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Abstract 33 
Purpose: Gut microbiota have been associated with response to immune checkpoint inhibitors (ICI) including anti-PD-1 and anti-34 

CTLA-4 antibodies. However, inter-study difference in design, patient cohorts and data analysis pose challenges to identifying species 35 

consistently associated with response to ICI or lack thereof. 36 

Experimental Design: We uniformly processed and analyzed data from three studies of microbial metagenomes in cancer 37 

immunotherapy response (four distinct data sets) to identify species consistently associated with response or non-response (n=190 38 

patient samples). Metagenomic data were processed and analyzed using Metaphlan v2.0. Meta- and mega-analyses were performed 39 

using a two-part modelling approach of species present in at least 20% of samples to account for both prevalence and relative 40 

abundance differences between responders/non-responders. 41 

Results: Meta- and mega-analyses identified five species that were concordantly significantly different between responders and non-42 

responders. Amongst them, Bacteroides thetaiotaomicron and Clostridium bolteae relative abundance (RA) were independently 43 

predictive of non-response to immunotherapy when data sets were combined and analyzed using mega-analyses (AUC 0.59 95% CI 44 

0.51-0.68 and AUC 0.61 95% CI 0.52-0.69, respectively). 45 

Conclusions: Meta- and mega-analysis of published metagenomic studies identified bacterial species both positively and negatively 46 

associated with immunotherapy responsiveness across four published cohorts. 47 
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Introduction 49 
 50 
A number of studies have demonstrated the gut microbiome is associated with response to immune checkpoint inhibitors (ICI)1–5. 51 

Anti-programmed cell death protein 1(PD-1) and anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) targeting agents 52 

derepress anti-tumor T-cells. In the past five years, mouse models and human observational cohort studies have shown that the gut 53 

microbiome of responders to ICI is compositionally different from non-responders 1–6. However, inter-study differences in taxa 54 

associated with response to ICIs make it challenging to discern which organisms are consistently associated with response or non-55 

response across studies and different cancers. This variability may in part be due to differences in sequence analytical pipelines. 56 

We conducted both meta- and mega-analyses of metagenomic studies of the gut microbiome in ICI recipients to determine species 57 

consistently enriched/depleted in responders compared to non-responders. Here, metagenomic data were selected to maximize the 58 

taxonomic resolution and delineate species-specific associations that may not be evident when taxa are annotated at the genus level. 59 

Methods 60 
Cohort Inclusion 61 
We included three studies with publicly available metagenomic data and meta-data. Data was further divided into distinct data sets for 62 

the Routy et al. study to assess differences based on tumor type. These data sets include individuals with melanoma, renal cell 63 

carcinoma (RCC) and non-small cell lung cancer (NSCLC). 64 

Definitions 65 
Patients were classified as responders (R) or non-responders (NR) using the response evaluation criteria in solid tumors across all 66 

three studies (RECIST v1.1)3–5,7. Data sets were analyzed in aggregate (meta/mega analysis) and separately. The primary outcome of 67 
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interest was to detect species consistently enriched/depleted in responders to ICI across data sets. This was achieved using a number of 68 

statistical methods described below. The secondary outcome was to identify predictors of response using receiver operator 69 

characteristics area under the curve (ROCAUC) analyses. 70 

Microbiome Data processing 71 
Raw sequencing data were obtained, and quality filtered using FastQC and MultiQC8,9. Metaphlan v2.0 was used for its fast and 72 

robust species level annotation of microbial genomes10. Alpha-diversity measures were calculated using Phyloseq11. Statistical 73 

analyses and data visualization were conducted in R and Prism12,13. 74 

Statistical Analyses 75 

Two-part log-normal model 76 
The raw sequencing data was observed as relative abundance (RA) of each species. Our target was to estimate the R/NR group 77 

differences of each species, where the differences consist of both species prevalence (presence/absence) and magnitude of abundance 78 

when species are present. We conducted two-part model analysis for species prevalence and relative abundance separately. 79 

Specifically, we used a logistic regression model to detect the association between species prevalence and R/NR. For RA data greater 80 

than zero, we observed log-normal distributions, and thus used linear regression model to find its association to R/NR group. 81 

The logistic regression estimates (effect size) represent the log odds ratio of species prevalence between R and NR group, and linear 82 

regression estimates (effect size) represent the change of mean RA between R and NR group after excluding all zeros. We calculated 83 

95% confidence intervals (CIs) for all estimates and tested if each estimate is significantly different from 0. A positive estimate means 84 

that R had a higher proportion of non-zeros among all samples, or R had a higher RA on average compared to NR. We noted that for 85 
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 5

each species, estimates for prevalence and abundance may have different directions, which is described as “dissonant” effect 14. In 86 

order not to let the opposite estimates reduce statistical test power, we tested each estimate by chi-squared test without considering its 87 

direction. We then combined these two test statistics to achieve the overall p-value, which tests the overall difference between R and 88 

NR for each species. 89 

Meta-analysis 90 
Meta-analysis is a two-stage approach15. In the initial stage data are analyzed separately for each study. In the second-stage test results 91 

for each study are aggregated to obtain summary data across all studies15. On the other hand, mega-analysis is a one-stage approach 92 

that pools and analyzes raw data from a number of studies to estimate the overall effect15. Both approaches have their strengths and 93 

limitations15. We conducted a meta-analysis by combining the test results for each of the four data sets in Table 1. Logistic regression 94 

and linear regression estimates are only accurate if the zero proportion in each species is sufficiently low. Accordingly, species were 95 

excluded if their prevalence was lower than 20%. As species prevalence differs by study, some species were filtered out only in a 96 

subset of the data sets. Assuming the independence of each data set, the overall meta-analysis p-values were computed for the 97 

combined test statistic, which is the sum of the test statistics from the four data sets. 98 

Mega-analysis 99 
For each species included in the meta-analysis, we also conducted a mega-analysis. The mega-analysis simply combined all samples 100 

from all four data sets, and two-part log-normal models were implemented similarly. We also calculated the CIs for all estimates and 101 

overall chi-squared test p-values combining species prevalence and abundance, which were then compared with the meta-analysis 102 

results. 103 
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 6

Results 104 
Characteristics of cohorts included in analyses 105 
In this mega- and meta-analysis, we included three studies that assessed fecal metagenomics of R and NR to ICI in patients with 106 

varying tumor types (Table 1). Data from Routy et al., was analyzed as subsets based on tumor type RCC vs advanced NSCLC for a 107 

total of 4 analyzed cohorts. DNA extraction, sequencing platform and sequencing depth varied by study and are summarized in Table 108 

S1. A total of 190 patients (n=103 R; n=87 NR) were included from the three studies. 109 

A total of 469 species were identified across all four data sets of which 167 species met our inclusion criteria of being present in >20% 110 

of samples and were included in the two-part log-normal analysis (Table S2). A total of 34 species were differentially abundant based 111 

on response in at least one dataset or mega- and meta-analyses (Table S2). 112 
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Table 1: Characteristics of cohorts included in meta-analysis and corresponding taxa associated with response to ICI using 114 
metagenomic analyses. 115 
 116 

Patient population N (= total 
number 
of 
patients) 

Responders non-
Responders 

Organisms enriched in RECIST 
responders 

Organism 
Enriched in 
RECIST non-
responders 

Reference 

Metastatic 
melanoma 
 

N=25 N=14 N=11 Faecalibacterium spp. Bacteroides 
thetaiotaomicron, 
Escherichia coli, 
Anaerotruncus 
colihominis 

Gopalakrishnan 
et al. 2018 
 

Metastatic 
melanoma 
 

N=38 N=14 N=24 Enterococcus faecalis, E. coli, 
Escherichia spp., Bacteroides ovatus, 
Turicibacter sanguinis, Clostridium 
nexile, Enterococcus faecium, 
Collinsella aerofaciens, 
Bifidobacterium adolescentis, 
Klebsiella oxytoca, Veillonella parvula, 
Parabacteroides merdae, 
Lactobacillus species, 
and Bifidobacterium longum, 
Campylobacter gracilis 
 

Burkholderiales 
bacterium 1147, 
Holdemania 
filiformis, 
Coprococcus comes 

Matson et al. 
2018 
 

Advanced NSCLC 
 

N=65 
 

N=33 N=32 Akkermansia muciniphila, 
Ruminococcaceae, Faecalibacterium, 
Alistipes spp., Eubacterium species, 
Firmicutes, Cloacibacilius porcorum, 
Enterococcus faecium, Clostridiales, 
Firmicutes, Prevotella,  
 

Prevotella spp., 
Clostridiales, 
Blautia, Bacteroides 
calrus, 
Proteobacteria, 
Bacteroides nordii, 
Parabacteroides 
distasonis 

Routy et al. 
2018 

RCC N=62 N=42 N=20 
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 8

Species consistently enriched or depleted in responders compared to non-responders across data sets 118 

The primary goal for our study was to determine species consistently enriched or depleted in R compared to NR across data sets. 119 

While each data set had unique signatures of differentially abundant species between R/NR, no species were identified that were 120 

statistically significantly associated with response across all four data sets. A number of species were significantly differentially 121 

enriched/depleted in R/NR per data set; Matson et al., (n=7 species), Routy et al., (RCC) (n=6), Routy et al., (NSCLC) (n=10), 122 

Gopalakrishnan et al., (n=9) (Figures S1 and S2 and Table S2). A total of three species were significantly enriched or depleted in R in 123 

two data sets: Clostridiaceae bacterium JC118 was enriched in R in the Routy et al., (NSCLC) and Matson et al., data sets; 124 

Bacteroides thetaiotaomicron RA was significantly depleted in R in both the Routy et al., (RCC) and Gopalakrishnan et al., data sets; 125 

and an increase in Lachnospiraceae bacterium 5163FAA abundance was associated with response in both the Gopalakrishnan et al., 126 

and Routy et al., (NSCLC) data sets. While not significantly different, Streptococcus australis trended towards a higher relative 127 

abundance in R across all cohorts. In contrast, B. thetaiotaomicron trended towards lower relative abundance in R across all data sets. 128 

In addition, we were interested in assessing species that are consistently enriched or depleted in R across data sets based on prevalence 129 

(Figure S2 and Table S2). Clostridium bolteae, Escherichia coli, Flavonifractor plautii, Ruminococcus lactaris and Streptococcus 130 

australis were consistently less prevalent in R. In contrast, Bacteroides caccae, Barnesiella intestinihominis and Lachnospiraceae 131 

bacterium 8157FAA were more prevalent in R. Only one species had statistically significant but opposing associations between 132 

cohorts; Ruminococcus gnavus was more abundant in R in the Routy et al., (RCC) cohort and less abundant in the cohort in the 133 

Gopalakrishnan et al., study. 134 
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 9

Meta-analysis reveals species consistently associated with response to immunotherapy 135 

A summary of a metagenomic meta-analysis of species level ICI response associations is shown in Figure 1. A total of thirteen species 136 

were significantly differentially abundant between R and NR in the meta-analysis. Of these thirteen species, twelve were identified as 137 

significantly different between R and NR in at least one data set on its own. Clostridium hathewayi was the only species identified 138 

uniquely in the meta-analysis. Five species which were significantly associated with R/NR in one dataset demonstrated a non-139 

significant trend in the meta-analysis: Coprobacillus spp, Parabacteroides spp., Lachnospiraceae bacterium 8157FAA, Eubacterium 140 

ramulus, and Clostridium symbiosum. Lastly, 16 species were not statistically significantly different nor trended towards response 141 

using the meta-analysis despite being significantly different in at least one dataset. 142 
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 11

Figure 1: Taxa that are significantly different between responders and non-responders in at least one dataset and or mega/meta-144 

analyses using a two-part log-normal analysis accounting for both taxa abundance and prevalence. 145 
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Mega-analysis assessing differences in responders vs non-responders across all data sets 147 

Mega-analysis allowed us to determine the effect size of the differences between R and NR for both prevalence and relative 148 

abundance of species across all studies (Figures S1 and S2, and Table S2). In the mega-analysis, thirteen species were statistically 149 

differentially abundant between R and NR (Figure 1). Of these thirteen species, eight were associated with response in at least one 150 

dataset. Five species were uniquely associated with response using the mega-analysis including Anaerofustis stercorihominis, 151 

Flavonifractor plautti, Ruminococcus obeum, Rothia mucilaginosa and Barnesiella intestinitominis. Of the 34 species associated with 152 

response in at least one data set or the meta-analysis, 19 species were not associated with response in the mega-analysis. 153 

Identification of species consistently associated with response in meta- and mega-analyses and analysis of sensitivity and 154 

specificity to predict response 155 

We next identified species that were concordantly associated with response in both the meta and mega-analyses. Using this criterion 156 

five species were identified including B. thetaiotaomicron, Clostridium bolteae, H. filiformis, Clostridiaceae bacterium JC118 and E. 157 

coli. We tested the sensitivity and specificity of the relative abundance of these five organisms and alpha-diversity measures to predict 158 

response to ICI using a ROCAUC analyses (Table 2). Our findings demonstrate inter-study differences in the ability to discriminate R 159 

vs NR based on species RA. No species or alpha-diversity metric consistently demonstrated a significant AUC across studies. 160 

However, each dataset had at least two species or alpha-diversity measures with AUC’s >0.60. In the Matson et al., dataset H. 161 

filiformis RA significantly discriminated between R/NR with an AUC of 0.72 [95% CI 0.55-0.88]. C. bolteae RA had a significant 162 

AUC of 0.73 [95% CI 0.60-0.87] in the Routy et al., (RCC) dataset suggesting that a higher RA of this species discriminates between 163 
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 13

R and NR. In the Gopalakrishnan et al., dataset both E. coli and B. thetaiotaomicron RA had significant sensitivity and specificity to 164 

detect response. When all four cohorts were combined sensitivity and specificity of predicting response were significant for the RA of 165 

both C. bolteae and B. thetaiotaomicron. SDI did not discriminate between R/NR.  166 
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Table 2: Receiver operator characteristic curve area under the curve (AUC) analysis between responders and non-responders for core 167 
taxa and alpha-diversity measures. 168 
 169 
Study    
Matson et al., (n=38 samples) AUC SE^ 95% CI+ P-value 
SDI† 0.52 0.10 0.33-0.72 0.81 
SIM‡ 0.55 0.10 0.35-0.74 0.63 
Escherichia coli 0.64 0.10 0.44-0.84 0.15 
Clostridiaceae bacterium JC118 0.63 0.10 0.43-0.82 0.19 
Holdemania filiformis 0.72 0.085 0.55-0.88 0.027 
Clostridium bolteae 0.57 0.097 0.39-0.76 0.45 
Bacteroides thetaiotaomicron 0.61 0.092 0.43-0.79 0.25 
Routy et al., (RCC, n=62)     
SDI 0.51 0.080 0.35-0.67 0.88 
SIM 0.53 0.079 0.37-0.68 0.74 
Escherichia coli 0.54 0.075 0.40-0.69 0.58 
Clostridiaceae bacterium JC118 0.63 0.077 0.47-0.78 0.11 
Holdemania filiformis 0.53 0.086 0.36-0.69 0.76 
Clostridium bolteae 0.73 0.070 0.60-0.87 0.0030 
Bacteroides thetaiotaomicron 0.55 0.090 0.37-0.72 0.55 
Routy et al., (NSCLC, n=65)     
SDI 0.62 0.071 0.48-0.76 0.096 
SIM 0.61 0.071 0.47-0.75 0.13 
Escherichia coli 0.56 0.072 0.42-0.71 0.37 
Clostridiaceae bacterium JC118 0.58 0.071 0.44-0.72 0.28 
Holdemania filiformis 0.50 0.072 0.36-0.64 0.97 
Clostridium bolteae 0.52 0.073 0.37-0.66 0.81 
Bacteroides thetaiotaomicron 0.57 0.072 0.43-0.71 0.33 
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Gopalakrishnan et al., (n=25)     
SDI 0.55 0.13 0.30-0.79 0.70 
SIM 0.64 0.12 0.41-0.88 0.25 
Escherichia coli 0.73 0.11 0.52-0.93 0.055 
Clostridiaceae bacterium JC118 0.50 0.12 0.27-0.74 0.98 
Holdemania filiformis 0.55 0.13 0.31-0.81 0.64 
Clostridium bolteae 0.63 0.12 0.40-0.86 0.27 
Bacteroides thetaiotaomicron 0.76 0.10 0.55-0.96 0.029 
Mega-analysis (n=190)     
SDI 0.56 0.042 0.47-0.64 0.18 
SIM 0.55 0.042 0.46-0.63 0.28 
Escherichia coli 0.53 0.042 0.45-0.62 0.44 
Clostridiaceae bacterium JC118 0.54 0.042 0.46-0.62 0.33 
Holdemania filiformis 0.54 0.043 0.46-0.63 0.27 
Clostridium bolteae 0.61 0.041 0.52-0.69 0.013 
Bacteroides thetaiotaomicron 0.59 0.043 0.51-0.68 0.027 

† Shannon alpha-diversity index 170 
‡ Simpson alpha-diversity index 171 
^ Standard Error 172 
+ Confidence Interval 173 
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Discussion 175 
In our study, we leveraged the additional statistical power of mega and meta-analyses and taxonomic resolution of metagenomic data 176 

to identify species consistently associated with R or NR across three studies (four cohorts) in which gut microbial community 177 

composition has been previously associated with response to ICI 3–5. We conducted a two-part log-normal analysis that accounts for 178 

the skewness and non-Gaussian distribution of microbiome data14,16–18. Compared to simply assessing changes in relative abundance 179 

of species, this approach has the advantage of accounting for both prevalence and relative abundance data 14,16–18. After uniform 180 

bioinformatic analysis, no species were identified that had a significant association with response across individual studies, but five 181 

were identified in combined analysis. Importantly, these associations were identified in spite of the inter-cohort heterogeneity in tumor 182 

type, treatment regimens, geographic location and sequencing methods, suggesting that they may be more generalizable. 183 

Our study confirms findings of some previously identified R/NR associated species2–5,19. Notably, a higher abundance of Bacteroides 184 

has been associated with lack of response whereas a higher abundance of Firmicutes has been associated with response to ICI. 185 

Specifically, we observed R had a higher abundance of Clostridiaceae bacterium JC118 and E. coli and a lower abundance of B. 186 

thetaiotaomicron, H. filiformis and C. bolteae compared to NR. In addition, we demonstrate that of the five organisms that were 187 

concordantly associated with response in the meta and mega-analyses, a higher relative abundance of B. thetaiotaomicron and C. 188 

bolteae were predictive of NR using a ROCAUC analyses. These data suggest that strategies that deplete non-response associated 189 

microbes (such as specific antibiotics or bacteriophages) may be viable therapeutic approaches. This is in contrasts to “pro-microbial” 190 
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approaches currently being investigated in many clinical trials such as the use of probiotics, fecal microbiome transplants and stool 191 

substituents to augment response to ICI 20. 192 

We observed a number of discrepancies to previously published data. Of interest, A. muciniphila, B. longum and F. prausnitzii were 193 

associated with response in the original studies however we did not detect differences between R and NR in our analyses. While 194 

limitations in statistical power based on sample size may partly explain this, inter-cohort variability in treatment regimens and the 195 

biology of host-treatment-microbe interactions may be important additional factors. As the mechanisms conferring microbe-induced 196 

ICI-responsiveness are being elucidated, it is clear that some will be tumor-type, host or even tumor-specific, such as the molecular 197 

mimicry of tumor antigens in gut microbes21, which will only confer microbe-response associations in a defined number of patients 198 

with specific tumors. Other factors, such as diet-microbe-metabolite-immune interactions may also drive tumor, host or population-199 

specific associations which do not generalize6. 200 

We acknowledge a number of limitations to our study. Firstly, differences in sample collection, DNA extraction methods and 201 

sequencing platforms from each study may bias findings- making it challenging to detect universal signals associated with response to 202 

ICI. Implementing standardized methods for microbiome studies will reduce experimental and technical biases and improve our 203 

ability to detect differences between R and NR. Second, patient heterogeneity in disease stage, diet, sex, treatment, co-morbidities 204 

limit the ability of meta or mega-analytical approaches to identify associations that may exist in only defined subsets of patients. Our 205 

sample size of 190 metagenomic samples, while as large as some cohorts analyzed by lower taxonomic resolution methods such as 206 
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16S rRNA sequencing, was still limited. Additional multi-centre prospective studies are required to validate the associations identified 207 

in this analysis and their diagnostic or therapeutic utility. 208 

Conclusion 209 
Our study confirms previous findings suggesting that there are differences in the gut microbiome of R vs NR to ICI. Despite consistent 210 

bioinformatic analyses no species were found to be consistently differentially abundant between R/NR across data sets. However, 211 

using meta- and mega-analyses we identified five species that were concordantly differentially abundant between R and NR. Of these 212 

five organisms, B. thetaiotaomicron and C. bolteae were predictors of NR to ICI. These data suggest future clinical trials should assess 213 

the use of narrow spectrum anti-biotics targeting NR associated species. 214 

  215 
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