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Abstract

Generative models have increasingly been pro-
posed as a solution to the molecular design
problem. However, it has proved challenging
to control the design process or incorporate
prior knowledge, limiting their practical use in
drug discovery. In particular, generative meth-
ods have made limited use of three-dimensional
(3D) structural information even though this
is critical to binding. This work describes a
method to incorporate such information and
demonstrates the benefit of doing so. We com-
bine an existing graph-based deep generative
model, DeLinker, with a convolutional neu-
ral network to utilise physically-meaningful 3D
representations of molecules and target phar-
macophores. We apply our model, DEVELOP,
to both linker and R-group design, demonstrat-
ing its suitability for both hit-to-lead and lead
optimisation. The 3D pharmacophoric informa-
tion results in improved generation and allows
greater control of the design process. In mul-
tiple large-scale evaluations, we show that in-
cluding 3D pharmacophoric constraints results
in substantial improvements in the quality of
generated molecules. On a challenging test set
derived from PDBbind, our model improves the
proportion of generated molecules with high 3D
similarity to the original molecule by over 300%.
In addition, DEVELOP recovers 10× more of
the original molecules compared to the base-

line DeLinker method. Our approach is general-
purpose, readily modifiable to alternate 3D rep-
resentations, and can be incorporated into other
generative frameworks. Code is available at
https://github.com/oxpig/DEVELOP.

Introduction

Drug design optimises molecules through a
multi-step, iterative process in order to achieve
a desired biological response. The size of the
search space1 and discontinuous nature of the
optimisation landscape2 are two key factors
contributing to the difficulty of this problem
and, as a result, currently molecular design is
typically led by human experts.

Machine learning models for molecule genera-
tion3–5 offer an alternative approach to human-
led design or rules-based transformations.6,7

Despite recent success,8 for these methods to be
broadly adopted in drug discovery, more control
over the generative process is required, includ-
ing the ability to incorporate prior knowledge.

In the hit-to-lead (or lead generation) and
lead optimisation stages of drug discovery, the
goal is to improve one, or several, properties.
This is typically achieved by modifying an ex-
isting molecule rather than designing a com-
pound from scratch. Such modifications can be
broadly categorised into one of two scenarios:
linker design and scaffold elaboration.
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Linker design is a general problem in drug
discovery capturing a wide range of tasks where
the goal is to design a molecular scaffold that in-
corporates two (or more) specific substructures.
Three key applications that can all be consid-
ered as linker design are scaffold hopping,9,10

fragment linking,11,12 and PROTAC design.13,14

Examples of these design tasks are shown in
Figure 1a-c.

In contrast to linker design which is tasked
with discovering molecular cores, scaffold elab-
oration proposes molecules incorporating these
privileged substructures. Scaffold elaboration
covers a broad range of medicinally impor-
tant scenarios, such as R-group optimisation15

and fragment growing12,16 (Figure 1d-e). R-
group optimisation is utilised in almost all
drug discovery projects to improve the po-
tency, selectivity, and other properties of a
molecule during lead optimisation and charac-
terise the structure-activity relationship (SAR)
of a molecular series, while growing is the pri-
mary method for elaborating fragment hits.

Recently, several deep learning methods have
been proposed to address these design chal-
lenges. We previously published the first appli-
cation of deep learning for molecular linker de-
sign (“DeLinker”),17 reporting substantial im-
provement over a database-based approach, the
previous de facto computational method for
this task, by including basic structural infor-
mation. Yang et al. 18 have since proposed an
alternative model (“SyntaLinker”) based on the
transformer architecture and a SMILES-based
representation. Their model did not incorpo-
rate structural information but instead included
1D molecular patterns capturing factors such as
the shortest linker bond distance.

Deep learning approaches have also been pro-
posed for scaffold elaboration. Graph-based ap-
proaches were proposed by Lim et al. 19 and Li
et al. 20 . The scaffolds employed in both meth-
ods do not have explicit attachment points. As
such, these methods are primarily applicable to
the general generation of molecules with a privi-
leged scaffold or substructure, rather than tasks
such as R-group design. In contrast, Arús-Pous
et al. 21 developed a preprocessing formulation
to permit a SMILES-based approach that re-

quires specific attachment points to be defined.
In both linker design and scaffold elabora-

tion, some knowledge about the desired mod-
ification is typically available;22 this can either
be derived from the protein binding site in the
case of structure-based design,23 or from other
molecules in ligand-based drug discovery.24 In
either case, this information has strong 3D de-
pendencies which should be taken into account.
However, currently this information, which is
crucial to successful compound design, is typi-
cally not utilised by generative models.25

None of the existing machine learning mod-
els for linker design or scaffold elaboration ef-
fectively utilise structural information, with
DeLinker the only framework explicitly incor-
porating any 3D information in the form of the
distance between the starting substructures and
their relative orientations. While this minimal
parametrization had a substantial impact on
the quality of the generated molecules,17 much
of the key information about the characteristics
of the binding site is not taken into account in
the generative process.

There have been several recent approaches
proposed to generate molecules from 3D repre-
sentations. Skalic et al. 26 generated molecules
from a 3D representation of a seed ligand. How-
ever, their approach requires a known active
molecule, only provides 3D information implic-
itly to seed their model, and offers no further
control over generated compounds. As a result,
their generative model recovered fewer than 2%
of seed molecules. This idea was extended in
Skalic et al. 27 to generate the ligand represen-
tation from the protein target. While this al-
leviates the need for a known active, it is not
possible to use prior knowledge to influence the
ligand representation. Finally, in concurrent
work to this paper, both Ragoza et al. 28 and
Masuda et al. 29 generate molecules by adopt-
ing an autoencoder framework to first generate
atomic densities, before using a fitting proce-
dure to convert the continuous 3D grids to dis-
crete molecular structures.

All prior approaches utilising 3D representa-
tions attempt to generate entire molecules and
do not readily incorporate expert knowledge.
While this is arguably the end-goal for molecu-
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Figure 1: Design tasks considered in this work. (a)-(c) cover linker design, specifically (a) scaffold
hopping, (b) fragment linking, and (c) PROTAC design. (d)-(e) scaffold elaboration, namely (d)
R-group optimisation and (e) fragment growing. Components of the ligand that are modified or
added in the design process are shown in red.

lar design, in practice this limits the applicabil-
ity of such methods. In particular, it prevents
their use in later stage drug discovery where
there is significant prior knowledge that could
and should inform compound design.

In this paper, we propose DEVELOP (DEep
Vision-Enhanced Lead OPtimisation), a graph-
based generative model that uses a convolu-
tional neural network (CNN) to incorporate
physically-meaningful 3D structural informa-
tion, here provided as 3D pharmacophores,30

a general and widely-used representation in
cheminformatics. Our model is applicable to a
wide variety of design tasks in the hit-to-lead
and lead optimisation stages of drug discov-
ery, covering linker design and scaffold elabo-
ration. Importantly, the richer representation
of the binding site readily and naturally al-
lows the incorporation of domain knowledge
and significantly improves the quality of gen-
erated compounds. On a challenging test set
derived from PDBbind, our model improves the
proportion of generated molecules with high 3D
similarity to the original molecule by over 300%.
In addition, DEVELOP recovers 10× more of
the original molecules compared to the baseline
DeLinker method.

Methods

This work describes DEVELOP, a deep learn-
ing approach combining GNNs and CNNs for
molecular linker design and scaffold elabo-
ration. We extend current molecular gen-
erative methods to incorporate physically-
meaningful 3D structural information, enabling
prior knowledge to be readily incorporated and
allowing greater control of the generative pro-
cess by domain experts. Our underlying model
is based on Imrie et al. 17 , which built on the
generative process introduced by Liu et al. 31

that constructs molecules “bond-by-bond” in a
breadth-first manner. Here we outline the gen-
erative process and describe how 3D structural
information is incorporated (Figure 2).

Generative Process. To perform the gener-
ative tasks considered in this manuscript, DE-
VELOP takes as input (i) the chemical struc-
ture of either the substructures that are to be
linked or the molecular scaffold that is to be
elaborated and (ii) a 3D structure of the par-
tial molecule and the desired pharmacophoric
features. The input to DEVELOP can be seen
in Figure 2 for both linker design and scaffold
elaboration.

Pharmacophores are a widely-used represen-
tation in cheminformatics.30 They are designed
to capture the key chemical interactions that al-
low ligands to bind to macromolecular targets,
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Figure 2: Overview of DEVELOP. The starting structures and 3D pharmacophore map are con-
verted into a graph representation and a voxel grid, respectively. These are fed into GNN and CNN
encoders, respectively. The featurisations are combined and decoded by a GNN-based decoder.

such as hydrogen bonds, charges, or lipophilic
contacts. Pharmacophores can be derived both
from other molecules (ligand-based) and in-
ferred or proposed based on the protein target
of interest (structure-based), making this repre-
sentation broadly applicable. In this work, we
utilised 3D pharmacophores derived from the
ground truth molecules.

Due to their prevalence and importance in
drug discovery, the pharmacophores included in
our representation were hydrogen bond donors,
hydrogen bond acceptors, and aromatic sys-
tems. Our framework is readily extendable to
additional pharmacophores, or alternate struc-
tural representations.

To generate new molecules, first, a graph
representation of the starting substructure(s)
is constructed and nodes are encoded using
a gated graph neural network (GGNN)32 in
line with Imrie et al. 17 . The 3D structure of
the starting molecular fragment(s) and desired
pharmacophores is voxelised to construct a 3D
grid, with atoms and pharmacophores adopt-

ing a Gaussian representation centered at their
input coordinates33 (Figure 2). The voxel grid
representation is passed into a 3D convolutional
neural network composed of three 3 × 3 × 3
convolutional layers with ReLU activation, each
followed by a 2× 2× 2 max pooling layer, with
the final convolutional layer followed by a global
max pooling operation. We then apply dropout
with probability 0.2 before a fully-connected
layer produces the 3D structural encoding.

For linker design, the distance and angle
between the starting substructures has been
shown to provide a useful constraint.17 How-
ever, this representation is not readily extend-
able to scaffold elaboration, and thus this infor-
mation is only provided for linker design. The
3D structural encoding is concatenated with
the distance and angle information (in the case
of linker design) and a 1D count vector rep-
resenting the number of each pharmacophoric
feature that should be present in the gener-
ated molecule. This forms the structural in-
formation, D, used by the decoder to generate
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molecules.
From these embeddings, molecules are gener-

ated in line with Imrie et al. 17 . The decoding
process is initialised with the node encodings
together with a set of expansion nodes whose
feature vectors are drawn from the standard
normal, N (0, I). Each node is labeled with an
atom type sampled from a classifier applied to
the concatenation of the node encoding and the
structural information, D.

Molecules are constructed iteratively “bond-
by-bond” from this set of nodes. After each
step, the node encodings are updated by a de-
coder GGNN. Edges and their edge types are
chosen based on the feature vector for the (pos-
sible) edge between node v and candidate node
u given by

φt
v,u = [t, stv, s

t
u, dv,u,H

0,H t,D],

where stv = [zt
v, lv] is the concatenation of the

hidden state of node v after t steps (zt
v) and

its atomic label (lv), dv,u is the graph distance
between v and u, H0 is the average initial rep-
resentation of all nodes, H t is the average rep-
resentation of nodes at generation step t, and
D represents the structural information.

Our model is trained using the same loss func-
tion as Imrie et al. 17 which is similar to the
standard VAE loss, including a reconstruction
loss and a Kullback-Leibler (KL) regularisation
term:

L = Lrecon + λKLLKL.

No extra terms are included to regularise the
CNN encoding. We use the same hyperparam-
eters for training as Imrie et al. 17 (see Support-
ing Information). For additional details regard-
ing the underlying model see Imrie et al. 17 .

Data Sets. Due to the lack of experimen-
tal data, we constructed sets for training and
evaluation from general molecular data sets us-
ing standard transformations from matched-
molecular pair analysis.34 For both linker de-
sign and scaffold elaboration, we used the same
underlying data and adopted the same process
for constructing datasets, with the main differ-
ence the transformation used. For linker design,
we enumerated all double cuts of acyclic single

bonds that were not within functional groups,
while for scaffold elaboration we performed sin-
gle cuts.

The training sets were derived from the sub-
set of ZINC35 selected at random by Gómez-
Bombarelli et al. 3 using the fragmentation pro-
cedure described above. For linker design,
this results in c. 418,000 fragment-molecule
pairs and is the same training set as Imrie
et al. 17 , while for scaffold elaboration there are
c. 427,000 examples.

To evaluate our method, we constructed test
sets for linker design and scaffold elaboration
from CASF-201636 and the PDBbind Refined
Set37 (v. 2019) using the same fragmentation
procedure used to construct the training set.
For both of the CASF and PDBbind test sets,
we only retained examples with elaborations
containing at least five atoms. In addition, for
the PDBbind test sets, we ensured that the
molecular elaboration was unique and was not
present in the training set. As a result, the
CASF test sets contain 188 and 237 examples
for linker design and scaffold elaboration, re-
spectively, while the PDBbind test sets contain
321 and 295 examples, respectively. Due to the
stricter inclusion criteria, the PDBbind test sets
represent a significantly more challenging test
than the CASF sets and should better capture
the ability of a method to extrapolate to new
linkers and elaborations.

Evaluation Metrics. We assessed the gen-
erated molecules with a range of 2D and 3D
metrics, adopting a similar procedure to Im-
rie et al. 17 . After first checking the generated
molecules for validity, uniqueness, and novelty,
we then determined if the generated examples
were consistent with the 2D property filters
used to produce the training set. While it is
likely that there are many molecules that would
fulfil the desired criteria of the user, the original
molecule is a “true” correct answer and repre-
sents the best single ground truth available. As
a result, a primary evaluation metric was the
the recovery rate, which measures in how many
cases the original molecule was recovered by the
generation process.

Molecules which passed the 2D property fil-
ters were assessed on the basis of their 3D
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shape. We calculated 3D similarity by scoring
conformers of the generated molecules against
the original molecule using the same 3D shape
and colour score utilised in Imrie et al. 17 , based
on the methods described in Putta et al. 38 and
Landrum et al. 39 . For both linker design and
scaffold elaboration, we primarily assessed the
3D complementarity of the generated molecu-
lar component only (i.e. the linker or R-group)
with the reference structure (SCRDKit Gener-
ated). This score ranges between 0 (no match)
and 1 (perfect match). Scores above 0.6 indi-
cate a good match, while scores above 0.9 sug-
gest an almost perfect match.

The focus of our analysis is based on
SCRDKit Generated as it directly captures
the chemical differences between the proposed
molecules. However, for linker design we also
calculated the 3D metrics utilised in Imrie
et al. 17 (SCRDKit Molecule, SCRDKit Fragments,
RMSD) to ensure that the proposed linkers
satisfy the basic structural constraints. We did
not use these metrics in the scaffold elabora-
tion experiments since the conformation of the
molecular core is typically largely unaffected by
its side chains.40

For each proposed compound, we generated
3D conformers using RDKit,41 adopting the
filtering and sampling procedure proposed by
Ebejer et al. 42 . To calculate SCRDKit Gener-
ated, we generated conformers in a constrained
manner, biasing conformations towards those
that maintained the conformation of the start-
ing structure(s). However, to mitigate the risk
of generating physically unrealistic structures,
we removed high energy conformers. We then
scored all conformers, taking the best score as
the final score for a particular molecule.

Comparison to Other Methods. For both
linker design and scaffold elaboration, we com-
pared DEVELOP to DeLinker17 and a ver-
sion of the DeLinker method which is provided
with the number of each pharmacophoric fea-
ture that should be present in the generated
linker (“DeLinker-Counts”). The difference be-
tween DEVELOP and these two baselines is the
structural information, D, included in the fea-
ture vector, φt

v,u. This comparison allowed us to
assess directly the impact of (1) including phar-

macophoric constraints, and (2) providing these
constraints as a physically-meaningful 3D struc-
tural representation rather than a 1D count vec-
tor.

We also compared our results to recent
deep learning methods for these design prob-
lems. For linker design, we compared our
method to SyntaLinker,18 while for scaffold
elaboration, we benchmarked against Arús-
Pous et al. 21 (“REINVENT”). Both methods
adopt a SMILES-based formulation and nei-
ther framework incorporates 3D information
in the design process. In both cases, we re-
trained these models on the training sets de-
scribed above using the open-source implemen-
tations provided by the authors to ensure a fair
comparison between the methods tested. We
adopted the same settings and hyperparame-
ters described in the original publications.

Experimental Setup. In all of our experi-
ments, we used the same training sets (one for
linker design and one for scaffold elaboration)
derived from the ZINC data set to train all of
the models considered. When evaluating using
the data sets derived from CASF and PDBbind,
we generated 250 molecules for each example for
each of the methods considered. For the graph-
based models (DeLinker, DeLinker-Counts, and
DEVELOP), the number of atoms was set equal
to the number of atoms in the original molecule.
The pharmacophoric information provided to
DeLinker-Counts and DEVELOP was derived
directly from the ground truth molecule. In the
case of SyntaLinker, the model was provided
with the shortest linker bond distance.

Results and Discussion

We validate the ability of our deep genera-
tive model (DEVELOP) to perform linker de-
sign and scaffold elaboration using 3D pharma-
cophoric information, reporting significant im-
provement over all other methods. Through the
use of several canonical examples, we demon-
strate the impact of the pharmacophoric con-
straints on the generated molecules. We show
a significant improvement in the quality of gen-
erated molecules in large-scale evaluations on
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Table 1: Impact of pharmacophoric constraints. Including 3D pharmacophoric information (DE-
VELOP) substantially improves the ability to generate molecules with desired interaction patterns.

Design Target No. Geometric No. Include
Task Elaboration Method Recovered Isomers Pharmacophores

Linker
Design

R

OH

R

DeLinker No 0 14

DeLinker-Counts No 1 12

DEVELOP Yes 41 148

NH2

RR DeLinker No 0 13

DeLinker-Counts Yes 16 19

DEVELOP Yes 47 60

Scaffold
Elaboration

NH2

O

R

DeLinker No 0 0

DeLinker-Counts No 0 0

DEVELOP Yes 3 7

test sets derived from CASF and PDBbind, fur-
ther demonstrating the importance of including
pharmacophoric information. Finally, we illus-
trate the applicability of our approach to scaf-
fold elaboration using an R-group optimisation
case study derived from the literature.

Importance of 3D Pharmacophoric
Constraints.

We assessed the impact of pharmacophoric
constraints on the generation process empiri-
cally using two canonical examples for linker
design and one example for scaffold elabora-
tion (Table 1). The examples were all cho-
sen from the PDBbind test sets (see Methods)
and therefore none of the target elaborations
were included in the training set. We gen-
erated 1000 molecules for each example using
DeLinker, DeLinker-Counts, and DEVELOP.

Only DEVELOP was able to recover both of
the canonical examples for linker design, with
DeLinker not generating the correct linker in
either case. The difference between the meth-
ods is further exemplified when considering ge-
ometric isomers with the same chemical struc-
ture but possibly different substitution pat-
terns of the exit vectors and substituent. DE-
VELOP frequently generated linkers matching
the chemical structure of the linker (41-47),
while DeLinker did not produce a single geo-
metric isomer.

The improved performance of DEVELOP

is also evident when we assessed how many
molecules included the desired pharmacophoric
pattern of the examples (aromatic ring with
correct substituent group). A significantly
larger proportion of the generated molecules
contained the desired pharmacophoric features
when the 3D information was provided (60-148,
DEVELOP) compared to not providing this in-
formation (13-14, DeLinker) or providing only
1D pharmacophore counts (12-19, DeLinker-
Counts).

The largest difference in generated molecules
occurred in the phenol example, where only one
geometric isomer was generated by DeLinker
and DeLinker-Counts combined compared to 41
from DEVELOP. This is a particularly diffi-
cult example for both DeLinker and DeLinker-
Counts due to the presence of a donor-acceptor
group, but illustrates the necessity of adopting
a 3D representation.

The scaffold elaboration example proved chal-
lenging for all methods, primarily due to the
size of the elaboration. Only DEVELOP recov-
ered the 3-methyl-benzamide elaboration, with
neither of the other two methods generating
a single geometric isomer. In addition, DE-
VELOP was the only method to generate any
elaborations containing the desired functional-
ity of an aromatic system with an amide side-
chain.

These examples demonstrate the importance
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Table 2: Linker design. PDBbind set results (see Methods, Evaluation Metrics for definitions of
the metrics).

Metric SyntaLinker DeLinker DeLinker-Counts DEVELOP

Valid 11.6% 96.9% 90.2% 93.1%
Unique 93.6% 86.1% 77.8% 77.3%
Novel 54.8% 84.0% 87.6% 88.7%

Recovered 0.3% 1.9% 8.7% 22.4%
Pass 2D filters 81.1% 63.4% 59.5% 61.7%

SCRDKit Generated
>0.6 9.4% 10.4% 19.8% 27.9%
>0.7 4.5% 4.2% 10.1% 14.8%
>0.8 2.2% 1.5% 4.4% 6.1%
>0.9 0.7% 0.4% 1.2% 1.5%

of including pharmacophoric constraints for
both linker design and scaffold elaboration.
In all cases, it was only possible to consis-
tently generate molecules with specific pharma-
cophoric profiles when 3D pharmacophoric in-
formation was included.

Linker Design Experiments On Large
Test Sets.

DEVELOP substantially outperformed all
other methods on both the CASF and PDB-
bind test sets, with significant improvements in
both the number of true linkers recovered and
the proportion of generated molecules with high
SCRDKit Generated. This was achieved with
limited impact on the uniqueness of the gen-
erated molecules and their ability to pass basic
2D chemical filters (Tables 2, S1, Figure 3).

In comparison, SyntaLinker performed poorly
in particular as measured by the 2D metrics,
producing weaker results than were reported
in its original publication.18 SyntaLinker pro-
duced a low proportion of valid molecules and
recovered only 0.3% of the original molecules.
Due to the comparatively weak results, we fo-
cus the remainder of our analysis on the three
graph-based methods. For further discussion
on the SyntaLinker results, see the Supporting
Information.

The proportion of valid molecules generated
by the other three methods was high in all
cases (>90%) with similar proportions of novel

molecules proposed (69-71% on CASF, Table
S1; 84-89% on PDBbind, Table 2). As is ex-
pected, as more structural information was pro-
vided to the model, the proportion of unique
molecules decreased due to the constraints on
the generative process. However, 58% and
77% of the molecules produced DEVELOP on
CASF and PDBbind, respectively, were unique,
demonstrating that the model still samples
from chemical space and has not experienced
mode collapse, degrading to a single or small
number of solutions.

Incorporating pharmacophoric information
substantially increased the recovery rate of the
original molecules. On the CASF set, DE-
VELOP recovered 50% of the ground truth
molecules, compared to 30% for DeLinker and
42% for DeLinker-Counts. The PDBbind set
is particularly challenging with DeLinker only
able to recover 1.9% of the original molecules,
while a database-based method would not be
able to recover any, due to there being no over-
lap with the training set. Including the count
of each pharmacophore present in the original
linker increased the proportion recovered to
8.7% (DeLinker-Counts). Crucially, providing
this information as a 3D structural represen-
tation offered a significant benefit over simply
providing the pharmacophore counts. On the
PDBbind test set, DEVELOP recovered 22.4%
of the original molecules, more than ten times
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Figure 3: Linker design. Number of original molecules recovered as the number of generated
molecules is increased. DEVELOP recovers the significantly more of the original molecules than
both baselines for any number of samples generated.

as many as DeLinker and more than twice as
many as DeLinker-Counts (Table 2).

A significant improvement is also seen when
assessing the 3D similarity of the generated
linkers to the original ones. DEVELOP im-
proved the proportion of molecules with high
structural similarity (SCRDKit Generated > 0.8)
by 300% and 39% compared to DeLinker and
DeLinker-Counts, respectively, on the PDBbind
test set (Table 2), with similar improvements on
the CASF set (Table S1).

In addition to SCRDKit Generated, we also
calculated the 3D metrics employed in Imrie
et al. 17 , namely SCRDKit Molecule, SCRDKit

Fragments, and RMSD. These metrics primar-
ily capture whether the molecular linker allows
the original substructures to adopt similar con-
formations, with the chemical features of the
linker having limited to no effect on this score.
The linkers generated by DEVELOP showed a
substantial improvement on CASF compared
to both DeLinker and DeLinker-Counts (Ta-
ble S2), while performing similarly on PDBbind
(Table S3).

As previously stated, these metrics primarily
assess whether the linker can allow the starting
substructures to adopt the required conforma-
tion. The additional information regarding the
desired linker chemistry may well not improve
these scores, even when linker quality is sub-
stantially improved.

To investigate whether the improvement in re-

covery rate is due to the number of linkers gen-
erated, we generated 5000 examples for each
pair of starting fragments and assessed in how
many cases the true linker was recovered (Fig-
ure 3). Due to sampling constraints, it was not
possible to include SyntaLinker in this analy-
sis (see the Supporting Information). The im-
provement in recovery rate of DEVELOP per-
sisted even as substantially more linkers were
generated. After several thousand examples,
the rate of recovery of additional linkers de-
creased significantly for all methods, but re-
mained the highest for DEVELOP. While in-
creasing the number of samples further would
be likely to yield more linkers being recovered,
this effect may well be relatively small unless
orders of magnitude more samples were gener-
ated. Figure 3 demonstrates that DEVELOP
generates better linkers rather than simply pro-
ducing similar molecules to DeLinker.

Scaffold Elaboration Experiments On
Large Test Sets.

Large-scale assessments on the CASF and
PDBbind test sets demonstrated that DE-
VELOP can effectively perform scaffold elab-
oration, with similar trends as the linker design
experiments (Tables 3, S4 and Figure 4).

Almost all molecules generated by the graph-
based models (DeLinker, DeLinker-Counts, and
DEVELOP) are deemed valid since chemical
valency is enforced during generation (the very
small number of invalid molecules arises from

9

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.04.27.441676doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.27.441676
http://creativecommons.org/licenses/by/4.0/


Table 3: Scaffold elaboration. PDBbind set results (see Methods, Evaluation Metrics for definitions
of the metrics).

Metric REINVENT DeLinker DeLinker-Counts DEVELOP

Valid 99.9% 99.9% 100.0% 99.4%
Unique 23.7% 86.7% 80.3% 74.8%
Novel 2.1% 70.2% 78.3% 77.2%

Recovered 0.0% 1.4% 4.4% 14.9%
Pass 2D filters 98.8% 56.1% 48.6% 52.2%

SCRDKit Generated
>0.6 4.5% 3.3% 5.5% 13.8%
>0.7 1.1% 1.0% 1.7% 5.2%
>0.8 0.3% 0.2% 0.5% 1.0%
>0.9 0.0% 0.0% 0.2% 0.1%

cases where no elaboration is proposed, Table
3). The majority of molecules generated were
unique, with uniqueness decreasing from 87%
for DeLinker to 75% for DEVELOP as more
constraints were provided. This was in line with
expectations and mirrors the linker design ex-
periments, with all methods proposing a high
proportion of novel R-groups (35-43% on the
CASF set, 70-78% on the PDBbind set).

In line with the performance for linker design,
including 3D pharmacophoric information re-
sulted in a substantially higher proportion of
the true elaborations being recovered. On the
CASF test set, DEVELOP recovered 69% of the
ground truth molecules compared to 47% for
DeLinker and 60% for DeLinker-Counts (Table
S4). On the PDBbind set, DEVELOP recov-
ered 15% of the original elaborations, an in-
crease of ten-fold compared to DeLinker (1.4%,
Table 3). This performance persisted as more
molecules were generated (Figure 4). When
5000 elaborations were generated for each scaf-
fold, DEVELOP recovered 35% of the original
molecules compared to 16% when the 3D in-
formation was removed (DeLinker-Counts) and
only 7% when no pharmacophoric information
was included (DeLinker).

Finally, there was a substantial improvement
in the 3D similarity of the generated molecules
to the original ones. Of the elaborations which
passed the 2D filters, 13.8% of those generated

by DEVELOP obtained an SCRDKit Generated
score of greater than 0.6 compared to 3.3%
and 5.5% obtained by DeLinker and DeLinker-
Counts, respectively.

Almost none of the molecules generated by
any method for the PDBbind test set achieved
an SCRDKit Generated score above 0.9. To re-
duce the impact of possible limitations of the
conformer generation process, we recalculated
SCRDKit Generated using generated conformers
of the ground truth molecules instead of the
experimentally determined conformers (Tables
S5, S6). On the PDBbind set, the proportion of
generated molecules with SCRDKit Generated >
0.9 remained low for all methods except DE-
VELOP, which increased to 2.6%. This repre-
sents a sizeable improvement over the next best
method (DeLinker-Counts, 0.3%) and provides
further validation of the improved quality of
molecules generated by DEVELOP compared
to the baselines.

REINVENT produced significantly fewer
novel elaborations than either of the DeLinker
models or DEVELOP, with only 2-3% of gener-
ated elaborations not contained in the training
set (Table 3, S4). As such, REINVENT did
not recover any of the original elaborations
in the PDBbind test set, while on the CASF
test set REINVENT recovered only 25% of the
original elaborations compared to 69% for DE-
VELOP. In addition, REINVENT generated
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Figure 4: Scaffold elaboration. Number of original molecules recovered as the number of generated
molecules is increased. DEVELOP recovers the significantly more of the original molecules than
both baselines for any number of samples generated.

a similar proportion of elaborations that had
high 3D similarity to the original molecules as
DeLinker, and was substantially outperformed
by both DeLinker-Counts and DEVELOP. This
is expected given the additional information
available to both models; however, it reinforces
the importance of including pharmacophoric
information.

R-Group Optimisation Case Study.
We further demonstrate the applicability of

DEVELOP to R-group optimisation via a case
study derived from the literature. Borkin
et al. 43 developed a thienopyrimidine class of
compounds to block the protein–protein in-
teraction between menin and mixed lineage
leukemia (MLL) fusion proteins. This interac-
tion plays an important role in acute leukemias
with MLL translocations, making this an im-
portant drug target. The authors’ previous
work44 had led to the identification of a highly
potent menin–MLL inhibitor (IC50=31 nM,
GI50=0.55 µM, PDB ID: 4X5Z) but required
further improvement of cellular activity and
drug-like properties to develop compounds with
potential therapeutic value. This was achieved
via structure-based optimisation of substituents
introduced to the indole ring (Figure 5a).

Following optimisation of several positions,
the most potent compound displayed almost a
seven-fold improvement in affinity in MLL-AF9
cells (GI50=83 nM, PDB ID: 5DB3, Figure 5b,
right), while other highly potent compounds

demonstrated favourable drug-like properties,
such as significant improvements in selectivity,
reduced lipophilicity, and bioavailability.

The most significant modification to the orig-
inal compound was the optimisation of the
hydrogen bond interactions with Glu363 and
Glu366 on menin. The indole nitrogen in the
original molecule was involved in a hydrogen
bond with the side chain of Glu363 but was
partially solvent exposed and was not forming
interactions with Glu366 (Figure 5a). This led
the authors to explore a variety of substituents
containing hydrogen bond donors. Two potent
substitutions were an acetamide group (Fig-
ure 5b, left) and 4-methylpyrazole (Figure 5b,
right).

We investigated the ability of DEVELOP
to propose R-groups that met the design hy-
pothesis described in Borkin et al. 43 . In par-
ticular, we sought to design both aromatic
and non-aromatic hydrogen bond donor groups
that were able to make similar interactions to
the R-groups that were experimentally tested.
We derived 3D pharmacophoric profiles from
the ligands in PDB IDs 5DB2 and 5DB3 to
serve as input to DEVELOP. For the pharma-
cophoric profile derived from 5DB2, we gener-
ated 1000 R-groups with a maximum of four,
five, and six atoms, whilst for the pharma-
cophoric profile derived from 5DB3 we gener-
ated 1000 molecules with a maximum of five,
six, and seven atoms.

11

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.04.27.441676doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.27.441676
http://creativecommons.org/licenses/by/4.0/


Figure 5: R-group optimisation case study. (a) Crystal structure (PDB ID 4X5Z) of the initial
complex bound to menin. (b) Structure of two of the most potent optimised compounds (PDB
IDs left 5DB2, right 5DB3). The dashed lines represent key interactions. (c) Overlay of the most
potent optimised compound (green carbons, PDB ID 5DB3) and several compounds generated by
DEVELOP (yellow carbons) that make similar hydrogen bonding interactions.

DEVELOP successfully recovered both of the
experimentally-verified R-groups while gener-
ating many alternative molecules that could
form similar interactions with menin. All
methods were able to recover the acetamide
R-group (Figure 5b, left). However, DE-
VELOP produced substantially more exam-
ples that matched the pharmacophoric pro-
file (455) compared to both DeLinker-Counts
(327) and DeLinker (103). All methods were
also able to recover the 4-methylpyrazole R-
group, although this elaboration was only gen-
erated once by DeLinker and DeLinker-Counts,
compared to 61 times by DEVELOP. In addi-
tion, 237 of the elaborations generated by DE-
VELOP contained an aromatic system with a
donor group linked to the indole via a methy-
lene group compared to 50 for DeLinker and 11
for DeLinker-Counts.

We next sought to assess the alternatives
to the pyrazole R-group (Figure 5b, right)
that were proposed by DEVELOP. To vali-
date the molecules proposed by DEVELOP,

we docked the generated molecules containing
an aromatic system and at least one donor
group using GOLD45 and checked whether the
docked pose formed hydrogen bonding interac-
tions with Glu363 or Glu366. Three elabora-
tions, together with their Murcko scaffolds, are
shown in Figure 5c (yellow carbons) overlayed
with the pyrazole R-group (green carbons). All
of the examples appear to fit within the pocket
and were able to form hydrogen bonds with
Glu363 or Glu366, consistent with the stated
design hypothesis.

Conclusion

We have developed a method that combines
GNNs with CNNs to incorporate 3D pharma-
cophoric constraints into molecular generation.
Our approach allows prior knowledge to be used
to control the design process and is readily ex-
tendable to alternate 3D structural representa-
tions.
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We have demonstrated the applicability of
our approach to both linker design and scaffold
elaboration, two general tasks in the hit-to-lead
and lead optimisation stages of drug discovery.

The experimental results show that our model
significantly outperforms previous methods for
these problems and demonstrates the power of
including pharmacophoric constraints as a 3D
representation as opposed to a 1D count vector.

While the quality of the generated compounds
has increased significantly, the problem of se-
lecting which ones should be explored further
remains a key consideration. Successful appli-
cation of generative models relies on their suc-
cessful integration into the broader drug dis-
covery toolbox. An interesting development in
this direction is described in Green et al. 46 , who
used CNNs to predict appropriate fragments
given the structure of a protein-ligand complex.
While their work was based on scoring a fixed
database of fragments, extending such an ap-
proach to assess arbitrary elaborations could be
readily combined with our method to rank gen-
erated molecules.

While the focus of our work is generating
molecules with specific 3D characteristics, we
do not directly assign atomic coordinates dur-
ing generation. The direct generation of 3D
molecular structures is an exciting develop-
ment,47,48 but has not yet been applied to drug-
like molecules nor are existing methods directly
applicable to the settings considered in this
work. Extending our framework to generate
atomic coordinates directly is an avenue for fu-
ture work. Similarly, while we have shown en-
coding graph- and voxel-based representations
separately is effective, unifying both with a sin-
gle encoder that is 3D-aware could provide fur-
ther benefit.

Finally, the pharmacophoric profiles used for
our experiments were extracted from known
molecules. While existing molecules can of-
ten be used as the basis for specifying desired
pharmacophoric profiles in scaffold hopping or
R-group optimisation, for fragment linking or
elaboration a suitable ligand might not be avail-
able to derive a pharmacophoric profile, ne-
cessitating the manual specification of pharma-
cophoric features by a human expert. Accurate

prediction of useful pharmacophoric features,
directly from the protein structure or by other
means, is therefore an important next step.

We believe that our method will allow greater
synergy between human design hypotheses and
machine learning-based molecular design. Code
is available at https://github.com/oxpig/

DEVELOP.
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(9) Böhm, H.-J.; Flohr, A.; Stahl, M. Scaffold
Hopping. Drug Discovery Today: Technol.
2004, 1, 217–224.

(10) Langdon, S. R.; Ertl, P.; Brown, N.
Bioisosteric Replacement and Scaffold
Hopping in Lead Generation and Opti-
mization. Mol. Inf. 2010, 29, 366–385.

(11) Ichihara, O.; Barker, J.; Law, R. J.; Whit-
taker, M. Compound Design by Fragment-
Linking. Mol. Inf. 2011, 30, 298–306.

(12) Bienstock, R. J. In Fragment-Based Meth-
ods in Drug Discovery ; Klon, A. E., Ed.;
Springer New York: New York, NY, 2015;
pp 119–135.

(13) Troup, R. I.; Fallan, C.; Baud, M. G. J.
Current strategies for the design of PRO-
TAC linkers: a critical review. Explor.
Target. Anti-Tumor Ther. 2020, 1, 273–
312.

(14) Li, J.; Liu, J. PROTAC: A Novel Technol-
ogy for Drug Development. ChemistrySe-
lect 2020, 5, 13232–13247.

(15) Guha, R. In In Silico Models for Drug Dis-
covery ; Kortagere, S., Ed.; Humana Press:
Totowa, NJ, 2013; pp 81–94.

(16) Lamoree, B.; Hubbard, R. E. Current Per-
spectives in Fragment-Based Lead Discov-
ery (FBLD). Essays Biochem. 2017, 61,
453–464.

(17) Imrie, F.; Bradley, A. R.; van der
Schaar, M.; Deane, C. M. Deep Generative
Models for 3D Linker Design. J. Chem.
Inf. Model. 2020, 60, 1983–1995.

(18) Yang, Y.; Zheng, S.; Su, S.; Zhao, C.;
Xu, J.; Chen, H. SyntaLinker: automatic
fragment linking with deep conditional
transformer neural networks. Chem. Sci.
2020, 11, 8312–8322.

(19) Lim, J.; Hwang, S.-Y.; Moon, S.; Kim, S.;
Kim, W. Y. Scaffold-based molecular de-
sign with a graph generative model. Chem.
Sci. 2020, 11, 1153–1164.

(20) Li, Y.; Hu, J.; Wang, Y.; Zhou, J.;
Zhang, L.; Liu, Z. DeepScaffold: A Com-
prehensive Tool for Scaffold-Based De
Novo Drug Discovery Using Deep Learn-
ing. J. Chem. Inf. Model. 2020, 60, 77–91.
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Symmetry-adapted generation of 3D
point sets for the targeted discovery of
molecules. Advances in Neural Informa-
tion Processing Systems 32. 2019; pp
7566–7578.

16

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.04.27.441676doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.27.441676
http://creativecommons.org/licenses/by/4.0/

