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ABSTRACT 29 

Protein fold recognition is the key to study protein structure and function. As a representative 30 

pattern recognition task, there are two main categories of approaches to improve the protein fold 31 

recognition performance: 1) extracting more discriminative descriptors, and 2) designing more 32 

effective distance metrics. The existing protein fold recognition approaches focus on the first 33 

category to finding a robust and discriminative descriptor to represent each protein sequence as a 34 

compact feature vector, where different protein sequence is expected to be separated as much as 35 

possible in the fold space. These methods have brought huge improvements to the task of protein 36 

fold recognition. However, so far, little attention has been paid to the second category. In this paper, 37 

we focus not only on the first category, but also on the second point that how to measure the 38 

similarity between two proteins more effectively. First, we employ deep convolutional neural 39 

network techniques to extract the discriminative fold-specific features from the potential protein 40 

residue-residue relationship, we name it SSAfold. On the other hand, due to different feature 41 

representation usually subject to varying distributions, the measurement of similarity needs to vary 42 

according to different feature distributions. Before, almost all protein fold recognition methods 43 

perform the same metrics strategy on all the protein feature ignoring the differences in feature 44 

distribution. This paper presents a new protein fold recognition by employing siamese network, we 45 

named it PFRSN. The objective of PFRSN is to learns a set of hierarchical nonlinear 46 

transformations to project protein pairs into the same fold feature subspace to ensure the distance 47 

between positive protein pairs is reduced and that of negative protein pairs is enlarged as much as 48 

possible. The experimental results show that the results of SSAfold and PFRSN are highly 49 

competitive.50 

USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.04.27.441698doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.27.441698


 

3 
 

INTRODUCTION 51 

As the genome project continues to evolve, we are faced with exponentially growing sequences of 52 

proteins without knowing their structural or biochemical functions. Exploring the structure and 53 

function of even a single protein remains a non-trivial task, the best way to understand all these 54 

sequences is to search a database and link them to other proteins with known correct structures, 55 

which is also the goal of protein fold recognition. Improving these methods of protein fold 56 

recognition is one of the fundamental challenges in bioinformatics today. In general, these methods 57 

of protein fold recognition can be divided into machine learning methods and alignment methods. 58 

Machine learning methods first extract fold-specific features and then directly classify proteins 59 

into different fold categories by employing different classifiers. In the early work, support vector 60 

machine and neural network [1] have been employed to construct a single classifier to identify fold 61 

type. Shen et al. [2] used ensemble classifiers to improve protein fold pattern recognition. Liu et al. 62 

[3] proposed SOFM to extract the sequence-order information of neighboring residues from 63 

multiple sequence alignment (MSA). Later, the RF-fold [4] and DN-fold [5] have been proposed by 64 

combining the deep neural network (DNN), random forest (RF) [6] and various features describing 65 

the pairwise similarities of two different protein sequence. 66 

In contrast to machine learning methods, the mechanism of the alignment methods is that fold 67 

types are identified based on the similarity between the query protein and template at 68 

sequence-sequence [7-10] or sequence-structure level [11, 12]. The sequence of a query protein is 69 

aligned against the sequences of template proteins whose folds are known to generate similarity 70 

scores. If the similarity scores between a query protein and a template protein is the highest one of 71 

all similarity scores, and then the fold type of the template protein is considered as the fold type of 72 

the query protein. 73 

All of the methods mentioned above are driving the development of this important field, they 74 

focus on employing discriminative frameworks to extract a robust and discriminative protein 75 

descriptor, which is used to measure the similarity by hand-crafted distance metrics, such as 76 

Euclidean distance and Cosine distance. But there are also suffering from the following 77 

shortcomings: Similarity measures of protein feature are not rigorous because different protein 78 
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feature usually subject to varying distributions, if we perform the same metrics on all the feature, 79 

the differences in feature distribution will be ignored. In addition, in the case of higher feature 80 

dimension, the distance between samples tends to be the same, so it is hard to measure the distance 81 

between different samples. To address these problems, based on the idea of metrics learning, we 82 

propose a new protein fold recognition by employing siamese network, we named it PFRSN. The 83 

objective of PFRSN is to learn a set of hierarchical nonlinear transformations to project protein 84 

pairs into the same fold feature subspace to ensure the distance between positive protein pairs is 85 

reduced and that of negative protein pairs is enlarged as much as possible. In addition, RFRSN is 86 

also dependent of the protein feature representation, robust and comprehensive feature 87 

representations contribute to the performance of RFRSN. 88 

Recently, Zhu et al. [13] proposed a new protein descriptor called DeepFR to extract the 89 

fold-specific features by using deep convolutional neural network (DCNN) from protein 90 

residue-residue contact map and it improve the accuracy of protein fold recognition. However, 91 

DeepFR suffers from the following shortcomings: (1) what we found in our experiments shows that 92 

the potential relationship between protein residues is lost by pass the contact likelihood matrix 93 

extracted by CCMpred [14] through DCNN, because the contact likelihood matrix were filtered by 94 

activation function. (2) Multiple sequence alignment is required when using CCMpred to predict 95 

protein residue contact map, it is time-consuming and very inconvenient for performing protein fold 96 

recognition. In order to overcome these shortcomings, we use SSA tool [15] (A fast protein residue 97 

contact map prediction tool that requires only sequence as input) instead of CCMpred to predict the 98 

potential relationship between protein residues (Output of the previous layer of the SSA model), 99 

this potential relationship is native and not filtered by the activated function, which contains both 100 

protein residue-residue contact information and other protein structure information. On the other 101 

hand, we design a new network structure to make it effectively mine the structure information 102 

hidden in the potential relationship between protein residues. To distinguish it with DeepFR, we 103 

name it SSAfold. 104 

In summary, the main contributions of our study are as follows: 105 
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(1) The idea of metrics learning was introduced into protein fold recognition to fill the gap in 106 

this point; 107 

(2) Siamese networks are used to learn the complex nonlinear relationships stored in protein 108 

feature so that they can better measure the similarity between any two proteins in the protein fold 109 

subspace; 110 

(3) The ability of DeepFR to extract protein feature was accelerated and improved by using the 111 

potential relation between protein residues alternative the protein contact map as the input of 112 

convolutional neural network and improving the structure of neural network. 113 

The rest of this paper is organized as follows. We give a brief background on metrics and deep 114 

learning in section 2. The effectiveness analysis and the proposed SSAfold and RFRSN are 115 

presented in section 3. Experiment results are provided in section 4. Finally, we give a conclusion in 116 

section 5. 117 

MATERIALS AND METHODS 118 

Benchmark datasets 119 

Training dataset 120 

In this paper, we train our SSAfold model and RFRSN by employing the SCOP2.06 dataset [16, 17]. 121 

In addition, to ensure the independence of training data and test data, the training set should be 122 

cleaned to remove the proteins that have significant sequence similarity with proteins in test dataset. 123 

CD-HIT_2D [18] is employed to guarantee all the proteins in the database share 40% sequence 124 

similarity with the proteins in test dataset. After removing the sequence redundancy in the training 125 

set, finally, we collected a training dataset consists of 23001 proteins covering 1198 folds, 1948 126 

superfamilies and 4646 families. 127 

Test dataset 128 

we evaluated our method on LINDAHL dataset [19], it contains 976 proteins extracted from SCOP 129 

(version 1.37) with pairwise sequence identity less than 40%. In LINDAHL dataset, 321, 434 and 130 

555 proteins have at least one match at fold, superfamily and family levels, respectively. 131 

Metrics learning 132 

The field of metric learning is witnessing great progress recently, which aims to measure the 133 
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similarity among samples pairs while using an optimal distance metric for learning tasks. Original 134 

metric learning approcaches learns a linear Mahalanobis distance metric for similarity measurement 135 

[20-22]. For example, Weinberger et al. [23] proposed a large margin nearest neighbor method 136 

named LMNN by enforcing an anchor sample to share the same labels with its neighbors by a 137 

relative distance, which is one of the most popular metric learning methods before. Davis et al.[24] 138 

presented an metric learning (ITML) method based on information theoretic, which contributes 139 

multivariate Gaussian distribution and Mahalanobis distances into an information-theoretic setting. 140 

However, these methods only learn an ensemble of linear projections and cannot fully learn the 141 

nonlinear relationships hidden in the data, which are quite common in the real world applications. 142 

To address this problem, many methods based on kernel tricks [25-27] are usually employed for 143 

nonlinear transformations, yet they cannot determine the specific function and face scalability 144 

problem for other tasks. Recently, with the development of deep learning and several deep metric 145 

learning methods have been presented to address the limitation of kernel method by learning 146 

hierarchical nonlinear transformations [28, 29]. For example, Hu et al. [28] proposed a 147 

discriminative metric learning method (DDML) to learn  the distance between faces. 148 

 149 

Deep learning 150 

In recent years, we have witnessed deep convolutional neural networks revolutionize computer 151 

vision [30, 31] and natural language processing [32, 33]. Tian et al. [31] proposed a new image 152 

denoising method by using deep convolutional neural networks with batch renormalization. Mun et 153 

al.[34] considered the temporal dependency of the events into the deep convolutional neural 154 

networks for dense video caption. In addition, deep learning has achieved impressive success in 155 

various tasks in the field of bioinformatic. For example, Li et al. [35] proposed ResPRE model, 156 

which is a high-accuracy protein contact prediction tool by coupling precision matrix with deep 157 

residual neural networks; Differently, our proposed RFRSN method employs a siamese network to 158 

learn the nonlinear distance metric and we use the back propagation algorithm to train the model. 159 

Hence, our proposed RFRSN is complementary to existing protein fold recognition.   160 

The proposed RFRSN model for fold recognition 161 
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In this section, we propose a new method (RFRSN) for protein fold recognition, where the basic 162 

idea of RFRSN is illustrated in Fig. 1. We use a siamese network to map a pair of proteins feature 163 

into the same fold subspace, where the semantic distance of protein features can be directly 164 

simulated by the Euclidean distance in this subspace. The choice of feature descriptors is unlimited, 165 

the existing powerful protein feature descriptors can be used directly. For get better performance, 166 

we also propose a robust and discriminate protein feature descriptor named SSAfold in this paper, 167 

which can extract feature from potential protein residue relationship by using deep convolutional 168 

neural network. Next, we present the proposed SSAfold method and RFRSN model, as well as its 169 

implementation details.  170 

 171 

Fig.1. The flowchart of proposed RFRSN method for protein fold recognition. For a given pair of 172 

feature vector of protein 1and protein 2, they are mapped into the same fold subspace as 4

1H  and 173 

4

2H  by using two neural networks (They share the same parameters). where the similarity score of 174 
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4

1H  and 4

2H  is calculated and employed to determine whether two proteins come from the same 175 

fold type. 176 

SSAfold: a fast and discriminate protein feature descriptor from predicting potential protein 177 

residue-residue relationship 178 

There are many methods to predict protein residue-residue contacts, for example DeepCov [36], 179 

DNCON2 [37], DeepCON [38] and ResPRE [35]. These methods can produce very accurate 180 

residue-residue contacts, however, for these methods, homologs to the query protein must be 181 

collected by running HHblits [39] to search against sequence database UniProt dataset and then 182 

were organized as an MSA of the query protein. However, it takes a lot of time. Due to the 183 

limitation of our computer, we choose the SSA method as the potential protein residue-residue 184 

relationship extractor of SSAfold, SSA is very fast and accurate, which requires no information 185 

other than protein sequence (details about SSA can be seen in paper [15] ). Originally, SSA maps 186 

any protein sequence to a sequence of vector embeddings - one per amino acid position - that 187 

encode structural information and outputs residue-residue contacts. In this paper, the parameters of 188 

SSA provided by the author of SSA and we only employ the previous layer output of 189 

residue-residue contact as the potential protein residue-residue relationship. 190 

Extracting fold-specific features from potential protein residue-residue relationship 191 

The acquired residue-residue relationship is difficult to directly infer fold type of query protein, the 192 

main reasons are as follows: (1) although residue-residue relationship matrices contain a lot of 193 

structural information, it also contains a large amount noise and redundant information. (2) Due to 194 

the length of the protein sequence may not be the same, the similarity scores between two protein 195 

sequences are difficult to obtain. To sum up, how to use potential protein residue-residue 196 

relationship effectively for protein fold recognition is still a huge challenge. 197 

Inspired by the tremendous success of convolutional neural networks in computer vision, we 198 

employ deep convolutional neural networks to extract fold-special feature from potential protein 199 

residue-residue relationship. Specifically, the DCNN takes predicted potential protein 200 

residue-residue relationship matrix of a query protein as input, and outputs fold type of the query 201 

protein. We train a DCNN over a collection of training samples, each sample consisting of potential 202 
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protein residue-residue relationship matrices of a protein together with its fold type as the label. The 203 

whole training process minimizes the cross entropy loss function through backpropagation [40]. 204 

...

.
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.

.

.

.

.

a.1

a.2

g.1

h.5

Convolutional 

layer
Fully connected layer

 205 

Fig. 2. Architecture of the deep convolutional neural network used to extract fold-specific 206 

features from potential protein residue-residue relationships. 207 

Architecture of the deep convolutional neural network is shown in Fig. 2, which includes 208 

thirteen convolutional layers, three max-pooling layers, thirteen batchnorm layers and three fully 209 

connected layers. The parameters of SSAfold are given in Supplementary in formation S1. 210 

For the full connected layers of SSAfold, the size of the input data must be the same, however 211 

different protein sequences usually have different sequence lengths L. According to the output of 212 

the SSA model, the size of potential protein residue-residue relationship matrice is L L . In order 213 

to solve this contradiction, we fix the size of the residue-residue relationship matrice is 256 256  214 

by adopting sampling or padding operations accordingly, these two operations are widely used in 215 

the field of computer vision [41]. The specific sampling and padding strategies are described as 216 

follow: 217 

⚫ Sampling: For the length of protein over 256, we randomly sampled a 256 256  sub-matrix 218 

from its potential protein residue-residue relationship matrix. We repeated this operation ten 219 

times and obtained an ensemble. 220 

⚫ Padding: For the length of protein shorter than 256, we embedded its relationship matrix into a 221 

256 256 matrix with all elements being 0. The embedding positions are random; thus, we 222 

obtained an ensemble of 256 256  matrices after repeating this procedure ten times. 223 

Extracting fold feature by SSAfold: to our best knowledge, the fully connected layers play the 224 

role of "classifier" in the whole convolutional neural network. If operations such as convolution 225 

layer, pooling layer and activation function layer map the original data to the hidden feature space, 226 

the full connected layer maps the learned "distributed feature representation" to the sample space. In 227 
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this paper, we use the output of the first fully connected layer were used as the input of metric 228 

Learning Network, we named it SSAfold features. SSAfold feature has the comprehensive 229 

information and they are higher-level features made up of lower-level features. Experiments show 230 

that this strategy can get the best results. 231 

Proposed RFRSN for protein fold recognition 232 

We use the SSAfold features mentioned in the previous section as the protein feature descriptor. 233 

Then, we learn a fair metrics by siamese network. The basic idea of RFRSN is shown in Fig. 3.  234 

 235 

 236 

Fig. 3. Intuitive illustration of the proposed RFRSN method. There are five protein sequence, which 237 

a,b and c belong to the same protein fold type, and d and e belong to the same protein fold type, 238 

here, assume protein a as anchor protein. In the original protein feature space, the distance between 239 

the positive pair is larger than that between the negative pair which may be caused by the individual 240 

differences of different protein. This phenomenon is not conducive to protein fold recognition. Then, 241 

we use our proposed RFRSN to create a gradient that pulls positive protein closer to the anchor 242 

protein and push the negative protein away from the anchor protein. FInally, the distance of each 243 

positive protein pair is less than the margin and that of each negative protein pair is higher than the 244 

margin. 245 

First, we construct a pair of deep neural network (the pair of neural networks shares the same 246 
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parameters) to compute the feature representation of a protein pair by passing them through 247 

multiple layers of nonlinear transformations. Now, assume the number layers of deep neural 248 

network is set to M+1, and each layer has mp  hidden points, where m=1, 2,…, M. For a given 249 

protein dx R , d is the dimension of original protein feature. The output of first layer is 250 

1 1 1( )h s w b= + , where 1w  and 1b  is the parameters of the first layer to be learned in training process 251 

and s is the nonlinear activation function, such as relu and sigmoid. Then, the first output is used to 252 

be as the input of next layer, we repeat this operation and get the output of the m-th layer: 253 

1( )m m m mh s w h b−= + , where mw  and mb  is the parameters of the m-th layer. Finally, the output of the 254 

top level can be computed as: 255 

1( ) ( )M M M Mf x h s w h b−= = +                               (1) 256 

Where the mapping project 
( )

:  R  R
md pf →  is determined by the parameters of the project 257 

matrix 
mw  and bias

mb , where m=1, 2,..., M. 258 

Now, given a pair of protein sample ix  and jx , pass them into the siamese network respectively. 259 

Finally, they can be represented as ( )i M

if x h=  and ( )j M

jf x h= . The distance of protein pair can be 260 

measured by computing the squared Euclidean distance between the most top level representations, 261 

which can be defined as follows: 262 

2
2

2
( ) ( )f i jd f x f x= −

                          (2) 263 

To achieve better performance, we expect the distances between positive pairs are smaller than 264 

those between negative pairs to get more powerful protein feature representation, which is more 265 

effective to protein fold recognition. To learn the appropriate parameter MW and MB , MW  and MB  266 

are the ensemble parameters of whole siamese network, we formulate our RFRSN as the following 267 

optimization problem: 268 

1 2

21 2 2( , ( , ( , ))
12
( (1 )max( ,0) )N

Y Y x x Wn
L

WN
YD Y m D=

=
+ − −        （3） 269 

Where 2

WD  is the Euclidean distance of the protein 1X and 2X  can be computed as: 270 

22 2 1/2

2 1 22 1
( ) ( ) ( ( ( ) ( ) ) )

p i i

W i i
D f x f x f X f X

=
= − = −              （4） 271 
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Where p is the dimension of the final output by deep neural network. Y is the label whether the 272 

two samples come from the same fold type, when two samples share the same fold label, Y is set to 273 

1, and otherwise it will be set to 0. From Equation (3), when Y=1, we just need to get as close as 274 

possible between the two samples, when Y=0, we need to make the distance between the sample 275 

pairs greater than the threshold value margin. Then value of margin has to be assumed before 276 

training process. We employ the SGD method to train the entire network. 277 

Assigning fold type to query protein：Due to the high discrimination, the final output feature 278 

representation can be used to assess the distance between proteins and can be used to rank template 279 

proteins for a target protein. The fold type of the template protein that matches the query protein the 280 

most will be assigned to the query protein. 281 

Results 282 

Evaluation strategy and comparison 283 

In our experiment, we use top1 and top5 as the measure of our method, Top1 Accuracy refers to the 284 

accuracy with which the top-ranked category matches actual labels, Top-5 Accuracy refers to the 285 

accuracy with which the top5 categories include actual labels. We use each protein in test set as 286 

query protein, compare it with template protein, and final rank them based on the distance. 287 

For SSAfold, we freeze the parameter of network of SSAfold and use it as a feature descriptor, 288 

the output of final fully connected layer as protein feature. Then we employ cosine distance to 289 

measure similarity scores between query protein and template protein like DeepFR method. Finally, 290 

the fold type of the template protein that matches the query protein the most will be assigned to the 291 

query protein. 292 

For RFRSN method, we also freeze the parameter of network of SSAfold and use it as a 293 

feature descriptor, the output of first fully connected layer as protein feature. Then we randomly 294 

selected 500,000 pairs of protein samples for training dataset, of which 250,000 were positive 295 

samples and 250,000 were negative samples. These pairs of protein samples are used to train the 296 

siamese network. Finally, we pass the query protein feature and the template protein feature into the 297 

siamese network to computer the distance between two proteins. The fold type of the template 298 

protein closest to the query protein is assigned to the query protein. 299 
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The performance of our method was compared with other widely used 25 state-of-the-art 300 

approaches on the LINDAHL dataset, including alignment methods (PSI-Blast [7], HMMER [42], 301 

SAM-T98 [42], BLASTLINK [19]), SSEARCH [9], SSHMM [43], THREADER [44], Fugue [45], 302 

RAPTOR [12], SPARKS [46], SPARKS-X [47], SP3 [48], SP4 [49], SP5 [50], HHpred [51], 303 

BoostThreader [11], FFAS-3D [52], HH-fold [53]), machine learning methods (FOLDpro [54], 304 

RF-Fold ), deep learning methods (DN-Fold, DeepFR) and ensemble methods (RFDN-Fold, 305 

DN-FoldS, DN-FoldR, TA-fold[53]). 306 

Table 1. Performance comparison of different protein fold recognition methods on the test dataset. 307 

Method 
Family Superfamily Fold 

Top 1 (%)  Top 5 (%)   Top 1 (%)  Top 5 (%)   Top 1 (%)  Top 5 (%) 

PSI-Blast  71.2 72.3 27.4 27.9 4.0 4.7 

HMMER [42] 67.7 73.5 20.7 31.3 4.4 14.6 

SAM-T98  70.1 75.4 28.3 38.9 3.4 18.7 

BLASTLINK  74.6 78.9 29.3 40.6 6.9 16.5 

SSERCH  68.6 75.5 20.7 32.5 5.6 15.6 

SSHMM  63.1 71.7 18.4 31.6 6.9 24.0 

THREADER  49.2 58.9 10.8 24.7 14.6 37.7 

Fugue  82.2 85.8 41.9 53.2 12.5 26.8 

SPARKS [46] 81.6 88.1 52.5 69.1 28.7 47.7 

SP3 [48] 81.6 86.8 55.3 67.7 30.8 47.4 

HHpred [51] 82.9 87.1 58.0 70.0 25.2 39.4 

SP4  80.9 86.3 57.8 57.8 30.8 53.6 

SP5 82.4 87.6 59.8 70.0 37.9 58.7 

RAPTOR  86.6 89.3 56.3 69.0 38.2 58.7 

SPARKS-X 84.1 90.3 59.0 76.3 45.2 67.0 

BoostThreader 86.5 90.5 66.1 76.4 42.6 57.4 

FOLDpro  85.0 89.9 55.0 70.0 26.5 48.3 

RF-Fold  84.5 91.5 63.4 79.3 40.8 58.3 

DN-Fold  84.5 91.2 61.5 76.5 33.6 60.7 

DN-FoldS  84.1 91.2 62.7 76.7 33.3 57.9 

DN-FoldR 82.3 88.3 56.0 71.0 27.4 56.7 

DeepFR (S1) 67.4 80.9 47.0 63.4 44.5 62.9 

DeepFR (S2) 65.4 83.4 51.4 67.1 56.1 70.1 

DeepFRpro (S1)  85.6 91.9 66.6 82.0 57.6 73.8 

SSAFold 65.8 84.9 58.3 73.0 59.8 73.2 

RFRSN 66.3 76.1 62.4 78.6 62.0 82.6 
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As in table 1, our proposed SSAFold significantly outperformed all the other methods at the 308 

fold level except RFRSN method. Specifically, the accuracy of SSAfold for top 1 and top 5 309 

predictions are 65.8% ,84.9%, 58.3%, 73.0%, 59.8% and 73.2% at family level, superfamily level 310 

and fold level, respectively. Especially compared with DeepFR, the accuracy of SSAFold for top 1 311 

and top 5 at family level is about 7% and 6% higher than DeepFR, the fold-feature of DeepFR is the 312 

best features for protein fold recognition before, respectively. In addition, since the whole SSAfold 313 

model is connected by two neural network models, the entire protein fold recognition model deals 314 

directly with the protein sequence, proteins fold type can be identified by SSAfold faster than other 315 

methods. For RFRSN method, we learn a new metric distance by siamese network and we employ 316 

the new metric distance to measure the query protein and template protein. From the table 1, we can 317 

see that the new measure of distance can more effectively measure the relationship between two 318 

proteins, and the accuracy of SSAfold for top 1 and top 5 predictions are 66.3%, 76.1%, 62.4%, 319 

78.6%, 62.0%, 82.6% at family level, superfamily level and fold level, respectively. In particular, 320 

for some ensemble methods, such as RFDN-Fold, DN-FoldS and DN-FoldR, our proposed SSAfold 321 

and RFRSN method still can outperform them, this is attributed to the powerful and automatic 322 

feature extraction capability of the convolutional neural network. In addition, potential protein 323 

residue-residue relationships contain a lot of structural information also contribute this 324 

improvement. For RFRSN method, it learns a right distance metric to make the distance between 325 

positive protein pairs is reduced and that of negative pairs be enlarged as much as possible. The 326 

ideal of RFRSN is simple and independent, it can be easily used to process other powerful protein 327 

feature descriptor for different tasks.  328 

Discussion about margin 329 

For parameter m, different parameters have a great influence on the results, and the main factor 330 

determining m is the distribution of protein feature representation. 331 

Table 1. Performance comparison of different protein fold recognition methods on the test dataset. 332 

m 
Family Superfamily Fold 

Top 1 (%)  Top 5 (%)   Top 1 (%)  Top 5 (%)   Top 1 (%)  Top 5 (%) 

0.2  60.4 71.2 51.2 62.2 52.6 66.0 

0.7 67.7 86.8 60.6 75.8 62.0 75.6 

1.2 65.9 80.0 58.3 78.6 59.8 73.2 
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1.7 61.0 76.8 57.2 72.6 54.2 68.0 

2.2 58.0 72.0 51.8 68.9 50.8 62.0 

From table 3, we can see that the setting of margin determines the classification effect. When 333 

m is set to 0.7, we can see that our RFRSN get the best performance, respectively. the accuracy of 334 

RFRSN for top 1 and top 5 predictions are 66.3%, 76.1%, 62.4%, 78.6%, 62.0% and 82.6% at 335 

family level, superfamily level and fold level, respectively. However, when the setting of margin 336 

does not correspond to the protein feature distribution, a poor effect may be obtained. For example, 337 

when m is set to 0.2, the performance of RFRSN is not as good as our SSAfold. On the other hand, 338 

it is not surprising, when m is too small, the boundary between positive and negative samples 339 

becomes blurred and when m is too big, it is very difficult to learn the parameters of the siamese 340 

network.  341 

Feature analysis 342 

For downstream tasks, deep convolutional neural network is a black box and we don't know why 343 

the neural convolutional neural network works even though it does very well on a lot of tasks. In 344 

this study, we take protein fold recognition as an example, through the pictorial display of features 345 

learned from each convolutional layer, we briefly analyse how these features affect fold recognition 346 

as the network depth increases. 347 

 348 

From the Fig. 4, in the early stages of training, the shallow convolutional kernel focuses on the 349 

entire input information (here, it also contains the supplementary 0 element). Now, the features 350 

extracted by the shallow convolutional kernel is low-level and contains entire residue points. As the 351 

network gets deeper and deeper, the convolutional kernels turn attention into local protein residue 352 

that may affect the type of protein fold type, protein residues that have no effect on the 353 
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classification results and the complement of 0 are ignored at this stage. In the later stages of training, 354 

at this time, the features extracted by convolutional kernel are more abstract and almost difficult to 355 

explain. According to our knowledge, these features may be the relationship between two residues 356 

in the whole protein chain, the interactions between them affect the protein fold type. 357 

358 
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Conclusion 359 

Accurate and fast classification of protein fold is essential for predicting protein tertiary structure. 360 

In this paper, we have proposed two complementary methods. SSAfold for extracting robust and 361 

discriminative features, it can describe the protein automatically and comprehensively. RFRSN for 362 

projecting the feature representation into a fold subspace, where the distance between proteins 363 

shared same fold type is closer to the distance between proteins shared different fold type. The 364 

protein feature representation processed by RFRSN is very applicable for template-based fold 365 

assignment. In addition, the proposed method only using the protein residue- residue relationship 366 

and there is no integration of other protein information and other classification algorithms. Even so, 367 

our proposed SSAfold and RFRSN has achieved competitive results. 368 

 369 

370 
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