIC; and (d) dACC. When the first principal component (PC) for each brain set (a-d) 

explained < 50% variance, the second component was also included. This resulted in 7 PCs 

(2 x threat acquisition, 1 x threat reversal, 2 x AIC, and 2 x dACC percent signal change) which 

together constituted our regression features (Supplementary Figure 4). PCs representing 

brain variables explained a significant amount of the variance in Ruminococcus (R2 = 0.49, 

F(25, 33)= 3.48, p = 0.01, Fig. 4a). Ruminococcus abundance yielded three significant regression 

weights (β = -0.47, t(25) = -2.65, p = 0.01; β = -0.37, t(25) = -2.43, p = 0.02; β = 0.45, t(25) = 2.71, 

p = 0.01), supporting an interaction with connectivity responses during threat acquisition (1st 

PCA for threat acquisition), threat reversal (1st PCA for threat reversal) and local activity in the 
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dACC (1st PCA for dACC percent BOLD signal change), respectively. While the overall 

regression model was not significant for Bacteroides (R2 = 0.37, F(25, 33)= 2.12, p = 0.08; Fig. 
4b) or Oscillospira (R2 = 0.33, F(25, 33)= 1.74, p = 0.15, Fig. 4c), there were individual variables 

that were significant. For Bacteroides, the model yielded one significant regression weight (β 

= 0.40, t(25) = -2.80, p = 0.01), suggesting an association with connectivity responses during 

threat acquisition (represented by 1st PCA for threat acquisition). Oscillospira abundance was 

significantly associated with local activity in the dACC (1st PCA for dACC percent BOLD signal 

change) (β = 0.52, t(25) = -2.81, p = 0.01). Variance in Prevotella (R2 = 0.25, F(25, 33)= 1.16, p = 

0.36; Fig. 4d) was not related to any specific set of brain measures. Multiple regression results 

are reported in full in Supplementary Table 5.  

 

3.7 Multivariate association between driving genera and threat processing brain 
dynamics  
We next investigated the hypothesis that the microbiota and AIC-dACC activity exhibit a 

multivariate relationship – i.e. multiple dimensions along the genus axes could map to 

multivariate brain patterns. This hypothesis is motivated by the fact that driving genera are 

unlikely to exert independent effects on the neural substrates of threat processing. Results 

from a sparse canonical correlation analysis (sCCA) showed a single mode of population 

variation linking threat-related brain responses with the driving genera (Fig. 4e, r = 0.73, pFWE 

= 0.004, see Methods). This analysis identified a significant canonical mode that associated 

increased Ruminococcus abundance with stronger feedforward connectivity from the AIC to 

dACC, and local activity within the AIC and dACC during threat reversal (Fig. 4f). The stability 

of the significant sCCA was supported by a leave-one-out (LOO) cross-validation analysis. 

This analysis involved performing 32 sCCAs using the same sparsity parameter as the original 

sCCA, but with each iteration removing one subject (r = 0.73 ± 0.01, 0.69-0.77 [mean ± SD, 

range], Supplementary Figure 5). To further confirm the stability of the sCCA, we performed a 

secondary cross-validation by randomly removing 15% of the dataset (permutations = 1000) 

and assessing the stability of the CCA correlation and weights (r = 0.74 ± 0.03, 0.61-0.82, 

[mean ± SD, range], Supplementary Figure 5b).  
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Fig. 4. Associations between the driving genera and threat-related brain processes. Principal 
components analysis (PCA) was used to reduce the dimensionality of brain variables, which resulted in 
7 PCs representing connectivity strengths during threat learning (task acquisition phase), threat reversal 
(task reversal phase), and percent BOLD signal change responses at the AIC and dACC. Results from 
four independent multiple regressions showed that brain responses predicted the relative abundance 
of Ruminococcus (a). While there were individual regression weights that were significant for (b) 
Bacteroides and (c) Oscillospira, the overall regression model was not significant. Variance in (d) 
Prevotella was not related to any specific set of brain measures. 95% confidence intervals are 
represented by the dashed red lines. (e) Multivariate analysis (sparse CCA, sCCA) showed a single 
significant mode of population covariation linking threat processing measures of brain activity and 
effective connectivity with Ruminococcus abundance. (f) Bold text shows microbiome and brain weights 
(coefficients) contributing to the sCCA. Features in grey text represent zero-contributing features to the 
sCCA, as imposed by the 𝒍𝒍𝟏𝟏-norm penalty term. Brain variables prefixed with an ‘A’ refer to those 
occurring in the task acquisition phase, ‘R’ refers to brain variables in the task reversal phase, and ‘SC’ 
refers to modulatory self-connections.  

 

3.8 Potential mechanisms linking genus abundance to threat-related brain processes 
Growing preclinical evidence supports a causal relationship between the production of short-

chain fatty acids (SCFAs) - including butyrate, propionate, and acetate - and host behaviour 

(Stafford et al., 2012; van de Wouw et al., 2018). Specifically, it has recently been suggested 

that SCFAs may be critical modulators of neuronal functions associated with threat reversal 
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(Stafford et al., 2012) and anxiolytic effects (Burokas et al., 2017). In the light of these findings, 

we assessed whether the driving genera linked to threat-induced AIC-dACC network activity 

were major contributors to the microbial production of SCFAs. Given that microorganisms work 

in consort to perform and maintain metabolic functions (c.f. cross-feeding relationships (Baxter 

et al., 2019; Belenguer et al., 2006)), we started by assessing how the driving genera interact 

with the broader microbiota ecosystem. To achieve this goal, we constructed interaction 

networks highlighting co-abundance (positive correlations, r > 0.39 and co-exclusion (negative 

correlations, r < -0.39) relationships between the driving genera and the wider microbial 

community (Fig. 5a-c). The co-abundance networks revealed that nodes within the 

Oscillospira/Ruminococcus network (Fig. 5a) were negatively correlated with nodes within the 

Bacteroides network (Fig. 5b). A confirmatory network analysis using Sparcc 

correlations(Friedman and Alm, 2012) supported the above results (Supplementary Figure 6).  

 

We then predicted the functional capacity of each microbial sample from its 16S profile using 

PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved 

States (Langille et al., 2013)). This algorithm predicted the functional capacity of 

microorganisms by using ancestral-state reconstruction to estimate which gene families are 

present and how they interact to form the composite metagenome. Functional predictions were 

then mapped onto the Kyoto Encyclopaedia of Genes and Genomes (KEGG) (Kanehisa and 

Goto, 2000) to isolate the gene content encoding for terminal enzymes involved in the 

production of SCFAs (i.e., butyrate, propionate, and acetate) (Fig. 5d). The estimated 

contributions (i.e., the degree to which each microorganism contributed to each sample’s gene 

content) were represented at both the genus and order scale, and were summarized at the 

group level (Fig. 5e). Members of the Clostridiales order, including Ruminococcus and 

Oscillospira, were identified as major contributors to all terminal enzymes involved in SCFA 

production. Other genera within the Clostridiales order, including Blautia, Lachnospira, and 

Coprococcus were also contributors to these pathways. Bacteroidales (order), with a 

substantial contribution from Bacteroides (genus) (Fig. 5e), were involved in the sub-terminal 

reaction (K00634) in butyrate production. As showed in Fig.4e, Ruminococcus is the strongest 

multivariate driver of brain patterns. Crucially, results from our functional analysis highlight that 

the SCFA production pathways also rely on Ruminococcus and the order (Clostridiales) from 

which it originates. These findings are consistent with the notion that the detected microbiota 

features contributing to gut-brain associations supporting threat processing are linked to SCFA 

production, either directly or in consort with co-occurrence interactions.   
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Fig 5. Link between microbiota genera associated to threat-related brain processes and 
functional pathways supporting the production of short-chain fatty acids. Co-occurrence and co-
exclusion relationships between the driving genera (large nodes) including (a) Ruminococcus/ 
Oscillospira, (b) Bacteroides, and (c) Prevotella. Unclassified genera are described at a broader 
taxonomic rank above genus level (i.e., family or order) and are marked by asterisks. Graphs are 
visualized as a force-directed layout using Gephi (Version 0.9.2), using the force atlas template(Bastian 
et al., 2009). (d) Metabolic pathways (derived from the Kyoto Encyclopaedia of Genes and Genomes 
pathways) representing final enzymatic conversions (terminal enzymes) involved in butyrate, 
propionate, and acetate production. The major contributor(s) to each gene-encoding enzyme have been 
identified in colored boxes. (e) Decomposition of core/major genera and orders contributing to SCFA 
pathways. Dark tones represent contributions from a higher taxonomic rank: order. Hatched and lighter 
tones represent contributions from driving genera.  
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4. Discussion 

We used a multidisciplinary approach to assess the relationship between the human gut 

microbiota and a brain circuit supporting the subjective experience of threat processing via 

cognitive-interoceptive appraisal mechanisms (Fullana et al., 2016; Harrison et al., 2015; 

Kalisch and Gerlicher, 2014). Results highlighted an association between microbial 

abundance patterns - reflected across different taxonomic scales - with neural dynamics 

between the AIC and dACC during threat learning and threat updating processes. By 

considering broad ecological relationships and estimated functional properties of the 

microbiome, we provide support for the notion that microbial genera influencing threat-related 

brain processes are involved in SCFA production. More broadly, our findings provide impetus 

to pursue future research assessing the viability of the gut microbiome to impact brain activity 

and behaviour linked to threat-related disorders (Harrison et al., 2015).  

 

High-level ecological measures are thought to recapitulate key organizational principles of the 

gut microbiota (Ley et al., 2006; Lozupone et al., 2012; Mariat et al., 2009). We found that 

inter-individual variability in α-diversity - a joint measure of the evenness and richness of 

residing microorganisms - was associated with the strength of inhibitory patterns of 

connectivity from the dACC to the AIC, and self-inhibitory responses within the AIC during 

threat reversal (Fig. 3e-f). The reversal of learned threat stimuli associations requires an 

updating process, where former safety signals are re-evaluated as a new threat. The α-

diversity-mediated modulation of dACC to AIC is consistent with previous work, suggesting 

that processes involving threat updating are supported by cognitive computations within the 

dACC (Savage et al., 2020; Stevens et al., 2011). These findings are noteworthy, as α-

diversity is thought to engender a microbial ecosystem that is robust and resilient to 

environmental perturbation (Bokulich et al., 2016). Higher functional redundancy allows the 

microbiota to compensate for the functions of absent species, including adequate production 

of microbiota-derived metabolites to meet host demands (Valdes et al., 2018). Accordingly, 

reduced α-diversity has been linked to exacerbated fear reactivity in infants (Aatsinki et al., 

2019; Gao et al., 2019) and altered insular connectivity in adults (Curtis et al., 2019). The 

Bacteroidetes to Firmicutes ratio was not linked to threat-related AIC-dACC patterns of activity 

and connectivity. While some evidence suggests a link between this ratio and inflammation 

(Verdam et al., 2013), obesity (Ley et al., 2006), and chronic pain (Labus et al., 2017), the 

utility of phyla-level ratios as a biomarker in mental health remains debated. Findings from the 

current study do not support the putative link between the Bacteroidetes to Firmicutes ratio 

and threat-related brain processing.  
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While diversity measures are important from a whole systems approach, when considered in 

isolation it is unclear whether effects are driven by highly conserved features (i.e., common to 

all members of major phyla), or if they emerge within finer taxonomic scales. The analysis of 

genus-level composition is thought to represent an intermediate scale; striking a balance 

between the complexities of interpreting high-level ecological measures, with a reductionist 

approach that isolates species of interest. Results from the multiple regression and sCCA 

analysis converge in supporting an association between Ruminococcus abundance and 

activity from the AIC to the dACC, as well as local activity within the AIC and dACC during 

threat reversal. More broadly, Ruminococcus appears to link to key brain processes facilitating 

the update of previously reinforced safety signals to new threat associations (Fig. 4a&f). 
 

The biological mechanisms supporting the causal interplay between the gut microbiome and 

brain processes underpinning human behaviour are not yet fully understood. The microbiota 

is thought to impact brain activity via the production of SCFAs including acetate, propionate, 

and butyrate (Dalile et al., 2019). Accordingly, recent preclinical studies suggest that 

alterations in microbiota-derived metabolites, including SCFAs, contribute to neuronal activity 

and behaviour linked to threat processing (Stafford et al., 2012; Whittle and Singewald, 2014). 

SCFAs are signalling molecules that act as histone deacetylase inhibitors (Kratsman et al., 

2016; Stilling et al., 2016), as well as endogenous ligands for G-protein coupled receptors, 

FFAR2 and FFAR3 (Brown et al., 2003). These receptors are expressed on enteroendocrine 

cells, various immune cells, and vagal afferents (Egerod et al., 2018; Nøhr et al., 2015). While 

SCFAs have been shown to cross the blood brain barrier (Liu et al., 2015; Sun et al., 2016), 

this pathway is not thought to be a major route via which SCFAs exert their influence on cortical 

activity and related behaviour. Enteroendocrine-mediated vagal signalling is considered to be 

a more direct and accessible route via which SCFAs influence cortical dynamics and 

behaviour (Bonaz et al., 2018; Lal et al., 2001). Information from vagal afferents converge in 

the nucleus tractus solitarius, which can then be relayed to cortical brain regions including the 

AIC and the dACC. Accordingly, associations between enzymes involved in butyrate 

production and the insula structure have recently been reported (Labus et al., 2017). Here, we 

provide evidence indicating that Ruminococcus and co-occurring taxa play an important role 

in the estimated production of acetate, propionate, and butyrate. While our findings are 

estimations and thus cannot be directly extrapolated, they provide a solid rationale to motivate 

future work directly testing the putative key role of SCFAs in the modulation of brain processes. 

Future work that specifically focuses on SCFAs would also support the growing body of 

existing preclinical and emerging human data (Boehme et al., 2019; Burokas et al., 2017; 

Dalile et al., 2019; Lee et al., 2020). More specifically, preclinical work suggests a link between 

Ruminococcus-induced increases in SCFAs and improvements in anxiety-related behaviours 
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(Yu et al., 2020), and stress and emotional instability (Provensi et al., 2019). However, 

important to note is that clinical translation of this work has yielded conflicting results. A recent 

study in healthy men showed that colonic administration of SCFAs attenuated the cortisol 

response to physiological stress, but had no effect on threat learning as assessed by 

subjective ratings and skin conductance responses (Dalile et al., 2020).  
 
A number of caveats need to be considered while interpreting the results from this study. Our 

analysis focused on a well-defined two-region circuit consistently implicated in human threat 

processing (Fullana et al., 2016). Moreover, this network has recently been linked to individual 

differences in anxiety sensitivity – a well validated trait measure of the fear of bodily anxiety 

sensations (Harrison et al., 2015; Savage et al., 2020). Future work could assess how AIC-

dACC circuitry interacts with the broader network of brain regions supporting the contextual 

processing of threat, and its possible interactions with the microbiota. With regards to the fMRI 

task, while the use of a fixed ISI has been adopted by previous work (Savage et al., 2020; 

Schiller et al., 2008), we acknowledge that future work may benefit from a task variant with 

more events and a non-fixed ISI. We attempted to minimize common confounds associated 

with both acute (e.g. recent medication use and dietary intake) and general lifestyle changes 

in microbiota composition by selecting relevant exclusion criteria provided by The Human 

Microbiome Project Consortium (Methé et al., 2012). Stool sample collection and 

neuroimaging were also performed in close temporal proximity. However, collection of repeat 

faecal samples could provide a more nuanced assessment of the relationship between 

microbiome and brain processes. In the current study, 16S rRNA sequencing was used as 

this method has been demonstrated to provide sufficient resolution to characterise genus (and 

broader) level interactions (Rausch et al., 2019). Furthermore, previous work has 

demonstrated that functional assessments performed using PICRUSt are sufficiently well 

correlated with genomic content to yield accurate predictions in human gut microbiome 

samples (Langille et al., 2013). However, as this emerging field continues to develop, the 

importance of combining neuroimaging and behavioural datasets with higher resolution 

sequencing (shotgun metagenomics), and untargeted or targeted metabolomics will be critical 

to extend upon this work. The specificity of SCFAs and their putative mechanistic role in 

altering AIC-dACC dynamics will also need to be replicated in adequately powered human 

interventional studies. Current results provide key knowledge and motivation to invest in future 

targeted work assessing the link between gut features and threat-related neural dynamics.  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.04.27.441703doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.27.441703
http://creativecommons.org/licenses/by-nd/4.0/


bioRxiv   Microbiota links to neural dynamics     Page 26 of 32 
 
 

5. Conclusion 
There is convincing preclinical evidence demonstrating the effect of the gut microbiota in 

altering brain mechanisms supporting threat processing. However, there remains a large gap 

in the understanding of how microbiota consortia engenders variability in neural dynamics 

underpinning human threat processing. Our study supports distinct interactions between 

microbial abundance patterns - reflected across different taxonomic scales - with neural 

dynamics supporting threat learning and threat updating processes in healthy individuals. 

While research in this field is still in its infancy, current data highlights that the assessment of 

the microbial milieu may provide insights into the emergence of, and vulnerability to threat-

related disorders. 
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