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Abstract. We describe an automated analysis method to quantify the detailed growth dynamics of a population of bacilliform bacteria. We
propose an innovative approach to frame-sequence tracking of deformable-cell motion by the automated minimization of a new, specific cost
functional. This minimization is implemented by dedicated Boltzmann machines (stochastic recurrent neural networks). Automated detection of
cell divisions is handled similarly by successive minimizations of two cost functions, alternating the identification of children pairs and parent
identification. We validate this automatic cell tracking algorithm using recordings of simulated cell colonies that closely mimic the growth dynamics
of E. coli in microfluidic traps. On a batch of 1100 image frames, cell registration accuracies per frame ranged from 94.5% to 100%, with a high
average. Our initial tests using experimental image sequences of E. coli colonies also yield convincing results, with a registration accuracy ranging
from 90% to 100%.
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1. Introduction. Technology advances have led to increasing magnitudes of data generation with increasing levels
of precision [25, 32, 82, 90]. Data generation presently far outpaces data analysis, however, and drives the requirement
for analyzing such large-scale data sets with automated tools [16, 35, 41, 48, 66, 87, 89]. The main goal of the present
work is to develop computational methods for an automated analysis of microscopy image sequences of colonies of E.
coli growing in a single layer. Such recordings can be obtained from colonies growing in microfluidic devices, and they
provide a detailed view of individual cell-growth dynamics as well as population-level, inter-cellular mechanical and
chemical interactions [5, 6, 19, 28, 29, 65].

However, to understand both variability and lineage-based correlations in cellular response to environmental factors
and signals from other cells requires the tracking of large numbers of individual cells across many generations. This can
be challenging, as large cell numbers tightly packed in microfluidic devices can compromise spatial resolution, and
toxicity effects can place limits on the temporal resolution of the recordings [33, 40]. One approach to better understand
and control the behavior of these bacterial colonies is to develop computational methods that capture the dynamics
of gene networks within single cells [5, 19, 46, 94]. For these methods to have a practical impact, one ultimately
has to fit the models to the data, which allows us to infer hidden parameters (i.e., characteristics of the behavior of
cells that cannot be measured directly). Image analysis and pattern recognition techniques for biological imaging
data [26, 43, 66], like the methods developed in the present work, can be used to track lineages and thus automatically
infer how gene expression varies over time. These methods can serve as an indispensable tool to extract information to
fit and validate both coarse and detailed models of bacterial population, thus allowing us to infer model parameters
from recordings.

Here we describe an algorithm that provides quantitative information about the population dynamics, including the
life cycle and lineage of cells within a population from recordings of cells growing in a mono-layer. A typical sequence
of frames of cells growing in a microfluidic trap is shown in Fig. 1. We describe the design and validation of algorithms
for tracking individual cells in sequences of such images [5, 46, 55]. After segmentation of individual image frames to
identify each cell, tracking individual cells from frame to frame is a combinatorial problem. To solve this problem we
take into account the unknown cell growth, cell motion, and cell divisions that occur between frames. Segmentation and
tracking are complicated by imaging noise and artifacts, overlap of bacteria, similarity of important cell characteristics
across the population (shape; length; and diameter), tight packing of bacteria, and large interframe durations resulting
in significant cell motion, and up to a 30% increase in individual cell volume.

1.1. Related Work. The present work focusses on tracking E. coli in time series of images. A comparison of
different cell-tracking algorithms can be found in [35, 89]. Tracking and object recognition in time series of images is a
challenging task that arises in numerous applications in computer vision [63, 97]. In image processing, motion tracking
is often referred to as “image registration” [35, 57, 51, 60, 62, 61] or “optical flow” [23, 39, 47, 50, 95].

Our tests have shown that off-the-shelf image intensity driven techniques fail to provide a robust bacteria cell
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FIG. 1. Typical microscopy image sequence. We show five frames out of a total of 150 frames of an image sequence showing the dynamics of
E. coli in a microfluidic device [5].

registration in the tightly packed colonies of rod-shaped E. coli bacteria considered here. Moreover, we are not interested
in tracking individual pixels but rather cells (i.e., rod-shaped, deformable shapes), while recognizing events of cell
division and recording cell lineage.

One approach proposed in prior work to simplify the tracking task is to make the experimental setup more
rigid by confining individual cell lineages to small tubes; the associated microfluidic device is called a “mother
machine” [18, 42, 58, 71, 79, 85]. The microfluidic devices we consider here yield more complicated data as cells are
allowed to move and multiply freely in two dimensions (constrained to a mono-layer). We refer to Fig. 1 for a typical
sequence of experimental images considered in the present work.

Turning to methods that work on more complex biological cell imaging data, we can distinguish different classes
of tracking methods. “Model-based evolution methods” operate on the image intensities directly. They rely on particle
filters [8, 70, 84] or active contour models [7, 37, 45, 52, 93, 96]. These methods work well if the cells are not tightly
packed. However, they may lead to erroneous results if the cells are close together, the inter-cellular boundaries are
blurry, or the cells move significantly. Our work belongs to another class—the so called “detection-and-association
methods” [17, 22, 20, 44, 74, 78, 88, 92, 98], which first detect cells in each frame and then solve the tracking
problem/association task across successive frames. Doing so necessitates the segmentation of cells within individual
frames. We refer to [91] for an overview of cell segmentation approaches. Deep learning strategies have been widely
used for this task [4, 34, 59, 67, 72, 78, 77, 86, 87, 98]. We consider a framework based on convolutional neural
networks (CNNs). Others have also used CNNs for cell segmentation [3, 59, 69, 76, 77]. We omit a discussion of our
segmentation approach, as we do not view it as our main contribution (see Sec. 1.2). To solve the tracking problem after
the cell detection, many of the methods cited above use hand-crafted association scores based on the proximity of the
cells and shape similarity measures [44, 22, 88, 98]. We follow this approach here. We note that we not only consider
local association scores between cells but also include measures for the integrity of a cell’s neighborhood (i.e., “context
information”).

Our method is tailored for tracking cells in tightly packed colonies of rod-shaped E. coli bacteria. This problem has
been considered previously [17, 74, 87, 92]. However, we are not aware of any large-scale datasets that provide ground
truth tracking data for these types of recordings, but note that there are community efforts for providing a framework
for testing cell tracking algorithms [64, 89].* Works that consider these data are for example [8, 59, 69, 73, 72, 98].
The cells in this dataset have significantly different characteristics compared to those considered in the present work.
As we describe below, our approach is based on distinct characteristics of the bacteria cells and, consequently, does not
directly apply to these data. Therefore, we have developed our own validation and calibration framework (see Sec. 2).

[27, 54, 53, 56] considered graph-based matching strategies for global association. Similar to the methods described
above, they used association scores for tracking. Individual cells are represented as nodes, and neighbors are connected
through edges. This is similar to our approach in that we construct local neighborhood relations based on a (modified)
Delauny triangulation. By using a graph-like structure, cell divisions can be identified by detecting changes in the
topology of the graph [54, 53]. We tested a similar strategy, but came to the conclusion that we cannot reliably construct
neighborhood networks between frames for which topology changes only occur due to cell division; the main issue
we observed is that the significant motion of cells between frames can introduce additional topology changes in our
neighborhood structure. Consequently, we decided to relax these assumptions.

Some recent works jointly solve the tracking and segmentation problem [8, 36, 73, 74, 72, 98]. Contrary to
observations we have made in our data, these approaches rely (with the exception of [74]) on the fact that the tracking

*Cell Tracking Challenge: http://celltrackingchallenge.net (accessed 03/2021).
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problem is inherent to the segmentation problem (“tracking-by-detection methods” [98]; see also [87]). That is, the key
assumption made by many of these algorithms is that cells belonging to the same lineage overlap across frames (see
also [20]). In this case, cell-overlap can serve as a good proxy for cell-tracking [98]. We note that in our data we cannot
guarantee that the frame rate is sufficiently high for this assumption to hold.

[73, 69, 36] exploited machine learning techniques for segmentation and motion tracking. One key challenge here
is to provide adequate training data for these methods to be successful. We here describe simulation-based techniques
that can be extended to produce training data, which we use for parameter tuning [94].

The works that are most similar to ours are [17, 74, 92]. Similar to our approach, they perform a local search
to identify the best cell-tracking candidates across frames. One key difference across these works are the matching
criteria. Moreover, [17, 74] employ a local greedy-search, whereas we consider stochastic neural network dynamics for
optimization. [92] construct score matrices within a score based neighborhood tracking method; an integer programming
method is used to generate frame-to-frame correspondences between cells and the lineage map. Other approaches that
consider linear programming to maximize an association score function for cell tracking can be found in [21, 20, 98]

1.2. Contributions. For image segmentation, we first apply two well-known, powerful variational segmentation
algorithms to generate a large training set of correctly delineated single cells. We can then train a CNN dedicated to
segmenting out each single cell. Using a CNN significantly reduces the runtime of our computational framework for
cell identification. The frame-to-frame tracking of individual cells in tightly packed colonies is a significantly more
challenging task, and is hence the main topic discussed in the present work. We develop a set of innovative automatic
cell tracking algorithms based on the successive minimization of three dedicated cost functionals. For each pair of
successive image frames, minimizing these cost functionals over all potential cell registration mappings poses significant
computational and mathematical challenges. Standard gradient descent algorithms are inefficient for these discrete
and highly combinatorial minimization problems. Instead, we implement the stochastic neural network dynamics of
Boltzmann machines (BM), with architectures and energy functions tailored to effectively solve our combinatorial
tracking problem. Our major contributions are: i) The design of a multi-stage cell tracking algorithm, that starts with a
parent-children pairing step, followed by removal of identified parent-children triplets, and concludes with a cell to cell
registration step. ii) The design of dedicated BM architectures, with several energy functions, respectively, minimized
by true parent-children pairing and by true cell-to-cell registration. Energy minimizations are then implemented by
simulation of BM stochastic dynamics. iii) The development of automatic algorithms for the estimation of unknown
weight parameters of our BM energy functions, using convex-concave programming tools [2, 30, 81, 80]. iv) The
evaluation of our methodology on synthetic and real image sequences of cell colonies. The massive effort involved
in human expert annotation of cell colony recordings limits the availability of “ground truth tracking” data for dense
bacterial colonies. We therefore first validated the accuracy of our cell tracking algorithms on recordings of simulated
cell colonies, generated by the dedicated cell colony simulation software [94]. This provided us with ground truth
frame-by-frame registration for cell lineages, enabling us to validate our methodology.

1.3. Outline. In Sec. 2 we describe the synthetic image sequence of cell colonies considered here as benchmarks
for our cell tracking algorithms. In Sec. 3 we describe key cell characteristics involved in our cost functionals. We
define valid cell registration mappings between successive image frames in Sec. 4. We outline how to automatically
calibrate the weights of our various penalty terms in Sec. 5. Our algorithms for pairing parent cells with their children
and for cell-to-cell registration are developed in sections Sec. 6 through Sec. 12. We present our main validation results
on long image sequences (time series of images) in Sec. 13 and conclude with Sec. 14.

2. Benchmark: Synthetic Videos of Simulated Cell Colonies. To validate our cell tracking algorithms, we
consider simulated image sequences of dense cell populations. We refer to [94] for a detailed description of this
mathematical model and its implementation. The simulated cell colony dynamics are driven by an agent based
model [94], which emulates live colonies of growing, moving, and dividing rod-like E. coli cells in a 2D microfluidic
trap environment. Between two successive frames J, J+, cells are allowed to move until they nearly bump into each
other, and to grow at multiplicative rate denoted g.rate with an average value of 1.05 per minute (plus/minus a small
random perturbation). For a cell of length L0 at birth, cell division occurs at length Ldiv = 2L0 + ε , where ε is a small
uniformly distributed random variable. When a bacterial cell b of length Ldiv divides into two cells b1 and b2, their
lengths L1, L2 satisfy L1 +L2 = Ldiv and L1/Ldiv is a random number in [0.45,0.55]. All these random variables are
independent of each other.

The simulation keeps track of cell lineage, cell size, and cell location (among other parameters). The main output
of each such simulation considered here is a binary image sequence of the cell colony with a fixed interframe duration.
Each such synthetic image sequence is used as the sole input to our cell tracking algorithm. The remaining meta-data
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FIG. 2. Simulated data and cell characteristics. Left: Two successive images generated by dynamic simulation for a colony of rod-shaped
bacteria. Left image J displays N = 109 cells at time t. At time t +∆t with ∆t = 1 min, cells have moved, grown, and some have divided. These cells
are displayed in image J+, which contains N+ = 124 cells. We highlight two cells that have undergone a division between the frames (red and green
ellipses). Right: Geometry of a rod shaped bacterium. Each cell b is identified by its center c(b), its long axis A(b), and the two endpoints e(b), h(b)
of A(b).

generated by the simulations are only used as ground truth to evaluate the performance of our tracking algorithms.
We consider two benchmark datasets, BENCH1 and BENCH6, of several synthetic image sequences of simulated

cell colonies with cell growth factor g.rate = 1.05 per minute. The generated binary images are of size 600× 600
pixels, with interframe durations of 1 minute for BENCH1, and of 6 minutes for BENCH6. The associated image
sequences involve 100 to 500 frames each. In Fig. 2 we display an example of two simulated consecutive frames
separated by 1 minute. To simplify our presentation and validation tests, we control our simulations to make sure that
cells will not exit the region of interest from one frame to the next, and we exclude cells that are only partially visible in
the current frames

3. Cell Characteristics. We next discuss characteristics of the E. coli bacteria important for our tracking algo-
rithm.

Cell Geometry.. In accordance with the dynamics of bacterial colonies in microfluidic traps, the dynamic simulation
software generates colonies of rod-shaped bacteria. Cell shapes can be approximated by long and thin ellipsoids, which
are geometrically well identified by their center, their long axis, and the two endpoints of this long axis. The center
c(b) is the centroid of all pixels belonging to cell b. The long axis A(b) of cell b is computed by principal component
analysis (PCA). The endpoints e(b) and h(b) of cell b are the first and last cell pixels nearest to A(b); see Fig. 2 (right)
for a schematic illustration.

Cell Neighbors.. For each image frame J, denote B = B(J) the set of fully visible cells in J, and by N = N(J) =
card(B) the number of these cells. Let V be the set of all cell centers c(b) with b ∈ B. Denote delV the Delaunay
triangulation [83] of the finite planar set V with N vertices. We say that two cells b1, b2 in B are neighbors if they verify
the following three conditions:

1. (b1,b2) are connected by the edge edg of one triangle in delV .
2. The edge edg does not intersect any other cell in B.
3. Their centers verify ‖c(b1)− c(b2)‖ ≤ ρ , where ρ > 0 is a user defined parameter.

For the synthetic images of size 600×600 that we considered (see Sec. 2), we take ρ = 80 pixels. We write b1 ∼ b2
for short, whenever b1, b2 are neighbors (i.e, satisfy the three conditions identified above).

Cell Motion.. Let J, J+ denote two successive images (i.e., frames). Denote B = B(J), B+ = B(J+) the associated
sets of cells. Superpose temporarily the images J and J+ so that they then have the same center pixel. Any cell b ∈ B,
which does not divide in the interframe J→ J+, becomes a cell b+ in image J+. The “motion vector” of cell b from
frame J to J+ is then defined by v(b) = c(b+)− c(b). If the cell b does divide between J and J+, denote bdiv the last
position reached by cell b at the time of cell division, and define similarly the motion v(b) = c(bdiv)− c(b). In our
experimental recordings of real bacterial colonies with interframe duration 6 min, there is a fixed number w > 0 such
that ‖v(b)‖ ≤ w/2 for all cells b ∈ B(J) for all pairs J, J+. In particular, we observed that for real image sequences,
w = 100 pixels is an adequate choice. Consequently, we select w = 100 pixels for all simulated image sequences of
BENCH6. For BENCH1 we select w = 45 pixels, again based on a comparison with real experimental recordings.
Overall, the meta-parameter w is assumed to be a fixed number and to be known, since w/2 is an observable upper
bound for the cell motion norm for a particular image sequence of a lab experiment.

Target Window.. Recall that J, J+ are temporarily superposed. Let U(b)⊂ J+ be a square window of width w,
with the same center as cell b. The target window W (b) is the set of all cells in B+ having their centers in U(b). Since
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‖v(b)‖ ≤ w/2, the cell b+ must belong to the target window W (b)⊂ B+.

4. Registration Mappings. Next we discuss our assumptions on a valid registration mapping that establishes
cell-to-cell correspondences between two frames. Let J, J+ denote two successive images, with cell sets B and B+,
respectively. As above, we let N = card(B), and N+ = card(B+). Our goal is to track each cell from J to J+. For each
cell b ∈ B, there exist three possible evolutions between J and J+:
Case 1: Cell b ∈ B did not divide in the interframe J→ J+, and has become a cell f (b) ∈ B+; that is, f (b) has grown

and moved during the interframe time interval.
Case 2: Cell b ∈ B divided between J and J+, and generated two children cells b1,b2 ∈ B+; we then denote f (b) =

(b1,b2) ∈ B+×B+.
Case 3: Cell b ∈ B disappeared in the interframe J→ J+, so that f (b) is not defined.

To simplify our exposition, we ignore Case 3, which can be handled by minor extensions of the cost minimization
algorithms develop below. Consequently, a valid (true) registration mapping f will take values in the set {B+}∪{B+×
B+}.

5. Calibration of Cost Function Weights. With the notation we introduced, fix any two finite sets A, A+. Let
G := {g : A→ A+} be the set of all mappings g : A→ A+. Fix m penalty functions penk(g) ≥ 0, k = 1, . . . ,m. Let
g∗ ∈ G be the ground truth mapping we want to discover through minimization in g of some given cost function
COST(g) defined by the linear combination of the penalty functions penk(g), the contributions of which are controlled
by the cost function weights λk > 0. In this section, we present a generic weight calibration algorithm, extending a
technique introduced and applied in [11, 12] for Markov random fields based image analysis.

The cost function must perform well (with the same weights) for hundreds of pairs of (synthetic) images J, J+. We
consider one such synthetic pair for which the ground truth registration mapping f ∈ G is known, and use it to compute
an adequate set of weights, which will then be used on all other synthetic pairs J, J+. Notice, that for experimental
recordings of real cell colonies, no ground truth registration mappings f is available. In this case, f should be replaced
by a set of user constructed, correct partial mappings defined on small subsets of A. The proposed weight calibration
algorithm will also work in those situations.

We now show how knowing one ground truth mapping f can be used to derive the best feasible weights ensuring
that f should be a plausible minimizer of the cost functional COST(g) over g∈G. Let PEN(g) = [pen1(g), . . . ,penm(g)]
be the vector of m penalties for any mapping g ∈ G. Let Λ = [λ1, . . . ,λm] be the weights vectors. Then, COST(g) =
〈Λ,PEN(g)〉. Replacing g by another mapping h 6= g induces the penalty changes ∆PENg,h = PEN(h)−PEN(g) and
the cost change ∆COST(g,h) = 〈Λ,∆PENg,h〉. Now, fix any known ground truth mapping f ∈ G. We want f to be a
minimizer of COST, so we should have

∆COST( f , f ′)≥ 0 for all modifications f → f ′ ∈ G.

For each a ∈ A, select an arbitrary s(a) ∈W (a) (where W (a) is the target window for cell a; see Sec. 3), to define a new
mapping f ′ = f ′a from A to A+ by f ′a(a) = s(a), and f ′a(x)≡ f (x) for all x 6= a. Since f is a minimizer of COST, this
single point modification f → f ′a must generate the following cost increase

〈Λ,∆PEN( f , f ′a)〉= ∆COST( f , f ′a)≥ 0.

Denote Va ∈ Rm the vector Va = ∆PEN( f , f ′a). Then, the positive vector Λ ∈ Rm, Λ� 0, should verify the set of
linear constraints 〈Λ,Va〉 ≥ 0 for all a ∈ A. There may be too many such linear constraints. Consequently, we relax
these constraints by introducing a vector y = [y(a)] ∈ Rcard(A), y � 0, of slack variables y(a) ≥ 0 indexed by all the
a ∈ A. (In optimization slack variables are introduced as additional unknowns to transform inequality constraints to an
equality constraint and a non-negativity constraint on the slack variables.) We require the unknown positive vector Λ

and the slack variables vector y to verify the system of linear constraints:

(1)

〈Λ,Va〉+ y(a) = 0 for all a ∈ A

Λ� 0, y� 0
〈Λ,Z〉 ≤ 1000

where Z = [1, . . . ,1] ∈ Rm. The normalizing constant 1000 can be arbitrarily changed by rescaling. We seek high
positive values for ∆COST( f , f ′a) and small L1-norm for the slack variable vector y. So, we will seek two vectors
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Λ ∈ Rm and y ∈ Rcard(A) solving the following convex-concave minimization problem, where γ > 0 is a user selected
(large) meta parameter:

(2) minimize
Λ,y

γ‖y‖L1−∑
a∈A

[〈Λ,Va〉]+ subject to (1),

where we denote [x]+ := max(x,0) for arbitrary x. To numerically solve the constrained minimization problem (2), we
use the libraries CVXPY and DCCP (disciplined convex-concave programming) [2, 30, 80, 81]. DCCP is a package for
convex-concave programming designed to solve non-convex problems. It can handle objective functions and constraints
with any known curvature as defined by the rules of disciplined convex programming [24]. We give examples of
numerically computed weight vectors Λ below. The computing time was less than 30 seconds for the data that we have
prepared. For simplicity, we just considered one step changes in our computations, which make the overlap penalty
weak. To increase the accuracy of the model it is possible to consider a larger number of samples (i.e., multi-step
changes). Note that the solutions Λ of (2) are of course not unique, even after normalization by rescaling.

6. Cell Divisions and Children Pairing. In this section, we present the methodology for detecting cell divisions
and our approach for pairing children with their parent cells.

6.1. Number DIV(B,B+) of Cell Divisions. Fix two successive synthetic image frames J, J+ with short inter-
frame time equal to 1 minute. Their cell sets B, B+ have cardinality N and N+, respectively. We assume, for ease of
presentation, that all cells b ∈ B still exist in B+, either as whole cells or divided into two children cells (i.e., no cells
exit the field of view). This implies N+ ≥ N, and DIV(B,B+) = N+−N is the number DIV of cell divisions occurring
in the interframe J→ J+.

Whenever DIV > 0, we want to compute the unknown set trueCH of true children pairs (b1,b2) ∈ B+×B+. Each
such pair is born from the division of some unknown parent cell b = parent(b1,b2). For the synthetic image sequence
we should have card(trueCH) = DIV , but for computational advantage below, whenever DIV ≥ 2 we relax this rigid
constraint to the more pragmatic form |card(trueCH)−DIV| ≤ 1. For realistic experimental recordings, the relaxation
bound is linked to the numbers of new cells entering J+ and of old cells exiting J+.

6.2. Linking Paired Children Cells to Parent Cells. For successive synthetic images J, J+ with 1 minute
interframe such that DIV(B,B+)> 0, we call PCH the set of plausible children pairs defined as

(3) PCH = {(b1,b2) ∈ B+×B+ with centers c1,c2 verifying ‖c1− c2‖< τ},

where the threshold τ > 0 is user selected and fixed for the whole benchmark set BENCH1 of synthetic image sequences.
To evaluate if a pair of cells (b1,b2) ∈ PCH can qualify as a pair of children generated by division of a parent cell

b ∈ B, we now quantify the “geometric distortion” between b and (b1,b2). Cell division of b into b1,b2 ∈ B+ occurs
with small motion of b1, b2. During the short interframe duration the initial centers c1, c2 of b1, b2 in image J move by
at most w/2 pixels each (see Sec. 3), and their initial distance to the center c of b is roughly at most ‖A(b)‖/4, where
A(b) is the long axis of cell b. Hence, the centers c, c1, c2 of b, b1, b2 should verify the constraint

(4) max{‖c1− c‖,‖c2− c‖} ≤ w+‖A‖/4.

Define the set SHLIN of potential short lineages as the set all triplets (b,b1,b2) with b ∈ B, (b1,b2) ∈ PCH,
verifying the preceding constraint (4). For each potential lineage (b,b1,b2) ∈ SHLIN, define three terms penalizing the
geometric distortions between a parent b ∈ B and a pair of children (b1,b2) ∈ PCH by the following formulas, where
we denote c, c1, c2 the centers of cells b, b1, b2 and A, A1, A2 their long axes

1. center distortion: cen(b,b1,b2) = ‖c− (c1 + c2)/2‖,
2. size distortion: siz(b,b1,b2) = |‖A‖− (‖A1‖+‖A2‖)|,
3. angle distortion: ang(b,b1,b2) = angle(A,A1)+ angle(A,A2)+ angle(A,c2− c1).

Here, angle denotes “angles between non-oriented straight lines,” and range from 0 to π/2.
Introduce three positive weights λcen, λsiz, λang (to be estimated), and for every short lineage (b,b1,b2) ∈ SHLIN

define its distortion cost by:

(5) distortion(b,b1,b2) = λcen cen(b,b1,b2)+λsiz siz(b,b1,b2)+λang ang(b,b1,b2).
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6.3. Estimating Most Likely Parent Cell for Children Pair. For each plausible pair of children (b1,b2) ∈ PCH,
we will compute the most likely parent cell b∗ = parent(b1,b2) as the cell b∗ ∈ B minimizing distortion(b,b1,b2) in (5)
over all b ∈ B, as summarized by the formula

(6) b∗ = parent(b1,b2) = argmin
{b∈B|(b,b1,b2)∈SHLIN}

distortion(b,b1,b2)

To force this minimization to yield a reliable estimate of b∗ = parent(b1,b2) for most true pairs of children (b1,b2),
we calibrate the weights λ j, j ∈ {cen,siz,ang} by the algorithm outlined in section Sec. 5, using as “ground truth set” a
fairly small set of visually identified true short lineages (parent,children).

For fixed (b1,b2), the set of potential parent cells b ∈ B has very small size due to the constraint (4). Hence,
brute force minimization of the functional distortion(b,b1,b2) in (5) over all b ∈ B such that (b,b1,b2) ∈ SHLIN, is
a fast computation for each (b1,b2) in PCH. The distortion minimizing b = b∗ yields the most likely parent cell
parent(b1,b2) = b∗.

6.4. Penalties to Control Children Pair Matching. True pairs of children cells pch = (b1,b2) ∈ PCH must
verify lineage and geometric constraints which we quantify via several penalties.

“Lineage” Penalty.. Valid children pairs (b1,b2) ∈ PCH should be correctly matchable with the their most likely
parent cell b∗ = parent(b1,b2) (see (6)). So, we define the “lineage” penalty lin(b1,b2) = distortion(b∗,b1,b2) by

lin(b1,b2) = argmin
{b∈B|(b,b1,b2)∈SHLIN}

distortion(b,b1,b2) = distortion(parent(b1,b2),b1,b2).

Notice that the computation of lin(b1,b2) is quite fast.
“Gap” Penalty.. Denote tips(b) the set of two endpoints of any cell b. For any pair pch = (b1,b2) ∈ PCH, define

endpoints x1 ∈ tips(b1),x2 ∈ tips(b2) and the gap penalty gap(b1,b2) by

(7) gap(b1,b2) = ‖x1− x2‖= min{‖x− y‖ for (x,y) ∈ TIPS}

with TIPS = tips(b1)× tips(b2).
“Dev” Penalty.. For rod-shaped bacteria, a true pair (b1,b2) ∈ PCH of just born children must have a small

gap(b1,b2) = ‖x1− x2‖ and roughly aligned cells b1 and b2. For (b1,b2) ∈ PCH, we quantify the deviation from
alignment dev(b1,b2) as follows. Let x1, x2 be the closest endpoints of b1, b2 (see (7)). Let str12 be the straight line
linking the centers c1, c2 of b1, b2. Let d1, d2 be the distances from x1, x2 to the line str12. Set then

dev(b1,b2) =
d1 +d2

‖c2− c1‖
.

“Ratio” Penalty.. True children pairs must have nearly equal lengths. So, for (b1,b2) ∈ PCH with lengths L1, L2
we define the length ratio penalty by

ratio(b1,b2) = |(L1/L2)+(L2/L1)−2|.

“Rank” penalty.. Let Lmin be the minimum cell length over all cells in B+. In B+, children pairs (b1,b2) just born
during interframe J→ J+ must have lengths L1, L2 close to Lmin. So, for (b1,b2) ∈ PCH, we define the rank penalty by

rank(b1,b2) = |(L1/Lmin)−1|+ |(L2/Lmin)−1|.

6.5. Cost Function Dedicated to Children Pairing. Given two successive images J, J+ with a positive number
DIV = N+(J)−N(J) of cell divisions, the set trueCH ⊂ B+×B+ of true children pairs will have size DIV and be a
subset of the set PCH of plausible children pairs. In the search for trueCH, the unknown is a subset X of PCH. We
build a cost function φ(X) approximately minimized when X is close to trueCH. The main term of φ(X) will be the
sum over all pairs in X of a weighted linear combination of the penalty functions {lin,gap,dev, ratio, rank}. Another
penalty will ensure that X contains no overlapping pairs. The minimization of φ(X), as well as of several further
combinatorial cost functions below will be implemented by intensive simulations of BMs. We present these stochastic
neural networks, next.
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7. Generic Boltzmann Machines (BMs). Minimization of our main cost functionals is a heavily combinatorial
task, since the unknown variable is a mapping between two finite sets of sizes ranging from 80 to 120. To handle these
minimizations, we use BMs originally introduced by Hinton et al. (see [1, 38]). Indeed, these recurrent stochastic
neural networks can efficiently emulate some forms of simulated annealing.

Each BM implemented here is a network BM = {U1, . . . ,UN} of N stochastic neurons U j. At time t = 0,1,2, . . .,
each neuron U j has a random state Z j(t) belonging to a fixed finite set W ( j). The configuration Z(t)= {Z1(t), . . . ,ZN(t)}
of the whole network BM thus belongs to the configurations set CONF =W (1)×·· ·×W (N). Neurons interactivity
is specified by a finite set CLQ of cliques. Each clique K is a subset of S = {1, . . . ,N}. During configuration updates
Z(t)→ Z(t +1), neurons may interact only if they are in the same clique. Here, all cliques K are of small sizes 1, or 2,
or 3.

For each clique K, one specifies an energy function JK(z) defined for all z ∈ CONF, with JK(z) depending only on
the z j such that j ∈ K. The full energy E(z) of configuration z is then defined by

E(z) = ∑K∈CLQ JK(z).

The BM stochastic dynamics Z(t)→ Z(t +1) is driven by the energy function E(z), and by a fixed decreasing
sequence of virtual temperatures Temp(t)> 0, tending slowly to 0 as t→∞. Here we use standard temperature schemes
of the form Temp(t)≡ cη t with fixed c > 0 and slow decay rate 0.99 < η < 1.

We have implemented the classical “asynchronous” BM dynamics. At each time t, only one random neuron U j may
modify its state, after reading the states of all neurons belonging to cliques containing U j. A much faster alternative,
implementable on GPUs, is the “synchronous” BM dynamics, where at each time t roughly 50% of all neurons may
simultaneously modify their states (see [10, 9, 14]). The detailed BM dynamics is presented in the appendix (see
Sec. A).

Recall that when the virtual temperatures Temp(t) decrease slowly enough to 0, the energy E(Z(t)) converges in
probability to a local minimum of the BM energy E(z) over all configurations z ∈ CONF.

8. Optimized Children Pairing. Next, we present a formulation of an optimization problem to pair parents
with their children. Fix successive images J, J+ with a positive number of cell divisions DIV = N+−N. Denote
PCH = {pch1,pch2, . . . ,pchm} the set of m plausible children pairs (b1,b2) in B+. The penalties lin, gap, dev, ratio, and
rank defined above for all pairs (b1,b2) ∈ PCH determine five numerical vectors LIN, GAP, DEV , RAT , RANK in Rm

with coordinates LINj = lin(pch j), GAPj = gap(pch j), DEVj = dev(pch j), RATj = ratio(pch j), RANKj = rank(pch j).
We now define a binary BM constituted by m binary stochastic neurons U j, j = 1 . . .m. At time t = 0,1,2, . . .,

each U j has a random binary valued state Z j(t) = 1 or 0. The random configuration Z(t) = [Z1(t), . . . ,Zm(t)] of this
BM belongs to the configuration space CONF = {0,1}m of all binary vectors z = [z1, . . . ,zm]. Let SUB bet the set
of all subsets of PCH. Each configuration z ∈ CONF is the indicator function of a subset sub(z) of PCH. We view
each sub(z) ∈ SUB as a possible estimate for the unknown set trueCH ⊂ B+×B+ of true children pairs (b1,b2). For
each potential estimate sub(z) of trueCH, the “lack of quality” of the estimate sub(z) will be penalized by the energy
function E(z)≥ 0 of our binary BM. We now specify the energy E(z) for all z ∈ CONF by combining the penalty terms
introduced above.

True children pairs born from distinct parents must clearly not intersect. To enforce this constraint, define the
symmetric m×m binary matrix [Q j,k] by i) Q j,k = 1 if j 6= k and the two pairs pch j, pchk have one cell in common,
ii) Q j,k = 0 if j 6= k and the two pairs pch j, pchk have no cell in common, iii) Q j, j = 0 for all j.

The quadratic penalty z 7→ 〈z,Qz〉 is non-negative for z ∈ CONF, and must be zero if sub(z) = trueCH. Introduce
six positive weight parameters to be selected further on λ j, j ∈ {lin,gap,dev, rat, rank,Q}. Define the vector V ∈ Rm as
a weighted linear combination of the penalty vectors LIN, GAP, DEV , RAT , RANK

V = λlinLIN +λgapGAP+λdevDEV +λratRAT +λrankRANK.

For any configuration z ∈ CONF, the BM energy E(z) is defined by the quadratic function

E(z) = 〈V,z〉+λQ〈z,Qz〉
We already know that the unknown set trueCH of true children pairs must have cardinal DIV = N+−N. So we seek a
configuration z∗ ∈ CONF minimizing the energy E(z) under the rigid constraint card{sub(z)}= DIV . Let ONE ∈ Rm

be the vector with all its coordinates equal to 1. The constraint on z can be reformulated as 〈ONE,z〉= DIV . We want
the unknown trueCH to be close to the solution z∗ of the constrained minimization problem

z∗ = argmin
z∈CONF

E(z) subject to 〈ONE,z〉= DIV

8

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.27.441677doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.27.441677


D
E

V

GAP

D
E

V

RANK

G
A

P

RANK

• children • non-children

FIG. 3. Scatter plots for tandems of the penalty terms DEV , GAP, and RANK. We mark in orange the true children pairs and in blue invalid
children pairs. These plots allow us to identify appropriate empirical thresholds to trim the (considered synthetic) data in order to reduce the
computational complexity of the parent-children pairing.

To force this minimization to yield a reliable estimate of trueCH, we calibrate the six weights

λ j, j ∈ {lin,gap,dev, rat, rank,Q}

by the algorithm in Sec. 5. Denote CONF1 the set of all z ∈ CONF such that 〈ONE,z〉= DIV . To minimize E(z) under
the constraint z ∈ CONF1, fix a slowly decreasing temperature scheme Temp(t) as in Sec. 7. We need to force the BM
stochastic configurations Z(t) to remain in CONF1. Then, for large time step t, the Z(t) will converge in probability to
a configuration z∗ ∈ CONF1 approximately minimizing E(z) under the constraint z ∈ CONF1.

Start with any Z(0)∈CONF1. Assume that for 0≤ s≤ t, one has already dynamically generated BM configurations
Z(s) ∈ CONF1. Then, randomly select two sites j, k such that Z j(t) = 1 and Zk(t) = 0. Compute a virtual configuration
Y by setting Yj = 0, Yk = 1, and Yi ≡ Zi for all sites i different from j and k. Compute the energy change ∆E = E(Y )−
E(Z(t)), and the probability p(t) = exp(−D/Temp(t)), where D = max{0,∆E}. Then randomly select Z(t +1) =Y or
Z(t +1) = Z(t) with respective probabilities p(t) and (1− p(t)). Clearly, this forces Z(t +1) ∈ CONF1

9. Performance of Automatic Children Pairing on Synthetic Videos. In the following subsections we provide
experimental results for pairing children and parent cells.

9.1. Children Pairing: Fast BM simulations. For m = card(PCH)≤ 1000, one can reduce the computational
cost for BM dynamics simulations by pre-computing and storing the m×m symmetric binary matrix Q, as well as
the m-dimensional vectors LIN, GAP, DEV , RAT , RANK and their linear combination V . A priori reduction of m
significantly reduces the computing times, and can be implemented by trimming away the pairs pch j ∈ PCH for
which the penalties LIN j, GAP j, DEV j, RAT j, and RANK j are all larger than predetermined empirical thresholds. We
performed a study on 100 successive (synthetic) images. We show scatter plots for the most informative penalty terms in
Fig. 3. These plots allow us to determine adequate thresholds for the penalty terms. We observed that for the synthetic
and real data we considered the trimming of DEV , GAP, and RANK reduced the percentage of invalid children pairs by
95%, therefore drastically reducing the combinatorial complexity of the problem.

The quadratic energy function E(z) is the sum of clique energies JK(z) involving only cliques of cardinality 1 and 2.
For any clique K = { j} of cardinality 1, with 1≤ j ≤ m, one has JK(z) =Vjz j. For any clique K = { j,k} of cardinality
2, with 1≤ j < k ≤ m, one has JK(z) = 2Q j,kz jzk. A key computational step when generating Z(t +1) is to evaluate
the energy change ∆E when one flips the binary values Z j(t) = 1 and Zk(t) = 0 by the new value (1− zi) for a fixed
single site i. This step is quite fast since it uses only the numbers Vj, Vk, and 〈q( j),Z(t)〉, 〈q(k),Z(t)〉, where q(i) is the
ith row of the matrix Q.

9.2. Children Pairing: Implementation on Synthetic Videos. We have implemented our children pairing
algorithms on synthetic image sequences having 100 to 500 image frames with 1 minutes interframe (benchmark set
BENCH1; see Sec. 2). The cell motion bound w/2 per interframe was defined by w = 20 pixels. The parameter τ that
defines the sets PCH of plausible children pairs (see (3)) was set at τ = 45 pixels.

The known true cell registrations indicated that in our typical BENCH1 image sequence, the successive sets PCH
had average cardinals of 120, while the number of true children pairs per PCH roughly ranged from 2 to 6 with a median
of 4. The size of the reduced configuration space CONF1 per image frame thus ranged from 104 to 1206/6! = 4.2 ·109

with a median of 9 ·106

Our weights estimation technique introduced in Sec. 5 yields the weights [λcen,λsiz,λang] = [0.255,0.05,0.05]
and [λgap,λdev,λrat,λrank] = [0.01,1,0.0001,0.05] or the penalties introduced in Sec. 13. To reduce the computing
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TABLE 1
Accuracies of parent-children pairing algorithm. We applied our parent-children pairing algorithm to three long synthetic image sequences

BENCH1 (500 frames), BENCH2 (300 frames), and BENCH3 (300 frames), with interframe intervals of 1, 2, 3 minutes, respectively. The table
summarizes the resulting pcp-accuracies. Note that pcp-accuracies are practically always at 100%. For BENCH2 pcp-accuracies are 100% for 298
frames out of 300, and for the remaining two frames, accuracies were still high at 93% and 96%. For BENCH3 the average pcp-accuracy for the 3
minute interframe is 99%.

image sequence pcp-accuracy number of frames

BENCH1 acc = 100% 500 out of 500
BENCH2 acc = 100% 298 out of 300
BENCH2 99%≥ acc≥ 93% 2 out of 300
BENCH3 acc = 100% 271 out of 300
BENCH3 99%≥ acc≥ 95% 17 out of 300
BENCH3 94%≥ acc≥ 90% 12 out of 300

time for hundreds of BM energy minimizations on the BENCH1 image sequences, we excluded obviously invalid
children pairs in each PCH set, by simultaneously thresholding of the penalty terms. The BM temperature scheme
was Temp(t) = 1000(0.995)t , with the number of epochs capped at 5000. The average CPU time for BM energy
minimization dedicated to optimized children pairing was about 30 seconds per frame.

9.3. Parent-Children Matching: Accuracy on Synthetic Videos. For each successive image pair J, J+, with
cells B, B+ of cardinality N < N+, our parent-children matching algorithm computes a set SHL of short lineages
(b,b1,b2), where the cell b ∈ B is expected to be the parent of cells b1,b2 ∈ B+. Recall that DIV = N+−N provides
the number of cell divisions during the interframe J→ J+. The number VAL of correctly reconstructed short lineages
(b,b1,b2) ∈ SHL is obtained by direct comparison to the known ground truth registration J→ J+. For each frame J, we
define the pcp-accuracy of our Parent-Children Pairing algorithm as the ratio VAL/DIV .

We have tested our parent-children matching algorithm on three long synthetic image sequences BENCH1 (500
frames), BENCH2 (300 frames), and BENCH3 (300 frames), with respective interframes of 1, 2, and 3 minutes. For
each frame Jk, we computed the pcp-accuracy between Jk and Jk+1.

We report the accuracies of our parent-children pairing algorithms in Tab. 1. For BENCH1, all 500 pcp-accuracies
reached 100%. For BENCH2, pcp-accuracies reach 100% for 298 frames out of 300, and for the remaining two frames,
accuracies were still high at 93% and 96%. For BENCH3, where interframe duration was longest (3 minutes), the 300
pcp-accuracies decreased slightly but still averaged 99%, and never fell below 90%.

10. Reduction to Registrations with No Cell Division. Fix successive frames J,J+ and their cell sets B, B+. We
seek the unknown registration mapping f : B→{B+∪ (B+×B+)}, where f (b) ∈ B+ iff cell b did not divide during
the interframe J→ J+ and f (b) = (b1,b2) ∈ B+×B+ iff cell b divided into (b1,b2) during the interframe.

If card(B) = N < N+ = card(B+), we know that the number of cell divisions during the interframe J→ J+ should
be DIV = DIV(B,B+) = N+−N > 0. We then apply the parent-children matching algorithms outlined above to
compute a set SHL = SHL(B,B+) of short lineages (b,b1,b2) with b ∈ B, b1,b2 ∈ B+ and card(SHL) = DIV . For each
(b,b1,b2) ∈ SHL, the cell b is computed by b = parent(b1,b2) as the parent cell of the two children cells b1,b2 ∈ B+.

For each (b,b1,b2) ∈ SHL, eliminate from B the parent cell, b, and eliminate from B+ the two children cells b1,
b2. We are left with two residual sets, resB⊂ B and resB+ ⊂ B+, having the same cardinality, N−DIV = N+−2DIV .
Assuming that our set SHC of short lineages is correctly determined, the cells b ∈ redB should not divide in the
interframe J→ J+, and hence have a single (still unknown) registration f (b) ∈ redB+. Thus, the still unknown part of
the registration f is a bijection from redB to redB+.

Let divB = B− redB and divB+ = B+− redB+. For each b ∈ divB, the cell b divides into the unique pair of cells,
(b1,b2) ∈ divB+×divB+, such that (b,b1,b2) ∈ SHL. Hence, we can set f (b) = (b1,b2) for all b ∈ divB. Thus, the
remaining problem to solve is to compute the bijective registration f : redB→ redB+. We have reduced the registration
discovery to a new problem, where no cell divisions occur in the interframe duration. In what follows, we present our
algorithm to solve this registration problem.

11. Automatic Cell Registration after Reduction to Cases with No Cell Division. As indicated above, we can
explicitly reduce the generic cell tracking problem to a problem where there is no cell division. We consider images J, J+
with associated cell sets B, B+ such that N = card(B) = card(B+). Hence, there are no cell divisions in the interframe
J→ J+ and the map f of this reduced problem is (in principle) a bijection f : B→ B+ with card(B) = card(B+). We
show two typical successive images we use for testing with no cell division generated by the simulation software [94]
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image J image J+ difference |J − J+|difference |J − J+| motion vector field

FIG. 4. Simulated cell dynamics. From left to right, two successive simulated images J and J+ with an interframe time of six minutes and no
cell division, their image difference |J− J+|, and the associated motion vectors. For the image J and J+ we color four pairs of cells in B×B+, which
should be matched by the true cell registration mapping. Notice that the motion for an interframe time of six minutes is significant. We can observe
that even without considering cell division, we can no longer assume that corresponding cells in frame J and J+ overlap.

(see Sec. 2) in Fig. 4.

11.1. The set MAP of Many-to-One Cell Registrations. We have reduced the registration search to a situation
where during the interframe J→ J+, no cell has divided, no cell has disappeared, and no cell has suddenly emerged in
B+ without originating from B. The unknown registration f : B→ B+ should then in principle be injective and onto.
However, for computational efficiency, we will temporarily relax the bijectivity constraint on f . We will seek f in
the set MAP of all many-to-one mappings f : B→ B+ such that for each b ∈ B, the cell f (b) is in the target window
W (b)⊂ B+ (see section Sec. 3).

11.2. Registration Cost Functional. To design a cost functional cost( f ), which should be roughly minimized
when f ∈MAP is very close to the true registration from B to B+, we linearly combine penalties match( f ), over( f ),
stab( f ), flip( f ) weighted by unknown positive weights λmatch, λover, λstab, λflip, to write, for all registrations f ∈MAP,

(8) cost( f ) = λmatch match( f )+λover over( f )+λstab stab( f )+λflip flip( f ).

We specify the individual terms that appear in (8) below. Ideally, the minimizer of cost( f ) over all f ∈MAP is
close to the unknown true registration mapping f : B→ B+. To enforce a good approximation of this situation, we
first estimate efficient positive weights by applying our calibration algorithm (see Sec. 5). The actual minimization of
cost( f ) over all f ∈MAP is then implemented by a BM described in Sec. 12.

11.2.1. Cell Matching Likelihood: match( f ). Here, we extend a pseudo likelihood approach used to estimate
parameters in Markov random fields modeling by Gibbs distributions (see [49]). Recall that g.rate is the known average
cell growth rate. For any cells b ∈ B, b+ ∈ B+, the geometric quality of the matching b 7→ b+ relies on three main
characteristics: (i) motion c(b+)− c(b) of the cell center c(b), (ii) angle between the long axes A(b) and A(b+), (iii)
cell length ratio ‖A(b+)‖/‖A(b)‖. So, for all b ∈ B and b+ in the target window W (b), define

1. Kinetic energy: kin(b,b+) = ‖c(b)− c(b+)‖2.
2. Distortion of cell length:

dis(b,b+) = | log(‖A(b+)‖/‖A(b)‖)− logg.rate|2.

3. Rotation angle: 0 ≤ rot(b,b+) ≤ π/2 is the geometric angle between the straight lines carrying A(b) and
A(b+).

Fix b ∈ B, and let b′ run through the whole target window W (b). The finite set of values thus reached by the kinetic
penalties kin(b,b′) has two smallest values kin1(b), kin2(b). Define list.kin =

⋃
b∈B{kin1(b),kin2(b)}, which is a list

of 2N “low” kinetic penalty values. Repeat this procedure for the penalties dis(b,b′) and rot(b,b′) to similarly define a
list.dis of 2N “low” distortion penalty values, and a list.rot of 2N “low” rotation penalty values.

The three sets list.kin, list.dis, list.rot can be viewed as three random samples of size 2N, respectively, generated
by three unknown probability distributions Pkin, Pdis, Prot. We approximate these three probabilities by their empirical
cumulative distribution functions CDFkin, CDFdis, CDFrot, which can be readily computed. We now use the right
tails of these three CDFs to compute separate probabilistic evaluations of how likely the matching of cell b ∈ B with
cell b+ ∈W (b) is. For any fixed mapping f ∈ MAP, and any b ∈ B, set b+ = f (b). Compute the three penalties
vkin = kin(b,b+), vdis = dis(b,b+), vrot = rot(b,b+), and define three associated “likelihoods” for the matching
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b→ b+ = f (b).

LIKkin(b,b+) = 1−CDFkin(vkin),

LIKdis(b,b+) = 1−CDFdis(vdis),

LIKrot(b,b+) = 1−CDFrot(vrot).

High values of the penalties vkin, vdis, vrot thus will yield three small likelihoods for the matching b→ b+ = f (b).
With this, we can define a “joint likelihood” 0≤ LIK(b,b+)≤ 1 evaluating how likely is the matching b→ b+ = f (b):

(9) LIK(b,b+) = LIKkin(b,b+)LIKdis(b,b+)LIKrot(b,b+).

Note that higher values of LIK(b,b+) correspond to a better geometric quality for the matching of b with b+ = f (b).
To avoid vanishingly small likelihoods, whenever LIK(b,b+)< 1e−6, we replace it by 1e−6. Then, for any mapping
f ∈MAP, we define its likelihood lik( f ) by the finite product

lik( f ) = ∏
b∈B

LIK(b, f (b)).

The product of these N likelihoods is typically very small, since N = card(B) can be large. So, we evaluate the
geometric matching quality match( f ) of the mapping f via the averaged log-likelihood of f , namely,

match( f ) =− 1
N

log lik( f ) =− 1
N ∑

b∈B
logLIK(b, f (b)).

Good registrations f ∈MAP should yield small values for the criterion match( f ).

11.2.2. Overlap: over( f ). We expect bona fide cell registrations f ∈MAP to be bijections. Consequently, we
want to penalize mappings f which are many-to-one. We say that two distinct cells (b,b′) ∈ B×B do overlap for the
mapping f ∈MAP if f (b) = f (b′). The total number of overlapping pairs (b,b′) for f defines the overlap penalty:

over( f ) =
1

card(B) ∑
b∈B

∑
b′∈B

1 f (b)= f (b′).

11.2.3. Neighbor Stability: stab( f ). Let B = {b1, . . . ,bN}. Denote Gi the set of all neighbors for cell bi in B (i.e.,
b j ∼ bi ⇐⇒ b j ∈ Gi; see Sec. 3). For bona fide registrations f ∈MAP, and for most pairs of neighbors bi ∼ b j in B,
we expect f (bi) and f (b j) to remain neighbors in B+. Consequently, we penalize the lack of “neighbors stability” for f
by

stab( f ) = ∑
i

∑
j 6=i

1
N|Gi||G j|

1bi∼b j 1 f (bi)6∼ f (b j).

11.2.4. Neighbor Flip: flip( f ). Fix any mapping f ∈MAP, any cell b ∈ B and any two neighbors b′, b′′ of b in B.
Let z = f (b), z′ = f (b′), z′′ = f (b′′). Let c, c′, c′′ and d, d′, d′′ be the centers of cells b, b′, b′′ and z, z′, z′′. Let α be the
oriented angle between c′− c and c′′− c, and let α f be the angle between d′−d and d′′−d, respectively. We say that
the mapping f has flipped cells b′, b′′ around b, and we set FLIP( f ,b,b′,b′′) = 1 if z′, z′′ are both neighbors of z, and
the two angles α , α f have opposite signs. In all other cases, we set FLIP( f ,b,b′,b′′) = 0.

For any registration f ∈MAP, define the flip penalty for f by

flip( f ) = ∑
b∈B

∑
b′∈B

∑
b′′∈B

1
N|G(b)|2 FLIP( f ,b,b′,b′′),

where G(b) is the neighborhood of cell b in B. In Fig. 5 we illustrate an example of an unwanted cell flip.

12. BM Minimization of Registration Cost Function. In what follows, we define the optimization problem for
the registration of cells from one frame to another (i.e., cell tracking), as well as associated methodology and parameter
estimates.
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f

J J+

•
•

•
•

•

•

c(b1)

c(b2)

c(b3)

c(f (b3))

c(f (b2))

c(f (b1))

FIG. 5. Illustration of an undesirable flip for the mapping f . The cells b1 and b3 are neighbors of b2, and mapped by f on neighbors
z1 = f (b1),z3 = f (b3) of z2 = f (b2), as should be expected for bona fide cells registrations. But for this mapping f , we have z3 above z2 above z1,
whereas for the original cells we had b1 above b2 above b3. Our cost function penalizes flips of this nature.

12.1. BM Minimization of cost( f ) over f ∈MAP. Let B, B+ be two successive sets of cells. As outlined above,
we have reduced the problem to one in which we can assume that N = card(B) = card(B+), so that there is no cell
division during the interframe. Write B= {b1, . . . ,bN}. For short, denote W ( j)⊂B+ instead of W (b j) the target window
of cell b j. We seek to minimize cost( f ) over all registrations f ∈MAP. Let BM be a BM with sites S = {1, . . . ,N} and
stochastic neurons {U1, . . . ,UN}. At time t, the random state Z j(t) of U j will be some cell z j belonging to the target
window W ( j) and the random configuration Z(t) = {Z1(t), . . . ,ZN(t)} of the whole BM belongs to the configurations
set CONF =W (1)× . . .×W (N).

To any configuration z = {z1, . . . ,zN} ∈ CONF, we associate a unique cell registration f ∈ MAP defined by
f (b j) = z j for all j, denoted by f = map(z). This determines a bijection z 7→ f = map(z) from CONF onto MAP. The
inverse of map : CONF→MAP will be called range : MAP→ CONF, and is defined by z = range( f ), when z j = f (b j)
for all j.

12.2. BM Energy Function E(z). We now define the energy function E(z) ≥ 0 of our BM for all z ∈ CONF.
Denote E∗ = minimizez∈CONF E(z). Since f 7→ z = range( f ) is a bijection from MAP to CONF, we must have

E∗ = minimize
z∈CONF

E(z) = minimize
f∈MAP

E(range( f )).

Our goal is to minimize cost( f ), and we know that BM simulations should roughly minimize E(z) over all
z ∈ CONF. So, we define the BM energy function E(z) by forcing

(10) cost( f ) = E(range( f ))

for any registration mapping f ∈MAP, which—due to the preceding subsection—is equivalent to

(11) E(z) = cost(map(z)) for all configurations z ∈ CONF.

The next subsection will explicitly express the energy E(z) in terms of cliques of neurons. Due to (10) and (11) we
have

E∗= minimize
f∈MAP

cost( f ) = minimize
z∈CONF

E(z).

For large time t, the BM stochastic configuration Z(t) tends with high probability to concentrate on configurations
z ∈ CONF, which roughly minimize E(z). The random registration F t = map(Z(t)) will belong to MAP and verify
Z(t) = range(F t), so that E(Z(t)) = E(range(F t)) = cost(F t)). Consequently, for large t—with high probability—the
random mapping F t = map(Z(t)) will have a value of the cost functional cost(F t) close to minimize f∈MAP cost( f ).

12.3. Cliques of Interactive Neurons. The BM energy function E(z) just defined turns out to involve only three
sets of small cliques: i) CL1 is the set of all singletons K = {i}, with i = 1 . . .N. ii) CL2 is the set of all pairs K = {i, j}
such that cells bi and b j are neighbors in B. iii) CL3 is the set of all triplets K = {i, j,k} such that cells b j and bk are
both neighbors of bi in B. Denote CLQ = CL1∪CL2∪CL3 the set of all cliques for our BM.

Cliques in CL1.. For each clique K = {i} in CL1, and each z ∈ CONF, define its energy JmatchK(z) = JmatchK(zi)
by

JmatchK(z) =−
1
N

logLIK(bi,zi) for all z ∈ ZW,

where LIK is given by (9). Set JmatchK ≡ 0 for K in CL2∪CL3. For all z ∈ CONF, define the energy Ematch(z) by

Ematch(z) = ∑
K∈CLQ

JmatchK(z) = ∑
K∈CL1

JmatchK(z),

which implies that the registration f = map(z) verifies

match( f ) = Ematch(z).
13
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Cliques in CL2.. For all z ∈ CONF, all cliques K = {i, j} in CL2, define the clique energies JoverK(z) =
JoverK(zi,z j) and JstabK(z) = JstabK(zi,z j) by JoverK(z) = 1zi=z j/N and

JstabK(z) =
1

N|Gi||G j|
1b j∼bi1z j 6∼zi ,

where |Gi| and |G j| are the numbers of neighbors in B for cells zi and z j, respectively. Set JoverK = JstabK ≡ 0 for K in
CL1∪CL3. Define the two energy functions

Eover(z) = ∑
K∈CLQ

JoverK(z) = ∑
K∈CL2

JoverK(z),

Estab(z) = ∑
K∈CLQ

JstabK(z) = ∑
K∈CL2

JstabK(z),

which implies that f = map(z) verifies over( f ) = Eover(z) and stab( f ) = Estab(z).
Cliques in CL3.. For each clique K = {i, j,k} in CL3, define the clique energy JflipK by

JflipK(z) = Jflipi, j,k(z) =
1

N|Gi|2
FLIP( f i, j,k,bi,b j,bk),

where f i, j,k is any registration mapping bi, b j, bk onto zi, z j, zk. The indicator FLIP was defined in Sec. 11.2. Set
JflipK ≡ 0 for K in CL1∪CL2. Define the energy

Eflip(z) = ∑
K∈CLQ

JflipK(z) = ∑
K∈CL3

JflipK(z),

which implies that f = F(z) verifies flip( f ) = Eflip(z).
Finally, define the clique energy JK for all K ∈ CLQ by the linear combination

JK = λmatch JmatchK +λover JoverK +λstab JstabK +λflip JflipK .

Summing this relation over all K ∈ CLQ yields

(12) ∑K∈CLQ JK = λmatch Ematch+λover Eover+λstab Estab+λflip Eflip .

Define then the final BM energy function z 7→ E(z) by

(13) E(z) = ∑
K∈CLQ

JK(z) for all z in CONF.

For any z ∈ CONF, the associated registration f = map(z) verifies match( f ) = Ematch(z),over( f ) = Eover(z),
stab( f ) = Estab(z), flip( f ) = Eflip(z). By weighted linear combination of these equalities, and due to (12), we
obtain for all configurations z ∈ CONF, E(z) = cost( f ) when f = map(z) or, equivalently, when z = range( f ).

12.4. Test Set of 100 Synthetic Image Pairs. As shown above, the minimization of cost( f ) over all registrations
f ∈MAP is equivalent to seeking BM configurations z ∈ CONF with minimal energy E(z). We have implemented this
minimization of E(z) by the long term asynchronous dynamics of the BM just defined. This algorithm was designed for
the registration of image pairs exhibiting no cell division, and was, therefore, implemented after the automatic reduction
of the generic registration problem, as indicated earlier. We have tested this specialized registration algorithm on a set
BENCH100 of 100 pairs of successive images of simulated cell colonies exhibiting no cell divisions. These 100 image
pairs were extracted from the benchmark set BENCH6 of synthetic image sequence described in section Sec. 2. The
100 pairs of cell sets B, B+ had sizes N = card(B) = card(B+) ranging from 80 to 100 cells.

For each test pair B, B+, each target window W ( j) typically contained 30 to 40 cells. The set CONF of configura-
tions had huge cardinality ranging from 10130 to 10160. But the average number of neighbors of a cell was around 4 to
5.
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12.5. Implementation of BM minimization for cost( f ). The numbers clq1, clq2, clq3 of cliques in CL1, CL2,
CL3 have the following rough ranges 80 ≤ clq1 ≤ 100, 160 ≤ clq2 ≤ 250, and 450 ≤ clq3 ≤ 600. For k = 1,2,3,
denote val(k) the numbers of non-zero values for JK(z) when z runs through CONF and K runs through all cliques
of cardinality k. One easily checks the rough upper bounds val(1) < 4.00e3; val(2) < 2.00e5; val(3) < 3.00e5.
Hence, to automatically register B to B+, one could pre-compute and store all the possible values of JK(z) for all
cliques K ∈ CL1∪CL2∪CL3 and all the configurations z ∈ CONF. This accelerates the key computing steps of the
asynchronous BM dynamics, namely, for the evaluation of energy change ∆E = E(z′)−E(z), when configurations z
and z′ differs at only one site j ∈ S. Indeed, the single site modification z j→ z′j affects only the energy values JK(z)
for the very small number r( j) of cliques K, which contain the site j. In our benchmark sets of synthetic images, one
had r( j) < 24 for all j ∈ S. Hence, the computation of ∆E was fast since it requires retrieving at most 24 pairs of
pre-computed JK(z), JK(z′), and evaluating the 24 differences JK(z′)− JK(z). Another practical acceleration step is to
replace the ubiquitous computations of probabilities p(t) = exp(−D/Temp(t) by simply testing the value −D/Temp(t)
against 100 precomputed logarithmic thresholds.

In our implementation of ABM dynamics, we used virtual temperature schemes such as Temp(t) = 50 ·ρ t with
0.995≤ ρ ≤ 0.999. The BM simulation was stopped when the stochastic energy E(Z(t)) had remained roughly stable
during the last N steps. Since all target windows W ( j) had cardinality smaller 40, the initial configuration Z(0) = x was
computed via

x j = argmax
y∈W ( j)

LIK(b j,y) for j = 1, . . . ,N,

where the likelihoods LIK were defined by (9).

12.6. Weight Calibration. For the pair of successive synthetic images J, J+ displayed in Fig. 4, we have N =
card(B) = card(B+) = 513 cells. The ground truth registration f is known by construction; we used it to apply the
weight calibration described in Sec. 5. We set the meta-parameter γ to 1e10 and obtained the vector of weights

(14) Λ
∗ = [λ ∗match,λ

∗
over,λ

∗
stab,λ

∗
flip] = [110,300,300,290].

These weights are kept fixed for all the 100 pairs of images in the set BENCH100. The determined weights are used in
the cost function cost( f ) defined above. This correctly parametrized the BM energy function E(z). We then simulated
the BM stochastic dynamics to minimize the BM energy E(Z(t)).

12.7. BM Simulations. We launched 100 simulations of the asynchronous BM dynamics, one for each pair of
successive images in our test set BENCH100. For each such pair, the ground truth mapping f : B→ B+ was known by
construction and the stochastic minimization of the BM energy generated an estimated cells registration f ′ : B→ B+.
For each pair B, B+ in BENCH100, the accuracy of this automatically computed registration f ′ was evaluated by the
percentage of cells b ∈ B such that f ′(b) = f (b). When card(B) = N, our BM has N stochastic neurons, and the
asynchronous BM dynamics proceeds by successive epochs. Each epoch is a sequence of N single site updates of the
BM configuration. For each one of our 100 simulations of BM asynchronous dynamics, the number of epochs ranged
from 250 to 450.

The average computing time was about eight seconds per epoch on a standard laptop, which entailed a computing
time ranging from 30 to 50 minutes for each one of our 100 automatic registrations f ′ : B→ B+. Note that the
temperature scheme had not been optimized yet, so that these computing times are upper bounds. Earlier SBM
studies [13, 15] indicate that the same energy minimizations on GPUs could provide a computational speedup by a
factor ranging between 30 and 50.

We report registration accuracies in Tab. 2. For each pair of images in BENCH100, the accuracy of automatic
registration was larger than 94.5%. The overall average registration accuracy was quite high at 99%.

13. Registration for Cell Dynamics Involving Growth, Motion, and Cell Divisions.

13.1. Tests of Cell Registration algorithms on Synthetic Data. We now consider more generic long synthetic
image sequences of simulated cell colonies, with a small interframe duration of one minute. We still impose the
mild constraint that no cell is lost between two successive images. The main difference with the earlier benchmark
BENCH100 is that cells are allowed to freely divide during interframes, as well as to grow and to move. For the
full implementation on 100 pairs of successive images, we first execute the parent-children pairing, and remove the
identified parent-children triplets; we can then apply our cell registration algorithmic on the reduced sets cells. Our
image sequence contained 760 true parent-children triplets, which we automatically identified with an accuracy of
100%. As outlined earlier, we removed all these identified cell triplets and then applied our tracking algorithm. This
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TABLE 2
Registration accuracy for synthetic image sequence BENCH100. We consider 100 pairs of consecutive synthetic images (image sequence

BENCH100). Automatic registration was implemented by BM minimization of the cost function cost( f ), which was parametrized by the vector of
optimized weights Λ∗ in (14). The average registration accuracy was 99%.

registration accuracy number of frames

acc = 100% 55 frames out of 100
99%≥ acc > 97% 40 frames out of 100

96%≥ acc > 94.5% 5 frames out of 100

COL1

t0 t1

COL2

t0 t1 t2 t3

FIG. 6. Segmentation results for experimental recordings of live cell colonies. We show two short image sequences extracts COL1 (left) and
COL2 (right). The interframe duration is six minutes. The image sequence extract COL1 has only two successive image frames. The image sequence
extract COL2 has four successive image frames. We are going to automatically compute four cell registrations, one for each pair of successive images
in COL1 and COL2.

left us with a total of 1.26e4 cells (spread over 100 frames). Full automatic registration was then implemented with an
accuracy higher than 99.5%.

13.2. Tests of Cell Registration algorithms on Laboratory Image Sequences. To test our cell tracking al-
gorithm on pairs of consecutive images extracted from recorded image sequences of bacterial colonies, we had to
automatically delineate all individual cells in each image. We use the Watershed algorithm [31] (also used, e.g., in
[53]) to segment each frame into individual image segments containing one single cell each. In a second step, we then
identified the contour of each single cell b by applying the Mumford-Shah algorithm [37, 68] within the image segment
containing a cell b.

We then apply ad hoc nonlinear filters to remove minor segmentation artifacts. Since this procedure is quite
time consuming for large images, we have implemented it to produce a training set of delineated individual cells to
train a CNN for image segmentation. After automatic training, this CNN substantially reduces the runtime of the cell
segmentation/delineation procedure. We show the resulting segmentations in Fig. 6.

After each cell has been identified (i.e., segmented out) in each pair J, J+ of successive images, we transform J, J+
into binary images, where cells appear in white on a black background. For each resulting pair B, B+ of successive
sets of cells, we apply the parent-children pairing algorithm outlined in Sec. 6 to identify all the short lineages. For
the two successive images in COL1, the discovered short lineages are shown in Fig. 7 (left pair of images). Here,
color designates the cell triplet algorithmically identified: parent cell in image J and its two children in image J+. We
then remove each identified “parent” from B and its two children from B+. This yields the reduced cell sets redB and
redB+. We can then apply our tracking algorithm (see 10) dedicated to situations where cells do not divide during the
interframe.

For image sequences of live cell colonies we had to re-calibrate most of our weight parameters. The weight
parameters used for these image sequences are summarized in Tab. 3.

The BM temperature scheme was Temp(t) = 2000(0.995)t , with the number of epochs capped at 5000. We
illustrate our COL1 automatic registration results in Fig. 7 (right pair of images). Here, if cell b ∈ redB has been
automatically registered onto cell b+ ∈ redB+, b, b+ share the same color. The cells colored in white in redB+ are
cells which the registration algorithm did not succeed in matching to some cell in redB. These errors can essentially
be attributed to errors in the parent-children pairing step. By visual inspection we have determined that there are 14
true parent-children triplets in the successive images of COL1. Our parent-children pairing algorithm did correctly
identify 11 of these 14 triplets.To check further the performance of our registration algorithm on live images, we also
report automatic registration results for “manually prepared” true versions of redB and redB+, obtained by removing
“manually” the true parent-children triplets determined by visual inspection. For the short image sequence COL2, results
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TABLE 3
Cost function weights for parent-children pairing in the COL1 images displayed in Fig. 6.

Weights λcen λsiz λang λgap λdev λrat λrank λover
Value 3 7 100 .8 4 .01 .01 600

parent-children pairing

J , B J+, B+

cell registration

redJ , redB redJ+, redB+

FIG. 7. Cell tracking results for the pair COL1 of successive images J, J+ shown in Fig. 6. The interframe duration is six minutes. Left:
Results for parent-children pairing on COL1. Automatically detected parent-children triplets are displayed in the same color. Right: Computed
registration. The removal of the automatically detected parent-children triplets (see left column) generates the reduced cell sets redB and redB+.
Automatic registration of redB and redB+ is again displayed via identical color for the registered cell pairs (b,b+). Mismatches are mostly due to
previous errors in parent-children pairing (see Fig. 8 for a more detailed assessment).

are displayed in Fig. 8.
The display setup is the same: The left column shows the results of automatic parent-children pairing. The

middle column illustrates the computed registration after automatic removal of the computer identified parent-children
triplets. The third column displays the computed registration after removing “manually” the true parent-children triplets
determined by visual inspection. Note that the overall matching accuracy can be improved if we reduce errors in the
parent-children pairing. We report quantitative accuracies in Tab. 4. For parent-children pairing, accuracy ranges
between 70% and 78%. For pure registration after correct parent-children pairing, accuracy ranges between 90% and
100%.

14. Conclusions and Future Work. We have developed a methodology for automatic cell tracking in recordings
of dense bacterial colonies growing in a mono-layer. We have also validated our approach using synthetic data from
agent based simulations, as well as experimental recordings of E. coli colonies growing in microfluidic traps. Our next
goal is to streamline our implementation for systematic cell registration on experimentally acquired recordings of such
cell colonies, to enable automated quantitative analysis and modeling of cell population dynamics and lineages.

There are a number of challenges for our cell tracking algorithm: Inherent imaging artifacts such as noise or
intensity drifts, cells overlaps, similarity of cell shape characteristics across the population, tight packing of cells,
somewhat large interframe times, cell growth combined with cell motion and cell divisions, represent just a few of
these challenges. Overall, the cell tracking problem has combinatorial complexity, and for large frames is beyond the
concrete patience of human experts. We tackle these challenges by developing a two-stage algorithm that first identifies
parent-children triplets and subsequently computes cell registration from one frame to the next, after reducing the two
original cell sets by automatic removal of the identified parent-children triplets. Our algorithms specify innovative cost
functions dedicated to these registration challenges. These cost functions have combinatorial complexity. To discover
good registrations we minimize these cost functions numerically by intensive stochastic simulations of specifically
structured BMs. We have validated the potential of our approach by reporting promising results obtained on long
synthetic image sequences of simulated cell colonies (which naturally provide a ground truth for cell registration from
one frame to the next). We have also successfully tested our algorithms on experimental recordings of live bacterial
colonies.

In future work we will further improve the stability and accuracy of our cell registration algorithms by exploring
natural modifications of our cost functions, in particular to improve the accuracies of our automatic detection of cell
divisions, and to handle also the unavoidable new cell arrivals into or departures from the current field of vision.
Moreover, we will work on our BM simulation algorithms to deploy their stochastic dynamics in semi synchronous
formats on parallel computing platforms (in particular, graphic processing units) to drastically reduce their runtime.
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our algorithm cell registration for manually
cleaned dataparent-children pairing

t 0
to

t 1
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t 1
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t 2
t 2

to
t 3

J , B J+, B+ redJ , redB redJ+, redB+ redJ∗, redB∗ redJ∗
+, redB∗

+

FIG. 8. Cell tracking results for the short image sequence COL2 in Fig. 6. The interframe duration for COL2 is six minutes. COL2 involves
four successive images J(ti), i = 0,1,2,3. In our figure, each one of the three rows displays the automatic cell registration results between images
J(ti) and J(ti+1) for i = 0,1,2. We report the accuracies of parent-children pairing and of the registration in Tab. 4. Left column: Results for
parent-children pairing. Each parent-children triplet is identified by the same color for each parent cell an its two children. Middle column: Display
of the automatically computed registration after removing the parent-children triplets already identified in order to generate two reduced sets redB
and redB+ of cells. Again, the same color is used for each pair of automatically registered cells. The white cells in redB+ are cells which could not
be registered to some cell in redB. Right column: To differentiate between errors induced during automatic identification of and errors generated by
automatic registration between redB and redB+, we manually removed all “true” parent-children triplets and then applied our registration algorithm
to this “cleaned” (reduced) cell sets redB∗ and redB∗+.

TABLE 4
Cell tracking accuracy for the short image sequence COL2 in Fig. 6 with an interframe of six minutes. We report the ratio of correctly

predicted cell matches over the total number of true cell matches and the associated percentages. The accuracy results quantify four distinct
percentages of correct detections (i) for parent cells in image J, (ii) for children cells in image J+, (iii) for parent-children triplets, and (iv) for
registered pairs of cells (b,b+) ∈ redB× redB+.

task accuracy

{t0, t1} {t1, t2} {t2, t3}
correctly detected parents 15/19 79% 20/21 95% 7/10 70%
correctly detected children 35/38 92% 32/42 76% 14/20 70%
correct parent-children triplets 15/19 78% 16/21 76% 7/10 70%
correctly registered cell pairs 36/36 100% 44/49 90% 76/80 95%
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DMS-1662290 (MRB); and the Welch Foundation grant C-1729 (MRB). Any opinions, findings, and conclusions or
recommendations expressed herein are those of the authors and do not necessarily reflect the views of the NSF or the
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the University of Houston.

Appendix A. Stochastic Dynamics of BMs.
Notations and terminology refer to Sec. 7. Consider a BM network of N stochastic neurons U j, with finite

configuration set CONF = W (1)× . . .×W (N). At time t, let Z j(t) ∈W ( j) be the random state of neuron U j, and
the BM configuration Z(t) ∈ CONF is then Z(t) = {Z1(t), . . . ,ZN(t)}. Fix as in Sec. 7 a sequence Temp(t) of virtual
temperatures slowly decreasing to 0 for large t.

There are two main options to implement the Markov chain dynamics Z(t)→ Z(t +1) (see [10]).
Asynchronous BM Dynamics. Generate a long random sequence of sites m(t) ∈ S = {1, . . . ,N}, for instance by

concatenating successive random permutations of the set S. At time t, the only neuron which may modify its current
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state is Um(t). For brevity, write M = m(t). The neuron UM will compute its new random state ZM(t +1) ∈W (M) by
the following updating procedure:

• For each y in W (M), define a new configuration Y ∈ CONF by YM(t) = y, and Yj(t) = Z j(t) for all j 6= M. Let
∆(y) = E(Y )−E(Z(t)) be the corresponding BM energy change.

• In the finite set W (M), select any z such that ∆(z) = miny∈W (M) ∆(y), and set D = max{0,∆(z)}.
• Compute the probability p = exp(−D/Temp(t)).
• The new random state ZM(t +1) of neuron UM will be equal to z with probability p and equal to the current

state ZM(t) with probability 1− p.
• For all j 6= M, the new state Z j(t +1) of neuron U j remains equal to its current state U j(t)

Synchronous BM Dynamics. Fix a synchrony parameter 0 < α < 1, usually around 50%. At each time t, all
neurons U j synchronously, but independently compute their own random binary tag tag j(t), equal to 1 with probability
α , and to 0 with probability (1−α). Let SYN(t) be the set of all neurons. All the neurons U j such that tag j(t) = 1
then synchronously and independently compute their new random states Z j(t +1) ∈W ( j) by applying the updating
procedure given above. And for all j such that tag j(t) = 0, the new state Z j(t +1) of U j remains equal to Z j(t).

Comparing Asynchronous and Synchronous BM Dynamics. As t becomes large, and for temperatures Temp(t)
slowly decreasing to 0, both BM dynamics generate with high probability configurations Z(t) which provide deep local
minima E(Z(t)) of the BM energy function. The asynchronous dynamics can be fairly slow. But the synchronous
dynamics is much faster since it emulates efficient forms of parallelel simulated annealing (see [11, 75]) and is directly
implementable on GPUs.
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[42] F. JUG, T. PIETZSCH, D. KAINMÜLLER, J. FUNKE, M. KAISER, E. VAN NIMWEGEN, C. ROTHER, AND G. MYERS, Optimal joint

segmentation and tracking of Escherichia coli in the mother machine, in Bayesian and graphical Models for Biomedical Imaging,
vol. LNCS 8677, 2014, pp. 25–36.

[43] L. KAMENTSKY, T. R. JONES, A. FRASER, M. BRAY, D. LOGAN, K. MADDEN, V. LJOSA, C. RUEDEN, G. B. HARRIS, K. ELICEIRI,
AND A. E. CARPENTER, Improved structure, function, and compatibility for cellprofiler: modular high-throughput image analysis
software, Bioinformatics, 27 (2011), pp. 1179–1180.

[44] T. KANADE, Z. YIN, R. BISE, S. HUH, S. EOM, M. F. SANDBOTHE, AND M. CHEN, Cell image analysis: Algorithms, system and
applications, in 2011 IEEE Workshop on Applications of Computer Vision (WACV), IEEE, 2011, pp. 374–381.

[45] C. KERVRANN AND A. TRUBUIL, Optimal level curves and global minimizers of cost functionals in image segmentation, Journal of
Mathematical Imaging and Vision, 17 (2002), pp. 153–174.

[46] J. K. KIM, Y. CHEN, A. J. HIRNING, R. N. ALNAHHAS, K. JOSIĆ, AND M. R. BENNETT, Long-range spatio-temporal coordination of
gene expression in synthetic microbial consortia, Nature Chemical Biology, 15 (2019), pp. 1102–1109.

[47] C. KIRISITS, L. F. LANG, AND O. SCHERZER, Optical flow on evolving surfaces with space and time regularisation, Journal of Mathematical
Imaging and Vision, 52 (2015), pp. 55–70.
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