- 1 Bioconversion of pomegranate residues into biofuels and bioactive lipids
- 2
- 3 Marianna Dourou^a, Christina N. Economou^b, Lida Aggeli^{a,b}, Miroslav Janák^{a,#}, Gabriela
- 4 Valdés^{a,&}, Nefeli Elezi^a, Dimitrios Kakavas^a, Theodore Papageorgiou^a, Dimitrios V.
- 5 Vayenas^b, Milan Certik^c, George Aggelis^{a,*}
- 6
- 7 ^aDivision of Genetics, Cell and Developmental Biology, Department of Biology, University
- 8 of Patras 26504, Patras, Greece
- 9 ^bDepartment of Chemical Engineering, University of Patras 26504, Patras, Greece
- 10 ^cInstitute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of
- 11 Technology, Bratislava 81237, Slovak Republic
- 12
- ^{*}Corresponding author: Email address: <u>George.Aggelis@upatras.gr</u>; Tel (+30) 2610969232
- 14
- [#]Current address: Institute of Biotechnology, Faculty of Chemical and Food Technology,
- 16 Slovak University of Technology, Bratislava 81237, Slovak Republic
- ⁴Current address: Centro Regional de Investigación e Innovación para la Sostenibilidad de la
- 18 Agricultura y los Territorios Rurales (CERES), Pontificia Universidad Católica de
- 19 Valparaíso, Valparaíso 2340000, Chile.
- 20
- 21 Author contributions: M.D.: Methodology; Validation; Formal analysis; Writing Original
- 22 Draft; Visualization; C.N.E.: Validation; Formal analysis; Writing Original Draft; L.A.:
- 23 Methodology; Formal analysis; Investigation; M.J.: Methodology; Investigation; G.V.:
- 24 Investigation; N.E.: Investigation; D.K.: Investigation; Th.P.: Investigation; D.V.V.:
- 25 Supervision; M.C.: Supervision; G.A.: Conceptualization; Writing Review & Editing;
- 26 Supervision

27 Abstract

28	Pomegranate residues (PRs) (i.e. the solid residues remaining after juice extraction),
29	generated currently in abundance in Greece, contain a variety of carbon sources and therefore
30	can be regarded as a potential feedstock for chemical and biotechnological processes rather
31	than as waste materials. In the current project, the polysaccharides contained in PRs were
32	extracted and hydrolyzed in a one-step process without the use of chemical reagents and the
33	resulting broth was used as substrate in biotechnological applications, including ethanol and
34	single cell oil (SCO) production. The yeasts Meyerozyma guilliermondii, Scheffersomyces
35	coipomoensis, Sugiyamaella paludigena and especially Saccharomyces cerevisiae, were able
36	to efficiently convert PR derived reducing sugars into bioethanol. Ethanol production under
37	anaerobic conditions ranged from 3.6 to 12.5 g/L. In addition, the oleaginous yeasts
38	Lipomyces lipofer and Yarrowia lipolytica as well as M. guilliermondii, S. coipomoensis and
39	S. paludigena were tested for their ability to accumulate lipids suitable as feedstock for
40	biodiesel production. Lipids were accumulated at concentrations up to 18% and were rich in
41	palmitic acid (C16:0) and oleic acid (C18:1). Finally, the oleaginous fungus Cunnichamella
42	echinulata was cultivated on PR based solid substrates for γ -linolenic acid (GLA) production.
43	The fermented bio-products (i.e. fermented substrate plus fungal mycelia) contained up to 4.8
44	mg GLA/g of dry weight. Phenolic removal (up to 30%) was achieved by several of the above
45	mentioned microorganisms, including C. echinulata, L. lipofer, M. guilliermondii, S.
46	paludigena and Y. lipolytica. We conclude that PRs can be used as a raw material for
47	microbial growth, ethanol and SCO production, which is of economic and environmental
48	importance.
49	
50	Keywords: pomegranate residues; bioethanol; Saccharomyces cerevisiae; modelling;

51 microbial lipids; Cunnighamella echinulata

- 53 **Abbreviations**: FA, fatty acid; GLA, γ-linolenic acid; OFs, oat flakes; PRs, pomegranate
- residues; PUFAs, polyunsaturated fatty acids; R.S., reducing sugars; SCOs, single cell oil;
- 55 SSF, Solid-state fermentation; TAGs, triacylglycerols; T.S., total sugars; WB, wheat bran

56 1. Introduction

57	Agriculture is a very important economic activity that boosts prosperity and contributes to
58	tackling poverty in many countries. According to The World Bank collection, agricultural
59	activity worldwide in 2017 accounted for 3.43% of the gross domestic product (GDP).
60	Specifically for Greece, in 2018 the agricultural domestic product represented 3.72%, of
61	GDP, twice as much as in other European countries, while together with processing,
62	nowadays exceeds 8% (World Bank, September 2020). However, the expansion and
63	modernization of the agricultural sector, and especially the processing of agricultural
64	products, has caused environmental concerns, due to the inevitable co-production of residues
65	and wastewaters, which are produced in huge quantities annually. Besides, water use in
66	agriculture accounts for 70% of total water use globally.
67	Two different types of agro-industrial residues exist, namely field plant residues,
68	which include remaining plant parts (e.g. leaves, straw, stalks, seeds, roots etc.), and industrial
69	residues, which include organic matter or plant parts produced by food and fruit industries
70	(e.g. molasses, peels, fruit marc and seeds and fruit pulp) (Sadh et al., 2018). Among residues,
71	lignocellulosic biomass is the most abundant residue worldwide, and although it can be
72	considered as a promising cost-effective fermentation feedstock (Diwan and Gupta, 2019;
73	Valdés et al., 2020b, 2020a), is treated as waste in many countries (Arevalo-Gallegos et al.,
74	2017). The uncontrollable disposal of agro-industrial residues, especially those produced
75	during industrial processing, to the landfills without any treatment, can cause environmental
76	pollution on the surrounded areas and harmful effects on human and animal health (Ghinea et
77	al., 2019).
78	The use of the lignocellulosic material as a substrate in biotechnological applications
79	requires additional pretreatment phases, to make it fermentable (Caporusso et al., 2021;
80	Mosier, 2005; Sarris and Papanikolaou, 2016; Valdés et al., 2020a), which increases the cost
81	of the whole process. Lignocellulosic biomass consists of cellulose, hemicellulose and lignin.
82	During the pretreatment procedure, lignin "seal" is removed and cellulose is released and
83	becomes accessible for hydrolysis (Haghighi Mood et al., 2013; Sánchez and Cardona, 2008).

[4]

 microwave irradiation, mechanical extrusion, freeze pretreatment), chemical (in an acid or an alkaline environment), physico-chemical (using steam explosion, hot water, wet oxidation and CO₂ explosion) and biochemical (using microorganisms and enzymes) (Haghighi Mood et al., 2013; Sarkar et al., 2012). Lately, combination of two of the above mentioned methods is proposed to increase the efficiency of the process. The first step of pretreatment involves lignin destruction, followed by hydrolysis of cellulose using acids or enzymes, resulting in the release of fermentable sugars (Sánchez and Cardona, 2008). Usually, glucose and xylose are extracted from lignocellulosic biomass. Thus, microorganisms that can utilize both C-5 and C-6 sugars are highly desired to increase the fermentation efficiency for the production of valuable metabolic products, including ethanol and lipids, from such materials (Diwan and Gupta, 2020). The last decade the popularity of pomegranate products (mainly fresh fruit and juice) has increased tremendously thanks to their nutritional value and benefits to human health. Many reports describe the antimicrobial, antiviral, anticancer, antioxidant and antimutagenic properties of the various parts of the plant. (Akhtar et al., 2017). As a result, pomegranate cultivation has increased significantly worldwide to meet the growing demand. For instance, in Greece this crop extended up to 700-800 acres until 2007 and nowadays has reached 15.000 acres, yielding 30.000 tons of fruits per year. Consequently, the pomegranate processing industry has significantly expanded, and its negative outputs have already appeared (Kaderides et al., 2015). It has been estimated that the production of each ton of concentrated to 65 Brix pomegranate peels and seeds) (Hasnaoui et al., 2014). Although PRs is an excellent source of sugars, such as rib	84	Pretreatment methods are categorized in four groups, i.e. physical (i.e. grinding and milling,
 CO₂ explosion) and biochemical (using microorganisms and enzymes) (Haghighi Mood et al., 2013; Sarkar et al., 2012). Lately, combination of two of the above mentioned methods is proposed to increase the efficiency of the process. The first step of pretreatment involves lignin destruction, followed by hydrolysis of cellulose using acids or enzymes, resulting in the release of fermentable sugars (Sánchez and Cardona, 2008). Usually, glucose and xylose are extracted from lignocellulosic biomass. Thus, microorganisms that can utilize both C-5 and C-6 sugars are highly desired to increase the fermentation efficiency for the production of valuable metabolic products, including ethanol and lipids, from such materials (Diwan and Gupta, 2020). The last decade the popularity of pomegranate products (mainly fresh fruit and juice) has increased tremendously thanks to their nutritional value and benefits to human health. Many reports describe the antimicrobial, antiviral, anticancer, antioxidant and antimutagenic properties of the various parts of the plant. (Akhtar et al., 2017). As a result, pomegranate cultivation has increased significantly worldwide to meet the growing demand. For instance, in Greece this crop extended up to 700-800 acres until 2007 and nowadays has reached 15.000 acres, yielding 30.000 tons of fruits per year. Consequently, the pomegranate processing industry has significantly expanded, and its negative outputs have already appeared (Kaderides et al., 2015). It has been estimated that the production of each ton of concentrated to 65 Brix pomegranate piels and seeds) (Hasnaoui et al., 2014). Although PRs is an excellent source of sugars, such as ribose, glucuronic acid, galacturonic acid, L-rhamnose, D- fucose, L-arabinose, D-xylose, D-mannose, D-galactose and D-glucose (Zhai et al., 2018a, 2018b) and nume	85	microwave irradiation, mechanical extrusion, freeze pretreatment), chemical (in an acid or an
 2013; Sarkar et al., 2012). Lately, combination of two of the above mentioned methods is proposed to increase the efficiency of the process. The first step of pretreatment involves lignin destruction, followed by hydrolysis of cellulose using acids or enzymes, resulting in the release of fermentable sugars (Sánchez and Cardona, 2008). Usually, glucose and xylose are extracted from lignocellulosic biomass. Thus, microorganisms that can utilize both C-5 and C-6 sugars are highly desired to increase the fermentation efficiency for the production of valuable metabolic products, including ethanol and lipids, from such materials (Diwan and Gupta, 2020). The last decade the popularity of pomegranate products (mainly fresh fruit and juice) has increased tremendously thanks to their nutritional value and benefits to human health. Many reports describe the antimicrobial, antiviral, anticancer, antioxidant and antimutagenic properties of the various parts of the plant. (Akhtar et al., 2015; Bassiri-Jahromi, 2018; Hasnaoui et al., 2014; Joseph et al., 2013; Sharma et al., 2017). As a result, pomegranate cultivation has increased significantly worldwide to meet the growing demand. For instance, in Greece this crop extended up to 700-800 acres until 2007 and nowadays has reached 15.000 acres, yielding 30.000 tons of fruits per year. Consequently, the pomegranate processing industry has significantly expanded, and its negative outputs have already appeared (Kaderides et al., 2015). It has been estimated that the production of each ton of concentrated to 65 Brix pomegranate juice generates up to 5–5.5 tons of pomegranate residues (PRs) (i.e. pomegranate peels and seeds) (Hasnaoui et al., 2014). Although PRs is an excellent source of sugars, such as ribose, glucuronic acid, galacturonic acid, L-rhamnose, D- fucose, L-arabinose, D-xyl	86	alkaline environment), physico-chemical (using steam explosion, hot water, wet oxidation and
89proposed to increase the efficiency of the process. The first step of pretreatment involves90lignin destruction, followed by hydrolysis of cellulose using acids or enzymes, resulting in the91release of fermentable sugars (Sánchez and Cardona, 2008). Usually, glucose and xylose are92extracted from lignocellulosic biomass. Thus, microorganisms that can utilize both C-5 and93C-6 sugars are highly desired to increase the fermentation efficiency for the production of94valuable metabolic products, including ethanol and lipids, from such materials (Diwan and95Gupta, 2020).96The last decade the popularity of pomegranate products (mainly fresh fruit and juice)97has increased tremendously thanks to their nutritional value and benefits to human health.98Many reports describe the antimicrobial, antiviral, anticancer, antioxidant and antimutagenic99properties of the various parts of the plant. (Akhtar et al., 2015; Bassiri-Jahromi, 2018;101Hasnaoui et al., 2014; Joseph et al., 2013; Sharma et al., 2017). As a result, pomegranate102in Greece this crop extended up to 700-800 acres until 2007 and nowadays has reached10315.000 acres, yielding 30.000 tons of fruits per year. Consequently, the pomegranate104processing industry has significantly expanded, and its negative outputs have already105appeared (Kaderides et al., 2015). It has been estimated that the production of each ton of106concentrated to 65 Brix pomegranate juice generates up to 5–5.5 tons of pomegranate107residues (PRs) (i.e. pomegranate peels and seeds) (Hasnaoui et al., 2014). Although	87	CO ₂ explosion) and biochemical (using microorganisms and enzymes) (Haghighi Mood et al.,
 lignin destruction, followed by hydrolysis of cellulose using acids or enzymes, resulting in the release of fermentable sugars (Sánchez and Cardona, 2008). Usually, glucose and xylose are extracted from lignocellulosic biomass. Thus, microorganisms that can utilize both C-5 and C-6 sugars are highly desired to increase the fermentation efficiency for the production of valuable metabolic products, including ethanol and lipids, from such materials (Diwan and Gupta, 2020). The last decade the popularity of pomegranate products (mainly fresh fruit and juice) has increased tremendously thanks to their nutritional value and benefits to human health. Many reports describe the antimicrobial, antiviral, anticancer, antioxidant and antimutagenic properties of the various parts of the plant. (Akhtar et al., 2015; Bassiri-Jahromi, 2018; Hasnaoui et al., 2014; Joseph et al., 2013; Sharma et al., 2017). As a result, pomegranate cultivation has increased significantly worldwide to meet the growing demand. For instance, in Greece this crop extended up to 700-800 acres until 2007 and nowadays has reached 15.000 acres, yielding 30.000 tons of fruits per year. Consequently, the pomegranate processing industry has significantly expanded, and its negative outputs have already appeared (Kaderides et al., 2015). It has been estimated that the production of each ton of concentrated to 65 Brix pomegranate juice generates up to 5–5.5 tons of pomegranate residues (PRs) (i.e. pomegranate peels and seeds) (Hasnaoui et al., 2014). Although PRs is an excellent source of sugars, such as ribose, glucuronic acid, galacturonic acid, L-rhamnose, D- fucose, L-arabinose, D-xylose, D-mannose, D-galactose and D-glucose (Zhai et al., 2018a, 2018b) and numerous bioactive compounds (Santos et al., 2019; Sood and Gupta, 2015), in 	88	2013; Sarkar et al., 2012). Lately, combination of two of the above mentioned methods is
 release of fermentable sugars (Sánchez and Cardona, 2008). Usually, glucose and xylose are extracted from lignocellulosic biomass. Thus, microorganisms that can utilize both C-5 and C-6 sugars are highly desired to increase the fermentation efficiency for the production of valuable metabolic products, including ethanol and lipids, from such materials (Diwan and Gupta, 2020). The last decade the popularity of pomegranate products (mainly fresh fruit and juice) has increased tremendously thanks to their nutritional value and benefits to human health. Many reports describe the antimicrobial, antiviral, anticancer, antioxidant and antimutagenic properties of the various parts of the plant. (Akhtar et al., 2015; Bassiri-Jahromi, 2018; Hasnaoui et al., 2014; Joseph et al., 2013; Sharma et al., 2017). As a result, pomegranate cultivation has increased significantly worldwide to meet the growing demand. For instance, in Greece this crop extended up to 700-800 acres until 2007 and nowadays has reached 15.000 acres, yielding 30.000 tons of fruits per year. Consequently, the pomegranate processing industry has significantly expanded, and its negative outputs have already appeared (Kaderides et al., 2015). It has been estimated that the production of each ton of concentrated to 65 Brix pomegranate puels and seeds) (Hasnaoui et al., 2014). Although PRs is an excellent source of sugars, such as ribose, glucuronic acid, galacturonic acid, L-rhamnose, D- fucose, L-arabinose, D-xylose, D-mannose, D-galactose and D-glucose (Zhai et al., 2015), in 	89	proposed to increase the efficiency of the process. The first step of pretreatment involves
 extracted from lignocellulosic biomass. Thus, microorganisms that can utilize both C-5 and C-6 sugars are highly desired to increase the fermentation efficiency for the production of valuable metabolic products, including ethanol and lipids, from such materials (Diwan and Gupta, 2020). The last decade the popularity of pomegranate products (mainly fresh fruit and juice) has increased tremendously thanks to their nutritional value and benefits to human health. Many reports describe the antimicrobial, antiviral, anticancer, antioxidant and antimutagenic properties of the various parts of the plant. (Akhtar et al., 2015; Bassiri-Jahromi, 2018; Hasnaoui et al., 2014; Joseph et al., 2013; Sharma et al., 2017). As a result, pomegranate cultivation has increased significantly worldwide to meet the growing demand. For instance, in Greece this crop extended up to 700-800 acres until 2007 and nowadays has reached 15.000 acres, yielding 30.000 tons of fruits per year. Consequently, the pomegranate processing industry has significantly expanded, and its negative outputs have already appeared (Kaderides et al., 2015). It has been estimated that the production of each ton of concentrated to 65 Brix pomegranate juice generates up to 5–5.5 tons of pomegranate residues (PRs) (i.e. pomegranate peels and seeds) (Hasnaoui et al., 2014). Although PRs is an excellent source of sugars, such as ribose, glucuronic acid, galacturonic acid, L-rhamnose, D- fucose, L-arabinose, D-xylose, D-mannose, D-galactose and D-glucose (Zhai et al., 2015), in 	90	lignin destruction, followed by hydrolysis of cellulose using acids or enzymes, resulting in the
 C-6 sugars are highly desired to increase the fermentation efficiency for the production of valuable metabolic products, including ethanol and lipids, from such materials (Diwan and Gupta, 2020). The last decade the popularity of pomegranate products (mainly fresh fruit and juice) has increased tremendously thanks to their nutritional value and benefits to human health. Many reports describe the antimicrobial, antiviral, anticancer, antioxidant and antimutagenic properties of the various parts of the plant. (Akhtar et al., 2015; Bassiri-Jahromi, 2018; Hasnaoui et al., 2014; Joseph et al., 2013; Sharma et al., 2017). As a result, pomegranate cultivation has increased significantly worldwide to meet the growing demand. For instance, in Greece this crop extended up to 700-800 acres until 2007 and nowadays has reached 15.000 acres, yielding 30.000 tons of fruits per year. Consequently, the pomegranate processing industry has significantly expanded, and its negative outputs have already appeared (Kaderides et al., 2015). It has been estimated that the production of each ton of concentrated to 65 Brix pomegranate puice generates up to 5–5.5 tons of pomegranate residues (PRs) (i.e. pomegranate peels and seeds) (Hasnaoui et al., 2014). Although PRs is an excellent source of sugars, such as ribose, glucuronic acid, galacturonic acid, L-rhamnose, D- fucose, L-arabinose, D-xylose, D-mannose, D-galactose and D-glucose (Zhai et al., 2015), in 	91	release of fermentable sugars (Sánchez and Cardona, 2008). Usually, glucose and xylose are
 valuable metabolic products, including ethanol and lipids, from such materials (Diwan and Gupta, 2020). The last decade the popularity of pomegranate products (mainly fresh fruit and juice) has increased tremendously thanks to their nutritional value and benefits to human health. Many reports describe the antimicrobial, antiviral, anticancer, antioxidant and antimutagenic properties of the various parts of the plant. (Akhtar et al., 2015; Bassiri-Jahromi, 2018; Hasnaoui et al., 2014; Joseph et al., 2013; Sharma et al., 2017). As a result, pomegranate cultivation has increased significantly worldwide to meet the growing demand. For instance, in Greece this crop extended up to 700-800 acres until 2007 and nowadays has reached 15.000 acres, yielding 30.000 tons of fruits per year. Consequently, the pomegranate processing industry has significantly expanded, and its negative outputs have already appeared (Kaderides et al., 2015). It has been estimated that the production of each ton of concentrated to 65 Brix pomegranate juice generates up to 5–5.5 tons of pomegranate residues (PRs) (i.e. pomegranate peels and seeds) (Hasnaoui et al., 2014). Although PRs is an excellent source of sugars, such as ribose, glucuronic acid, galacturonic acid, L-rhamnose, D- fucose, L-arabinose, D-xylose, D-mannose, D-galactose and D-glucose (Zhai et al., 2018a, 2018b) and numerous bioactive compounds (Santos et al., 2019; Sood and Gupta, 2015), in 	92	extracted from lignocellulosic biomass. Thus, microorganisms that can utilize both C-5 and
 Gupta, 2020). The last decade the popularity of pomegranate products (mainly fresh fruit and juice) has increased tremendously thanks to their nutritional value and benefits to human health. Many reports describe the antimicrobial, antiviral, anticancer, antioxidant and antimutagenic properties of the various parts of the plant. (Akhtar et al., 2015; Bassiri-Jahromi, 2018; Hasnaoui et al., 2014; Joseph et al., 2013; Sharma et al., 2017). As a result, pomegranate cultivation has increased significantly worldwide to meet the growing demand. For instance, in Greece this crop extended up to 700-800 acres until 2007 and nowadays has reached 15.000 acres, yielding 30.000 tons of fruits per year. Consequently, the pomegranate processing industry has significantly expanded, and its negative outputs have already appeared (Kaderides et al., 2015). It has been estimated that the production of each ton of concentrated to 65 Brix pomegranate juice generates up to 5–5.5 tons of pomegranate residues (PRs) (i.e. pomegranate peels and seeds) (Hasnaoui et al., 2014). Although PRs is an excellent source of sugars, such as ribose, glucuronic acid, galacturonic acid, L-rhamnose, D- fucose, L-arabinose, D-xylose, D-mannose, D-galactose and D-glucose (Zhai et al., 2018a, 2018b) and numerous bioactive compounds (Santos et al., 2019; Sood and Gupta, 2015), in 	93	C-6 sugars are highly desired to increase the fermentation efficiency for the production of
The last decade the popularity of pomegranate products (mainly fresh fruit and juice) has increased tremendously thanks to their nutritional value and benefits to human health. Many reports describe the antimicrobial, antiviral, anticancer, antioxidant and antimutagenic properties of the various parts of the plant. (Akhtar et al., 2015; Bassiri-Jahromi, 2018; Hasnaoui et al., 2014; Joseph et al., 2013; Sharma et al., 2017). As a result, pomegranate cultivation has increased significantly worldwide to meet the growing demand. For instance, in Greece this crop extended up to 700-800 acres until 2007 and nowadays has reached 15.000 acres, yielding 30.000 tons of fruits per year. Consequently, the pomegranate processing industry has significantly expanded, and its negative outputs have already appeared (Kaderides et al., 2015). It has been estimated that the production of each ton of concentrated to 65 Brix pomegranate juice generates up to 5–5.5 tons of pomegranate residues (PRs) (i.e. pomegranate peels and seeds) (Hasnaoui et al., 2014). Although PRs is an excellent source of sugars, such as ribose, glucuronic acid, galacturonic acid, L-rhamnose, D- fucose, L-arabinose, D-xylose, D-mannose, D-galactose and D-glucose (Zhai et al., 2018a, 2018b) and numerous bioactive compounds (Santos et al., 2019; Sood and Gupta, 2015), in	94	valuable metabolic products, including ethanol and lipids, from such materials (Diwan and
 has increased tremendously thanks to their nutritional value and benefits to human health. Many reports describe the antimicrobial, antiviral, anticancer, antioxidant and antimutagenic properties of the various parts of the plant. (Akhtar et al., 2015; Bassiri-Jahromi, 2018; Hasnaoui et al., 2014; Joseph et al., 2013; Sharma et al., 2017). As a result, pomegranate cultivation has increased significantly worldwide to meet the growing demand. For instance, in Greece this crop extended up to 700-800 acres until 2007 and nowadays has reached 15.000 acres, yielding 30.000 tons of fruits per year. Consequently, the pomegranate processing industry has significantly expanded, and its negative outputs have already appeared (Kaderides et al., 2015). It has been estimated that the production of each ton of concentrated to 65 Brix pomegranate juice generates up to 5–5.5 tons of pomegranate residues (PRs) (i.e. pomegranate peels and seeds) (Hasnaoui et al., 2014). Although PRs is an excellent source of sugars, such as ribose, glucuronic acid, galacturonic acid, L-rhamnose, D- fucose, L-arabinose, D-xylose, D-mannose, D-galactose and D-glucose (Zhai et al., 2018a, 2018b) and numerous bioactive compounds (Santos et al., 2019; Sood and Gupta, 2015), in 	95	Gupta, 2020).
 Many reports describe the antimicrobial, antiviral, anticancer, antioxidant and antimutagenic properties of the various parts of the plant. (Akhtar et al., 2015; Bassiri-Jahromi, 2018; Hasnaoui et al., 2014; Joseph et al., 2013; Sharma et al., 2017). As a result, pomegranate cultivation has increased significantly worldwide to meet the growing demand. For instance, in Greece this crop extended up to 700-800 acres until 2007 and nowadays has reached 15.000 acres, yielding 30.000 tons of fruits per year. Consequently, the pomegranate processing industry has significantly expanded, and its negative outputs have already appeared (Kaderides et al., 2015). It has been estimated that the production of each ton of concentrated to 65 Brix pomegranate juice generates up to 5–5.5 tons of pomegranate residues (PRs) (i.e. pomegranate peels and seeds) (Hasnaoui et al., 2014). Although PRs is an excellent source of sugars, such as ribose, glucuronic acid, galacturonic acid, L-rhamnose, D- fucose, L-arabinose, D-xylose, D-mannose, D-galactose and D-glucose (Zhai et al., 2018a, 2018b) and numerous bioactive compounds (Santos et al., 2019; Sood and Gupta, 2015), in 	96	The last decade the popularity of pomegranate products (mainly fresh fruit and juice)
 properties of the various parts of the plant. (Akhtar et al., 2015; Bassiri-Jahromi, 2018; Hasnaoui et al., 2014; Joseph et al., 2013; Sharma et al., 2017). As a result, pomegranate cultivation has increased significantly worldwide to meet the growing demand. For instance, in Greece this crop extended up to 700-800 acres until 2007 and nowadays has reached 15.000 acres, yielding 30.000 tons of fruits per year. Consequently, the pomegranate processing industry has significantly expanded, and its negative outputs have already appeared (Kaderides et al., 2015). It has been estimated that the production of each ton of concentrated to 65 Brix pomegranate juice generates up to 5–5.5 tons of pomegranate residues (PRs) (i.e. pomegranate peels and seeds) (Hasnaoui et al., 2014). Although PRs is an excellent source of sugars, such as ribose, glucuronic acid, galacturonic acid, L-rhamnose, D- fucose, L-arabinose, D-xylose, D-mannose, D-galactose and D-glucose (Zhai et al., 2018a, 2018b) and numerous bioactive compounds (Santos et al., 2019; Sood and Gupta, 2015), in 	97	has increased tremendously thanks to their nutritional value and benefits to human health.
 Hasnaoui et al., 2014; Joseph et al., 2013; Sharma et al., 2017). As a result, pomegranate cultivation has increased significantly worldwide to meet the growing demand. For instance, in Greece this crop extended up to 700-800 acres until 2007 and nowadays has reached 15.000 acres, yielding 30.000 tons of fruits per year. Consequently, the pomegranate processing industry has significantly expanded, and its negative outputs have already appeared (Kaderides et al., 2015). It has been estimated that the production of each ton of concentrated to 65 Brix pomegranate juice generates up to 5–5.5 tons of pomegranate residues (PRs) (i.e. pomegranate peels and seeds) (Hasnaoui et al., 2014). Although PRs is an excellent source of sugars, such as ribose, glucuronic acid, galacturonic acid, L-rhamnose, D- fucose, L-arabinose, D-xylose, D-mannose, D-galactose and D-glucose (Zhai et al., 2018a, 2018b) and numerous bioactive compounds (Santos et al., 2019; Sood and Gupta, 2015), in 	98	Many reports describe the antimicrobial, antiviral, anticancer, antioxidant and antimutagenic
 cultivation has increased significantly worldwide to meet the growing demand. For instance, in Greece this crop extended up to 700-800 acres until 2007 and nowadays has reached 15.000 acres, yielding 30.000 tons of fruits per year. Consequently, the pomegranate processing industry has significantly expanded, and its negative outputs have already appeared (Kaderides et al., 2015). It has been estimated that the production of each ton of concentrated to 65 Brix pomegranate juice generates up to 5–5.5 tons of pomegranate residues (PRs) (i.e. pomegranate peels and seeds) (Hasnaoui et al., 2014). Although PRs is an excellent source of sugars, such as ribose, glucuronic acid, galacturonic acid, L-rhamnose, D- fucose, L-arabinose, D-xylose, D-mannose, D-galactose and D-glucose (Zhai et al., 2018a, 2018b) and numerous bioactive compounds (Santos et al., 2019; Sood and Gupta, 2015), in 	99	properties of the various parts of the plant. (Akhtar et al., 2015; Bassiri-Jahromi, 2018;
 in Greece this crop extended up to 700-800 acres until 2007 and nowadays has reached 15.000 acres, yielding 30.000 tons of fruits per year. Consequently, the pomegranate processing industry has significantly expanded, and its negative outputs have already appeared (Kaderides et al., 2015). It has been estimated that the production of each ton of concentrated to 65 Brix pomegranate juice generates up to 5–5.5 tons of pomegranate residues (PRs) (i.e. pomegranate peels and seeds) (Hasnaoui et al., 2014). Although PRs is an excellent source of sugars, such as ribose, glucuronic acid, galacturonic acid, L-rhamnose, D- fucose, L-arabinose, D-xylose, D-mannose, D-galactose and D-glucose (Zhai et al., 2018a, 2018b) and numerous bioactive compounds (Santos et al., 2019; Sood and Gupta, 2015), in 	100	Hasnaoui et al., 2014; Joseph et al., 2013; Sharma et al., 2017). As a result, pomegranate
 103 15.000 acres, yielding 30.000 tons of fruits per year. Consequently, the pomegranate 104 processing industry has significantly expanded, and its negative outputs have already 105 appeared (Kaderides et al., 2015). It has been estimated that the production of each ton of 106 concentrated to 65 Brix pomegranate juice generates up to 5–5.5 tons of pomegranate 107 residues (PRs) (i.e. pomegranate peels and seeds) (Hasnaoui et al., 2014). Although PRs is an 108 excellent source of sugars, such as ribose, glucuronic acid, galacturonic acid, L-rhamnose, D- 109 fucose, L-arabinose, D-xylose, D-mannose, D-galactose and D-glucose (Zhai et al., 2018a, 110 2018b) and numerous bioactive compounds (Santos et al., 2019; Sood and Gupta, 2015), in 	101	cultivation has increased significantly worldwide to meet the growing demand. For instance,
 processing industry has significantly expanded, and its negative outputs have already appeared (Kaderides et al., 2015). It has been estimated that the production of each ton of concentrated to 65 Brix pomegranate juice generates up to 5–5.5 tons of pomegranate residues (PRs) (i.e. pomegranate peels and seeds) (Hasnaoui et al., 2014). Although PRs is an excellent source of sugars, such as ribose, glucuronic acid, galacturonic acid, L-rhamnose, D- fucose, L-arabinose, D-xylose, D-mannose, D-galactose and D-glucose (Zhai et al., 2018a, 2018b) and numerous bioactive compounds (Santos et al., 2019; Sood and Gupta, 2015), in 	102	in Greece this crop extended up to 700-800 acres until 2007 and nowadays has reached
 appeared (Kaderides et al., 2015). It has been estimated that the production of each ton of concentrated to 65 Brix pomegranate juice generates up to 5–5.5 tons of pomegranate residues (PRs) (i.e. pomegranate peels and seeds) (Hasnaoui et al., 2014). Although PRs is an excellent source of sugars, such as ribose, glucuronic acid, galacturonic acid, L-rhamnose, D- fucose, L-arabinose, D-xylose, D-mannose, D-galactose and D-glucose (Zhai et al., 2018a, 2018b) and numerous bioactive compounds (Santos et al., 2019; Sood and Gupta, 2015), in 	103	15.000 acres, yielding 30.000 tons of fruits per year. Consequently, the pomegranate
 106 concentrated to 65 Brix pomegranate juice generates up to 5–5.5 tons of pomegranate 107 residues (PRs) (i.e. pomegranate peels and seeds) (Hasnaoui et al., 2014). Although PRs is an 108 excellent source of sugars, such as ribose, glucuronic acid, galacturonic acid, L-rhamnose, D- 109 fucose, L-arabinose, D-xylose, D-mannose, D-galactose and D-glucose (Zhai et al., 2018a, 110 2018b) and numerous bioactive compounds (Santos et al., 2019; Sood and Gupta, 2015), in 	104	processing industry has significantly expanded, and its negative outputs have already
 residues (PRs) (i.e. pomegranate peels and seeds) (Hasnaoui et al., 2014). Although PRs is an excellent source of sugars, such as ribose, glucuronic acid, galacturonic acid, L-rhamnose, D- fucose, L-arabinose, D-xylose, D-mannose, D-galactose and D-glucose (Zhai et al., 2018a, 2018b) and numerous bioactive compounds (Santos et al., 2019; Sood and Gupta, 2015), in 	105	appeared (Kaderides et al., 2015). It has been estimated that the production of each ton of
 excellent source of sugars, such as ribose, glucuronic acid, galacturonic acid, L-rhamnose, D- fucose, L-arabinose, D-xylose, D-mannose, D-galactose and D-glucose (Zhai et al., 2018a, 2018b) and numerous bioactive compounds (Santos et al., 2019; Sood and Gupta, 2015), in 	106	concentrated to 65 Brix pomegranate juice generates up to 5-5.5 tons of pomegranate
 fucose, L-arabinose, D-xylose, D-mannose, D-galactose and D-glucose (Zhai et al., 2018a, 2018b) and numerous bioactive compounds (Santos et al., 2019; Sood and Gupta, 2015), in 	107	residues (PRs) (i.e. pomegranate peels and seeds) (Hasnaoui et al., 2014). Although PRs is an
110 2018b) and numerous bioactive compounds (Santos et al., 2019; Sood and Gupta, 2015), in	108	excellent source of sugars, such as ribose, glucuronic acid, galacturonic acid, L-rhamnose, D-
	109	fucose, L-arabinose, D-xylose, D-mannose, D-galactose and D-glucose (Zhai et al., 2018a,
practice they are usually left unexploited and only a small amount is used as a soil conditioner	110	2018b) and numerous bioactive compounds (Santos et al., 2019; Sood and Gupta, 2015), in
	111	practice they are usually left unexploited and only a small amount is used as a soil conditioner

112 (after composting), as fuel (in the form of dry pellets), as animal feed or for the recovery of 113 pharmaceuticals and cosmetics (Goula et al., 2017; Pathak et al., 2017; Pereira et al., 2016; 114 Pocan et al., 2018; Siddiqui et al., 2019). On the other hand, the necessity for low-cost and 115 environmentally friendly substrates suitable for microbial processes related to the production 116 of high value-added products (i.e. biofuels, single cell oils, single cell protein, enzymes, 117 pigments, organic acids, etc.), has been arisen. 118 Biofuels (mainly bioethanol and biodiesel) are renewable, cost-effective and 119 environmentally friendly energy sources alternative to fossil fuels, which has attracted the 120 interest of many countries in the context of the diminishing oil dependence and eliminating 121 the adverse effects of its use on global warming. Therefore, the demand for biofuels is 122 gradually increasing worldwide. Specifically, bioethanol apart from its variety of commercial 123 applications in cosmetology and in food and pharmaceutical industry, is also widely used as 124 an engine fuel, on its own, or blended with gasoline. However, the utilization of the so-called "1st generation" bioethanol, deriving from the fermentation of hydrolyzed corn starch or 125 126 sucrose juice, runs into the "food vs fuel" dilemma (Gray et al., 2006), therefore the production of the so-called "2nd generation" bioethanol (deriving through the valorization of 127 128 waste streams) is considered as a very important scientific priority worldwide (Rastogi and 129 Shrivastava, 2017; Sarkar et al., 2012; Tian and Chen, 2016). On the other hand, biodiesel 130 produced by a variety of renewable resources (i.e. plant or animal fats) (Banković-Ilić et al., 131 2014; Gutiérrez et al., 2017), is non-toxic, biodegradable, and has a favorable emission 132 profile, but, being potentially competitive in food production, it faces similar criticism to that 133 of the "1st generation" bioethanol. Alternatively, waste fats can be considered, with some 134 restrictions, as a raw material for the production of biodiesel, and this option has aroused 135 great interest in many countries. Besides, microbial oil, so-called single cell oil (SCO), 136 produced from yeasts cultivated on agro-industrial residues, presenting a fatty acid (FA) 137 composition similar to that of common vegetable oils, could be considered shortly as 138 feedstock in the biodiesel manufacture (Dourou et al., 2018; Li et al., 2008; Papanikolaou and 139 Aggelis, 2011a, 2011b; Singh and Gu, 2010; Wei et al., 2017). Contrary to yeast-derived

[6]

140	SCOs, fungi- and microalgae-derived SCOs are of pharmaceutical and dietary interest thanks
141	to the presence of polyunsaturated fatty acids (PUFAs), such as γ -linolenic acid (GLA, C18:3,
142	n-6), stearidonic (SDA, C18:4, n-3), arachidonic acid (ARA, C20:4, n- 6), eicosapentaenoic
143	acid (EPA, C20:5, n-3), docosapentaenoic acid (DPA, C22:5, n-3) and docosahexaenoic acid
144	(DHA, C22:6, n- 3) (Bellou et al., 2016; Fakas et al., 2009; Slaný et al., 2021).
145	A significant part of the production costs of both ethanol and SCO refers to the
146	substrate cost suggesting that a choice of a low-cost material as substrate, such as a carbon-
147	rich agro-industrial residue, is crucial for the process sustainability (Dourou et al., 2016;
148	Osorio-González et al., 2019; Sarris et al., 2013). Moreover, new strategies using
149	microorganisms derived after genetic engineering and/or adaptive laboratory evolution
150	approaches, used to increase the efficiency of substrate assimilation and metabolite
151	production, can contribute to the success of the process (da Silveira et al., 2020; Daskalaki et
152	al., 2019; De Melo et al., 2020; Dourou et al., 2018; Li et al., 2019).
153	The aim of the current investigation was to study the conversion of PRs into high
154	added value microbial products, i.e. ethanol and SCOs, using technologically suitable
155	microbial strains in an integrated approach, which includes an efficient and environmentally
156	friendly pretreatment followed by the production of microbial metabolic products, while
157	minimizing management issues caused by PR disposal into the environment. The yeasts
158	Candida tropicalis, Lipomyces lipofer, Meyerozyma guilliermondii, Saccharomyces
159	cerevisiae, Scheffersomyces coipomoensis, Sugiyamaella paludigena and Yarrowia lipolytica
160	were tested for their ability to grow on PR extract and produce ethanol and/or SCOs. Solid
161	state fermentations (SSFs) of the fungus Cunninghamella echinulata were performed using
162	PRs alone or in combination with wheat bran (WB) or oat flakes (OFs) as substrate. The final
163	fermented product was enriched with polyunsaturated FAs, thus having a potential value used
164	in animal or human nutrition. We conclude that PRs and PR extract are suitable microbial
165	substrates and can be used as raw material in various biotechnological applications.
166	

167 2. Material and Methods

[7]

168 2.1 Microorganisms and culture conditions

- 169 The following yeast strains were used: Saccharomyces cerevisiae AXAZ-1, Candida
- 170 tropicalis NRRL Y-12968, Lipomyces lipofer NRRL Y-11555, Yarrowia lipolytica ACA DC
- 171 50109 (culture collection of Agricultural University of Athens, Greece) and three newly
- 172 isolated strains from Chilean Valdivian Forest namely Meyerozyma guilliermondii ACA-DC
- 173 5397, Scheffersomyces coipomoensis ACA-DC 5395, Sugiyamaella paludigena ACA DC
- 174 5396 (Valdés et al., 2020b). In addition, the fungal strain *Cunninghamella echinulata* CCF
- 175 2195 (culture collection of fungi, Charles University, Prague, Czech Republic) was used in
- this research. All microbial strains were maintained at -80 °C in glycerol 30% and for short
- term maintenance on potato dextrose agar (PDA, Himedia, Mumbai, India) slants at 4 ± 1 °C
- and regularly sub-cultured.

179

180 2.2 PR collection, media preparation and culture conditions

- 181 Fresh PRs (i.e. pomegranate peel and seeds remaining after juice extraction, cultivar
- 182 *Wonderful*) were obtained from the Bacfresh Company located in Achaia regional unit of
- 183 Greece, or produced in the laboratory after juice extraction using a mechanical home juicer.
- 184 PR moisture was gravimetrically determined after drying at 105 °C in an oven until constant
- 185 weight. Polysaccharide extraction and hydrolysis were simultaneously performed from wet
- 186 PRs cut into pieces of 0.5×0.5 cm in water or in H₂SO₄ (Fluka, Steinheim, Germany)
- solution used at a ratio of 40 mL of water or H_2SO_4 solution to 10 g of PRs. The treatment
- 188 was performed using various concentrations of H_2SO_4 (up to 0.10 M), at temperature 100 or
- 189 120 °C, pressure 101 or 219 kPa and time ranging from 20 to 120 min. The treated PR
- 190 mixture was subsequently centrifuged (Heraeus, Biofuge Stratus, Thermo Scientific,
- 191 Osterode, Germany) at $19,000 \times g$, 4 °C for 10 min and the supernatant, optionally diluted
- 192 with water, was used as culture medium. Supernatant pH was determined using an ORION
- 193 pH meter (Boston, USA) and adjusted before inoculation to the desirable level (ranged from
- 194 2.6 to 6.5 ± 0.1) by adding 4 M NaOH (Merck) or 4 M HCL (Sigma-Aldrich).

195	Submerged cultures under near anaerobic conditions were conducted by yeast strains
196	in manually periodically agitated 200 mL Duran flasks (Bioengineering, Wald, Switzerland)
197	containing 50 ± 1 mL of PR extract. The flasks were incubated in a Memmert GmbH+Co.
198	KG, Germany incubator at temperature 28 °C. Submerged cultures under aerobic conditions
199	were performed in 250 mL Erlenmeyer flasks containing 50 ± 1 mL of PR extract incubated
200	in a rotary shaker (ZHICHENG ZHWY 211C, Shanghai, China) at agitation rate 180 rpm and
201	temperature 28 °C.
202	After medium sterilization (at 121 °C for 20 min) the flasks were inoculated with 1
203	mL of a pre-culture (containing 10^8 cells), carried out in a medium containing (in g/L): yeast
204	extract (Conda) 3; glucose (AppliChem, Darmstadt, Germany) 10; peptone (Himedia) 5; malt
205	extract 3 (Sigma-Aldrich, Steinheim, Germany), and incubated in a rotary shaker as above.
206	SSFs of wet chopped peels alone or in mixture with wheat bran (WB) or oat flakes
207	(OFs) [used in different proportions to control moisture (Klempová et al., 2020)] were
208	performed by C. echinulata in high-density polyethylene (HDPE) bags (20×30 cm)
209	containing 10 g of substrate at room temperature (T = 25 ± 2 °C). HDPE bags ensure aseptic
210	conditions and smooth oxygen transfer during fermentation. After sterilization (at 105 °C for
211	45 min) the bags were inoculated with 10^7 spores/mL obtained from a 7-day-old culture
212	grown on polished rice (Slaný et al., 2020). After inoculation the bags were closed and the
213	substrate was arranged on the shelves to obtain a substrate layer thickness of around $5 \square$ mm.
214	SSFs were carried out under static conditions for up to 5 days.
215	
216	2.3 Microbial growth and biomass determination
217	Yeast growth was estimated by enumerating the number of cells/mL using a haemocytometer
218	cell counting chamber (Neubauer improved, Poly-Oprik, Bad Blankenburg, Germany). Dry
219	cell mass (x, g/L) was gravimetrically determined after harvesting of yeast cells by
220	centrifugation at 19,000 \times g for 15 min at 4 °C. The cells were washed twice with NaCl 0.9%

221 (w/v) and dried at 80 °C until constant weight.

[9]

222	The fermented substrate after SSFs (around 10 g) was washed with 60 mL of distilled
223	water and filtrated through Whatman No. 1 paper. The obtained byproduct was
224	gravimetrically determined after drying at 60 $^{\circ}$ C until constant weight. The concentration of
225	reducing sugars (R.S.) was determined in the filtrate (see below) and the fungal growth was
226	indirectly estimated by calculating R.S. consumption. Besides, GLA concentration in lipids
227	(estimated as described below) of the fermented substrate was additionally used as a marker
228	to indirectly estimate fungal growth, as this FA is absent from the substrate.
229	
230	2.4 Sugar and phenolics determination
231	The concentration of total sugars (T.S.) and reducing sugars (R.S.) in the liquid growth
232	medium and in the solid substrate extract was determined according to Dubois et al. (1951)
233	and DNS (Miller, 1959) methods, respectively, and expressed as glucose equivalent (in g/L).
234	Sugar concentrations were also expressed per weight of dry substrate. The total phenolic
235	compounds in the liquid growth medium and in the solid substrate extract were determined
236	according to Folin and Ciocalteau (1927). The concentration of phenolic compounds was
237	expressed as gallic acid equivalent (in mg/L or per weight of dry substrate).
238	
239	2.5 Ethanol determination
240	Ethanol was determined in filtered aliquots of the culture supernatant by high performance
241	liquid chromatographer (HPLC - Ultimate 3000 Dionex, Germering, Germany) equipped with
242	a Reflective Index detector (RI-101, Shodex, Kawasaki, Kanagawa Japan) and an
243	AminexHPX-87H column (300 \times 7.8 mm). H ₂ SO ₄ (Fluka) 0.005 N was used as eluent at a
244	flow rate of 0.6 mL/min. The column temperature was 65 °C.
245	
246	2.6 Lipid extraction and purification
247	Lipids from dry yeast cell mass or dry homogenized fermented substrate were extracted in
248	chloroform:methanol (Sigma-Aldrich) (2:1 v/v) according to Folch et al. (1957) method as
249	modified by Dourou et al. (2017). The extracts were filtered through Whatman No. 1 paper,

[10]

250	washed with a KCl (Sigma-Aldrich)	0.88%	(w/v) solution and	dried over anhydr	rous Na ₂ SO ₄
-----	-----------------------------------	-------	--------------------	-------------------	--------------------------------------

251 (Sigma-Aldrich). Finally, the solvents were evaporated under vacuum using a Rotavapor R-20

- 252 device (BUCHI, Flawil, Switzerland), and the total lipids were gravimetrically determined.
- 253
- 254 2.7 Fatty acid composition of microbial lipids
- 255 FA moieties of total lipids were converted into their FA methyl esters (FAMEs) in a two-
- stage reaction according to AFNOR. FAMEs were analyzed in a GC apparatus (Agilent 7890
- A, Agilent Technologies, Shanghai, China), equipped with a flame ionization detector (FID)
- and an HP-88 (J&W Scientific) column (60 m \times 0.32 mm). Helium was used as carrier gas at
- a flow rate of 1 mL/min. Injection temperature was 250 °C, the oven temperature was 200 °C
- and FID temperature was 280 °C. Peaks of FAMEs were identified by reference to authentic
- standards.
- 262
- 263 2.8 Thin-layer chromatography (TLC) analysis
- 264 Known weight of total lipids (approximately 300 mg) were loaded in the form of narrow
- bands of 1 cm on Merck TLC silica gel 60 plates using a CAMAG ATS 4 apparatus and
- separated by a developing system for non-polar lipids using a solvent system consisting of
- 267 hexane/diethyl ether/acetic acid (80:20:1, v/v/v). TLC plates were visualized using a
- combustion water solution containing 3.3% (v/v) sulfuric acid, 50% (v/v) methanol, 0.33%
- 269 (w/v) MnCl₂.4H₂O, and dried at 130 °C for 10 min. After visualization, TLC plates were
- scanned by CAMAG TLC Scanner 4 at 400 nm and evaluated by winCATS software ver.
- 271 1.4.8 (CAMAG) to evaluate lipidic structures such as TAGs, DAGs, FFAs, etc. in lipid
- extract (Gajdoš et al., 2015).

273

274 2.9 Modelling

275 The Hinshelwood model (Hinshelwood, 1947) was used to describe yeast growth and ethanol

- 276 production under aerobic and anaerobic conditions. The balance equations for cell mass and
- 277 ethanol production and sugar consumption are:

$$\frac{dX}{dt} = \mu_{max} \left(\frac{S}{K_{sx} + S} \right) (1 - K_{px}P) X \tag{1}$$

$$\frac{dP}{dt} = q_{max} \left(\frac{S}{K_{sp} + S} \right) \left(1 - K_{pp} P \right) X \tag{2}$$

$$\frac{dS}{dt} = -\frac{1}{Y_{xs}}\frac{dX}{dt} - \frac{1}{Y_{ps}}\frac{dP}{dt}$$
(3)

278 where X, S and P are cell mass, sugars and ethanol concentrations (g/L), respectively, t is the 279 fermentation time (h), μ_{max} is the maximum specific growth rate (1/h), q_{max} is the maximum 280 specific ethanol production rate (1/h), K_{sx} and K_{sp} are the saturation constants (g/L), K_{px} and 281 K_{pp} are the ethanol inhibition constants (g/L), Y_{xS} is the yield coefficient for biomass 282 production with respect to sugars (g biomass/g sugars) and Y_{pS} is the yield coefficient for 283 ethanol production with respect to sugars (g ethanol/g sugars). 284 The fitting of the model equations on the experimental data, was performed using the 285 numerical code Aquasim (Version 2.1d), which uses a fully implicit finite difference spatial 286 discretization Gear scheme in conjunction with the algorithm DASSL. Aquasim uses the 287 weighted least-squares method to estimate the optimum parameter values (Reichert, 1998). 288 289 2.10 Statistical analysis 290 The experimental data were treated using OriginPro 2018 Software (OriginLab Corporation, 291 Northampton, MA, United States). One-way analysis of variance ANOVA followed by a 292 Bonferroni post hoc test was performed to determine significant differences. The null 293 hypothesis was rejected at a significance level of $p \le 0.01$ or 0.05. 294 295 3. Results and Discussion 296 3.1 Pomegranate juice extraction and composition of the PRs 297 The composition of the PRs depends not only on the cultivation conditions and the cultivar 298 but also on the efficiency of the extraction of the juice and the extraction technology used 299 (Catania et al., 2020; Mphahlele et al., 2016). Thus, compositional differences concerning

[12]

300	mostly initial sugar and phenolic compounds concentration were observed among samples,
301	which were used in the current investigation. The PRs resulting from the processing of the
302	fruit under laboratory conditions constitute $68.7 \pm 1.9\%$ of the total weight of the fruit, while
303	this percentage can reach up to 80% under industrial processing conditions. Consequently, the
304	yield in juice under laboratory conditions was 29.3 \pm 1.3%, while under industrial conditions
305	it is estimated to be less than 20%. The presence of phenolics and flavonoids in the
306	pomegranate juice is indeed suitable, due to the beneficial effects of these compounds on
307	human health. However, exhaustive fruit juicing is not generally selected by the industry to
308	avoid the exceeding enrichment of the juice in such compounds, which may affect the acidity
309	and the color of pomegranate juice and, therefore, its quality (Catania et al., 2020; Türkyılmaz
310	et al., 2013). The moisture of the solid residue produced under laboratory and industrial
311	conditions was 66% and 75%, respectively.
312	
313	3.2. Pretreatment of the PRs
314	PRs were cut into small pieces to reduce their size, increase the accessible area and improve
315	the porosity. Following, PRs were treated for 20-120 min under acidic conditions with a
316	H_2SO_4 solution up to 0.10 M, at high temperature (i.e. 100 and 120 °C) and pressure (i.e. 101
317	and 213 kPa) for the simultaneous extraction and hydrolysis of the polysaccharides (Table 1).
318	The efficiency of the extraction process was evaluated by calculating the percentage of T.S.
319	extracted in the solution on the T.S. extracted under the strongest conditions (i.e. temperature
320	121 °C, pressure 219 kPa, H_2SO_4 0.10 M, for 60 min). Moreover, the efficiency of the
321	hydrolysis process in each case was evaluated by calculating the percentage of R.S. on the
322	T.S. in the extract.
323	Acid pretreatment is recommended for hardwoods and agricultural residues, while the
324	kind of acid used (e.g. HCl, H ₂ SO ₄ , HNO ₃ etc.), its concentration, temperature and reaction
325	time differ in the various protocols described in the literature (Nitsos et al., 2018; Zhang and

327 acid to PRs is not necessary to achieve adequate extraction of polysaccharides and their

[13]

329the best physicochemical properties of water, as an extractant, against sulfuric acid solutions.330Specifically, the extraction efficiency achieved in water at temperature 121 °C, under 219 kPa331pressure, for 60 min was no statistically different (at p=0.01 or 0.05) to that achieved under332similar conditions in the presence of H ₂ SO ₄ used at concentrations 0.03-0.10 M (comparisons333of entries c-g, Table 1). Similarly, the utilization of H ₂ SO ₄ did not significantly increase the334hydrolysis efficiency (comparisons of entries c-g, Table 1). It is reported that the extraction335efficiency of ingredients increases with fluidity and, in some cases, with solvent polarity (Xu336et al., 2019). Low viscosity of the solvent is generally required to obtain high extraction337yields since high viscosity hinders the mass transfer of the solvent to the target solutes. High338polarity solvents are also required when polar molecules, such as polysaccharides, are339targeted for extraction. Therefore, the higher polarity of water in combination with its low340viscosity could explain the higher extraction yields obtained in this research in the absence of341sulfuric acid. Qam and Hişil (2010) investigating polyphenols extraction efficiency (Zhu344and Liu, 2013). Comparing the effect of the processing time on polysaccharide extraction345under the above-mentioned conditions (i.e. in water, at T=121 °C, P=219 kPa), we ascertain346that the extraction yield at 20 min was higher compared to higher processing time (i.e. 30, 60,347and 120 min, entries a-c and h in Table 1), alt	328	hydrolysis to R.S., probably due to the high natural acidity of PRs imparting a pH \leq 3.5, and to
331pressure, for 60 min was no statistically different (at p=0.01 or 0.05) to that achieved under332similar conditions in the presence of H_2SO_4 used at concentrations 0.03-0.10 M (comparisons333of entries c-g, Table 1). Similarly, the utilization of H_2SO_4 did not significantly increase the334hydrolysis efficiency (comparisons of entries c-g, Table 1). It is reported that the extraction335efficiency of ingredients increases with fluidity and, in some cases, with solvent polarity (Xu336et al., 2019). Low viscosity of the solvent is generally required to obtain high extraction337yields since high viscosity hinders the mass transfer of the solvent to the target solutes. High338polarity solvents are also required when polar molecules, such as polysaccharides, are339targeted for extraction. Therefore, the higher polarity of water in combination with its low340viscosity could explain the higher extraction yields obtained in this research in the absence of341sulfuric acid. Qam and Hişil (2010) investigating polyphenols extraction efficiency (Zhu344and Liu, 2013). Comparing the effect of the processing time on polysaccharide extraction345under the above-mentioned conditions (i.e. in water, at T=121 °C, P=219 kPa), we ascertain346that the extraction yield at 20 min was higher compared to higher processing time (i.e. 30, 60,347and 120 min, entries a-c and h in Table 1), although not statistically significant at p=0.01 and3480.05. This apparent reduction in extraction yield is probably a result of sugar degradation.349Therefore, the extraction time of 20 min was sel	329	the best physicochemical properties of water, as an extractant, against sulfuric acid solutions.
similar conditions in the presence of H_2SO_4 used at concentrations 0.03-0.10 M (comparisons of entries c-g, Table 1). Similarly, the utilization of H_2SO_4 did not significantly increase the hydrolysis efficiency (comparisons of entries c-g, Table 1). It is reported that the extraction efficiency of ingredients increases with fluidity and, in some cases, with solvent polarity (Xu et al., 2019). Low viscosity of the solvent is generally required to obtain high extraction yields since high viscosity hinders the mass transfer of the solvent to the target solutes. High polarity solvents are also required when polar molecules, such as polysaccharides, are targeted for extraction. Therefore, the higher polarity of water in combination with its low viscosity could explain the higher extraction yields obtained in this research in the absence of sulfuric acid. Çam and Hişil (2010) investigating polyphenols extraction from pomegranate peels, reported that water extraction was as effective as conventional methanol extraction. The processing time is another factor that influences the extraction efficiency (Zhu and Liu, 2013). Comparing the effect of the processing time on polysaccharide extraction under the above-mentioned conditions (i.e. in water, at T=121 °C, P=219 kPa), we ascertain that the extraction yield at 20 min was higher compared to higher processing time (i.e. 30, 60, and 120 min, entries a-c and h in Table 1), although not statistically significant at p=0.01 and 0.05. This apparent reduction in extraction yield is probably a result of sugar degradation. Therefore, the extraction time of 20 min was selected as a sufficient time for the extraction and hydrolysis of polysaccharides from PRs. Trying to reduce the processing temperature more experiments were performed at 100	330	Specifically, the extraction efficiency achieved in water at temperature 121 °C, under 219 kPa
 of entries c-g, Table 1). Similarly, the utilization of H₂SO₄ did not significantly increase the hydrolysis efficiency (comparisons of entries c-g, Table 1). It is reported that the extraction efficiency of ingredients increases with fluidity and, in some cases, with solvent polarity (Xu et al., 2019). Low viscosity of the solvent is generally required to obtain high extraction yields since high viscosity hinders the mass transfer of the solvent to the target solutes. High polarity solvents are also required when polar molecules, such as polysaccharides, are targeted for extraction. Therefore, the higher polarity of water in combination with its low viscosity could explain the higher extraction yields obtained in this research in the absence of sulfuric acid. Qam and Hişil (2010) investigating polyphenols extraction from pomegranate peels, reported that water extraction was as effective as conventional methanol extraction. The processing time is another factor that influences the extraction efficiency (Zhu and Liu, 2013). Comparing the effect of the processing time on polysaccharide extraction under the above-mentioned conditions (i.e. in water, at T=121 °C, P=219 kPa), we ascertain that the extraction yield at 20 min was higher compared to higher processing time (i.e. 30, 60, and 120 min, entries a-c and h in Table 1), although not statistically significant at p=0.01 and 0.05. This apparent reduction in extraction yield is probably a result of sugar degradation. Therefore, the extraction time of 20 min was selected as a sufficient time for the extraction and hydrolysis of polysaccharides from PRs. Trying to reduce the processing temperature more experiments were performed at 100 	331	pressure, for 60 min was no statistically different (at p=0.01 or 0.05) to that achieved under
 hydrolysis efficiency (comparisons of entries c-g, Table 1). It is reported that the extraction efficiency of ingredients increases with fluidity and, in some cases, with solvent polarity (Xu et al., 2019). Low viscosity of the solvent is generally required to obtain high extraction yields since high viscosity hinders the mass transfer of the solvent to the target solutes. High polarity solvents are also required when polar molecules, such as polysaccharides, are targeted for extraction. Therefore, the higher polarity of water in combination with its low viscosity could explain the higher extraction yields obtained in this research in the absence of sulfuric acid. Çam and Hişil (2010) investigating polyphenols extraction from pomegranate peels, reported that water extraction was as effective as conventional methanol extraction. The processing time is another factor that influences the extraction efficiency (Zhu and Liu, 2013). Comparing the effect of the processing time on polysaccharide extraction under the above-mentioned conditions (i.e. in water, at T=121 °C, P=219 kPa), we ascertain that the extraction yield at 20 min was higher compared to higher processing time (i.e. 30, 60, and 120 min, entries a-c and h in Table 1), although not statistically significant at p=0.01 and 0.05. This apparent reduction in extraction yield is probably a result of sugar degradation. Therefore, the extraction time of 20 min was selected as a sufficient time for the extraction and hydrolysis of polysaccharides from PRs. Trying to reduce the processing temperature more experiments were performed at 100 	332	similar conditions in the presence of H_2SO_4 used at concentrations 0.03-0.10 M (comparisons
 efficiency of ingredients increases with fluidity and, in some cases, with solvent polarity (Xu et al., 2019). Low viscosity of the solvent is generally required to obtain high extraction yields since high viscosity hinders the mass transfer of the solvent to the target solutes. High polarity solvents are also required when polar molecules, such as polysaccharides, are targeted for extraction. Therefore, the higher polarity of water in combination with its low viscosity could explain the higher extraction yields obtained in this research in the absence of sulfuric acid. Çam and Hişil (2010) investigating polyphenols extraction from pomegranate peels, reported that water extraction was as effective as conventional methanol extraction. The processing time is another factor that influences the extraction efficiency (Zhu and Liu, 2013). Comparing the effect of the processing time on polysaccharide extraction under the above-mentioned conditions (i.e. in water, at T=121 °C, P=219 kPa), we ascertain that the extraction yield at 20 min was higher compared to higher processing time (i.e. 30, 60, and 120 min, entries a-c and h in Table 1), although not statistically significant at p=0.01 and 0.05. This apparent reduction in extraction yield is probably a result of sugar degradation. Therefore, the extraction time of 20 min was selected as a sufficient time for the extraction and hydrolysis of polysaccharides from PRs. Trying to reduce the processing temperature more experiments were performed at 100 	333	of entries c-g, Table 1). Similarly, the utilization of H_2SO_4 did not significantly increase the
 et al., 2019). Low viscosity of the solvent is generally required to obtain high extraction yields since high viscosity hinders the mass transfer of the solvent to the target solutes. High polarity solvents are also required when polar molecules, such as polysaccharides, are targeted for extraction. Therefore, the higher polarity of water in combination with its low viscosity could explain the higher extraction yields obtained in this research in the absence of sulfuric acid. Çam and Hişil (2010) investigating polyphenols extraction from pomegranate peels, reported that water extraction was as effective as conventional methanol extraction. The processing time is another factor that influences the extraction efficiency (Zhu and Liu, 2013). Comparing the effect of the processing time on polysaccharide extraction under the above-mentioned conditions (i.e. in water, at T=121 °C, P=219 kPa), we ascertain that the extraction yield at 20 min was higher compared to higher processing time (i.e. 30, 60, and 120 min, entries a-c and h in Table 1), although not statistically significant at p=0.01 and 0.05. This apparent reduction in extraction yield is probably a result of sugar degradation. Therefore, the extraction time of 20 min was selected as a sufficient time for the extraction and hydrolysis of polysaccharides from PRs. Trying to reduce the processing temperature more experiments were performed at 100 	334	hydrolysis efficiency (comparisons of entries c-g, Table 1). It is reported that the extraction
 yields since high viscosity hinders the mass transfer of the solvent to the target solutes. High polarity solvents are also required when polar molecules, such as polysaccharides, are targeted for extraction. Therefore, the higher polarity of water in combination with its low viscosity could explain the higher extraction yields obtained in this research in the absence of sulfuric acid. Çam and Hişil (2010) investigating polyphenols extraction from pomegranate peels, reported that water extraction was as effective as conventional methanol extraction. The processing time is another factor that influences the extraction efficiency (Zhu and Liu, 2013). Comparing the effect of the processing time on polysaccharide extraction under the above-mentioned conditions (i.e. in water, at T=121 °C, P=219 kPa), we ascertain that the extraction yield at 20 min was higher compared to higher processing time (i.e. 30, 60, and 120 min, entries a-c and h in Table 1), although not statistically significant at p=0.01 and 0.05. This apparent reduction in extraction yield is probably a result of sugar degradation. Therefore, the extraction time of 20 min was selected as a sufficient time for the extraction and hydrolysis of polysaccharides from PRs. Trying to reduce the processing temperature more experiments were performed at 100 	335	efficiency of ingredients increases with fluidity and, in some cases, with solvent polarity (Xu
 polarity solvents are also required when polar molecules, such as polysaccharides, are targeted for extraction. Therefore, the higher polarity of water in combination with its low viscosity could explain the higher extraction yields obtained in this research in the absence of sulfuric acid. Çam and Hişil (2010) investigating polyphenols extraction from pomegranate peels, reported that water extraction was as effective as conventional methanol extraction. The processing time is another factor that influences the extraction efficiency (Zhu and Liu, 2013). Comparing the effect of the processing time on polysaccharide extraction under the above-mentioned conditions (i.e. in water, at T=121 °C, P=219 kPa), we ascertain that the extraction yield at 20 min was higher compared to higher processing time (i.e. 30, 60, and 120 min, entries a-c and h in Table 1), although not statistically significant at p=0.01 and 0.05. This apparent reduction in extraction yield is probably a result of sugar degradation. Therefore, the extraction time of 20 min was selected as a sufficient time for the extraction and hydrolysis of polysaccharides from PRs. Trying to reduce the processing temperature more experiments were performed at 100 	336	et al., 2019). Low viscosity of the solvent is generally required to obtain high extraction
 targeted for extraction. Therefore, the higher polarity of water in combination with its low viscosity could explain the higher extraction yields obtained in this research in the absence of sulfuric acid. Çam and Hişil (2010) investigating polyphenols extraction from pomegranate peels, reported that water extraction was as effective as conventional methanol extraction. The processing time is another factor that influences the extraction efficiency (Zhu and Liu, 2013). Comparing the effect of the processing time on polysaccharide extraction under the above-mentioned conditions (i.e. in water, at T=121 °C, P=219 kPa), we ascertain that the extraction yield at 20 min was higher compared to higher processing time (i.e. 30, 60, and 120 min, entries a-c and h in Table 1), although not statistically significant at p=0.01 and 0.05. This apparent reduction in extraction yield is probably a result of sugar degradation. Therefore, the extraction time of 20 min was selected as a sufficient time for the extraction and hydrolysis of polysaccharides from PRs. Trying to reduce the processing temperature more experiments were performed at 100 	337	yields since high viscosity hinders the mass transfer of the solvent to the target solutes. High
 viscosity could explain the higher extraction yields obtained in this research in the absence of sulfuric acid. Çam and Hişil (2010) investigating polyphenols extraction from pomegranate peels, reported that water extraction was as effective as conventional methanol extraction. The processing time is another factor that influences the extraction efficiency (Zhu and Liu, 2013). Comparing the effect of the processing time on polysaccharide extraction under the above-mentioned conditions (i.e. in water, at T=121 °C, P=219 kPa), we ascertain that the extraction yield at 20 min was higher compared to higher processing time (i.e. 30, 60, and 120 min, entries a-c and h in Table 1), although not statistically significant at p=0.01 and 0.05. This apparent reduction in extraction yield is probably a result of sugar degradation. Therefore, the extraction time of 20 min was selected as a sufficient time for the extraction and hydrolysis of polysaccharides from PRs. Trying to reduce the processing temperature more experiments were performed at 100 	338	polarity solvents are also required when polar molecules, such as polysaccharides, are
 sulfuric acid. Çam and Hişil (2010) investigating polyphenols extraction from pomegranate peels, reported that water extraction was as effective as conventional methanol extraction. The processing time is another factor that influences the extraction efficiency (Zhu and Liu, 2013). Comparing the effect of the processing time on polysaccharide extraction under the above-mentioned conditions (i.e. in water, at T=121 °C, P=219 kPa), we ascertain that the extraction yield at 20 min was higher compared to higher processing time (i.e. 30, 60, and 120 min, entries a-c and h in Table 1), although not statistically significant at p=0.01 and 0.05. This apparent reduction in extraction yield is probably a result of sugar degradation. Therefore, the extraction time of 20 min was selected as a sufficient time for the extraction and hydrolysis of polysaccharides from PRs. Trying to reduce the processing temperature more experiments were performed at 100 	339	targeted for extraction. Therefore, the higher polarity of water in combination with its low
 peels, reported that water extraction was as effective as conventional methanol extraction. The processing time is another factor that influences the extraction efficiency (Zhu and Liu, 2013). Comparing the effect of the processing time on polysaccharide extraction under the above-mentioned conditions (i.e. in water, at T=121 °C, P=219 kPa), we ascertain that the extraction yield at 20 min was higher compared to higher processing time (i.e. 30, 60, and 120 min, entries a-c and h in Table 1), although not statistically significant at p=0.01 and 0.05. This apparent reduction in extraction yield is probably a result of sugar degradation. Therefore, the extraction time of 20 min was selected as a sufficient time for the extraction and hydrolysis of polysaccharides from PRs. Trying to reduce the processing temperature more experiments were performed at 100 	340	viscosity could explain the higher extraction yields obtained in this research in the absence of
The processing time is another factor that influences the extraction efficiency (Zhu and Liu, 2013). Comparing the effect of the processing time on polysaccharide extraction under the above-mentioned conditions (i.e. in water, at T=121 °C, P=219 kPa), we ascertain that the extraction yield at 20 min was higher compared to higher processing time (i.e. 30, 60, and 120 min, entries a-c and h in Table 1), although not statistically significant at p=0.01 and 0.05. This apparent reduction in extraction yield is probably a result of sugar degradation. Therefore, the extraction time of 20 min was selected as a sufficient time for the extraction and hydrolysis of polysaccharides from PRs.	341	sulfuric acid. Çam and Hişil (2010) investigating polyphenols extraction from pomegranate
 and Liu, 2013). Comparing the effect of the processing time on polysaccharide extraction under the above-mentioned conditions (i.e. in water, at T=121 °C, P=219 kPa), we ascertain that the extraction yield at 20 min was higher compared to higher processing time (i.e. 30, 60, and 120 min, entries a-c and h in Table 1), although not statistically significant at p=0.01 and 0.05. This apparent reduction in extraction yield is probably a result of sugar degradation. Therefore, the extraction time of 20 min was selected as a sufficient time for the extraction and hydrolysis of polysaccharides from PRs. Trying to reduce the processing temperature more experiments were performed at 100 	342	peels, reported that water extraction was as effective as conventional methanol extraction.
 under the above-mentioned conditions (i.e. in water, at T=121 °C, P=219 kPa), we ascertain that the extraction yield at 20 min was higher compared to higher processing time (i.e. 30, 60, and 120 min, entries a-c and h in Table 1), although not statistically significant at p=0.01 and 0.05. This apparent reduction in extraction yield is probably a result of sugar degradation. Therefore, the extraction time of 20 min was selected as a sufficient time for the extraction and hydrolysis of polysaccharides from PRs. Trying to reduce the processing temperature more experiments were performed at 100 	343	The processing time is another factor that influences the extraction efficiency (Zhu
 that the extraction yield at 20 min was higher compared to higher processing time (i.e. 30, 60, and 120 min, entries a-c and h in Table 1), although not statistically significant at p=0.01 and 0.05. This apparent reduction in extraction yield is probably a result of sugar degradation. Therefore, the extraction time of 20 min was selected as a sufficient time for the extraction and hydrolysis of polysaccharides from PRs. Trying to reduce the processing temperature more experiments were performed at 100 	344	and Liu, 2013). Comparing the effect of the processing time on polysaccharide extraction
 and 120 min, entries a-c and h in Table 1), although not statistically significant at p=0.01 and 0.05. This apparent reduction in extraction yield is probably a result of sugar degradation. Therefore, the extraction time of 20 min was selected as a sufficient time for the extraction and hydrolysis of polysaccharides from PRs. Trying to reduce the processing temperature more experiments were performed at 100 	345	under the above-mentioned conditions (i.e. in water, at T=121 °C, P=219 kPa), we ascertain
 0.05. This apparent reduction in extraction yield is probably a result of sugar degradation. Therefore, the extraction time of 20 min was selected as a sufficient time for the extraction and hydrolysis of polysaccharides from PRs. Trying to reduce the processing temperature more experiments were performed at 100 	346	that the extraction yield at 20 min was higher compared to higher processing time (i.e. 30, 60,
 Therefore, the extraction time of 20 min was selected as a sufficient time for the extraction and hydrolysis of polysaccharides from PRs. Trying to reduce the processing temperature more experiments were performed at 100 	347	and 120 min, entries a-c and h in Table 1), although not statistically significant at p=0.01 and
 and hydrolysis of polysaccharides from PRs. Trying to reduce the processing temperature more experiments were performed at 100 	348	0.05. This apparent reduction in extraction yield is probably a result of sugar degradation.
351 Trying to reduce the processing temperature more experiments were performed at 100	349	Therefore, the extraction time of 20 min was selected as a sufficient time for the extraction
	350	and hydrolysis of polysaccharides from PRs.
°C and atmospheric pressure (i.e. 101 kPa) instead of 121 °C and 219 kPa. We note that the	351	Trying to reduce the processing temperature more experiments were performed at 100
	352	°C and atmospheric pressure (i.e. 101 kPa) instead of 121 °C and 219 kPa. We note that the

353 extraction efficiency was higher and the efficiency of hydrolysis lower at 100 °C than at 121

354 °C (comparisons of entries h and i, Table 1). Zhu and Liu (2013) examining the effect of

different temperatures (from 70 to 100 °C) on polysaccharide extraction, reported that

[14]

356	maximum yield was obtained at 95 - 100 °C. Finally, at T=100 °C comparing the effect of O_2
357	presence (entries i and j in Table 1), both T.S. and R.S. yields (in g/L) were higher (i.e. 5.3
358	and 4.8% respectively) when a closed system, almost in the absence of O_2 was applied.
359	Generally, high temperature increases solubility and diffusion of the ingredients to be
360	extracted and decreases the viscosity of the solvent, which is intended. Though, pressure
361	seems to have a great influence on the extraction and hydrolysis yield too. Comparing the
362	entries h-j in Table 1, it seems that conditions reported in entry i would be appropriate.
363	However, the high processing time is not desirable, therefore, the conditions that we conclude
364	to use for this research are those reported in entry a: in water, for 20 min, at T=121 $^{\circ}$ C and
365	P=219 kPa.
366	The selection of the pretreatment method of lignocellulosic biomass and its operating
367	conditions are fundamental for a successful polysaccharide extraction and hydrolysis, and the
368	subsequent fermentation. Methods of chemical pretreatment such as acid, alkaline and their
369	combination, are the most preferred techniques in recent years, thanks to their flexibility of
370	applications at the industrial level, and the high final yields of assimilable sugars achieved
371	(Valdés et al., 2020a). Among them, acid pretreatment, and specifically diluted acid
372	pretreatment, is favorable. However, regardless of the pretreatment method used, toxic
373	compounds are generated as by-products, such as formic, acetic and levulinic acid, neutral
374	and acidic phenolics, and other chemicals in hydrolysates, which can inhibit microbial growth
375	(Bravo et al., 2017; Haghighi Mood et al., 2013; Janga et al., 2012; Yu et al., 2018).
376	
377	3.3 Microbial growth on PR based media
378	The growth of microorganisms on PRs presents various peculiarities related to the nature of
379	the substrate, including assimilability of the contained carbon sources, the presence of
380	microbial inhibitors (i.e. natural such as phenolic compounds or generated during pre-
381	treatment), and its low pH values. Therefore, the challenge is to identify microbial strains
382	capable of growing on PRs and PR extract. In the present study, the ability of the oleaginous

383 fungus C. echinulata and the yeasts C. tropicalis, L. lipofer, M. guilliermondii, S. cerevisiae,

[15]

384 S. coipomoensis, S. paludigena and Y. lipolytica to grow on PRs or PR extract and produce 385 various metabolites was studied under several growth conditions (Table 2). To the best of our 386 knowledge, the current investigation is the first report in which both pomegranate peels and 387 seeds have been employed as fermentation medium for microbial growth, while only recently, 388 pomegranate peels have been treated as a substrate for biodiesel production by Bacillus 389 cereus (Kanakdande et al., 2020) and for citric acid production by the fungus Aspergillus 390 niger (Roukas and Kotzekidou, 2020). 391 A sustainable process for microbial conversion of lignocellulosic biomass into 392 biofuels and other products is based on the capability of the microbial strains used to 393 assimilate/co-assimilate, the various sugars (including C-5 and C-6) released during 394 pretreatment (Valdés et al., 2020a). All microbial strains tested in the current investigation 395 were able to grow on PRs or PR extract showing different biochemical potential and 396 effectiveness (Table 2). Among them, the new isolates from the Chilean Valdivian forest 397 identified as M. guilliermondii, S. coipomensis, and S. paludigena recently characterized for 398 their ability to grow on lignocellulosic hydrolysate-model media (Valdés et al., 2020b), 399 showed interesting ethanol production and lipid accumulation capacity, cultivated under 400 anaerobic and aerobic conditions, respectively. The most commonly used yeast for ethanol 401 production is S. cerevisiae. However this yeast is not able to metabolize pentose sugars 402 naturally, such as xylose and arabinose, to ethanol, and therefore several strategies on 403 engineering pentose metabolism on S. cerevisiae have been proposed (Fernandes and Murray, 404 2010; Gopinarayanan and Nair, 2019; Hahn-Hägerdal et al., 2007). Interestingly, S. cerevisiae 405 during submerged cultures on PR extract in this study showed remarkable growth and ethanol 406 production ability. Contrary, growth and ethanol production by C. tropicalis was not 407 satisfactory. 408 L. lipofer and Y. lipolytica were both able to accumulate lipids during submerged 409 cultures on PRs extract. Strains belonging to the genus of *Lipomyces* have notable oleaginous 410 capacity and are suitable for SCO production from lignocellulosic biomass and other agro-411 industrial wastes (Di Fidio et al., 2020; Dien et al., 2016; Dourou et al., 2016; Gong et al.,

[16]

412 2012; Liang and Jiang, 2013; Sitepu et al., 2013; Slininger et al., 2016; Vasaki et al., 2021; 413 Zhao et al., 2008). Y. lipolytica, the most studied oleaginous yeast, is able to grow on a variety 414 of agro-industrial substrates and to produce high added value metabolites (Carota et al., 2020; 415 Chatzifragkou et al., 2011; da S. Pereira et al., 2019; Dobrowolski et al., 2016; Dourou et al., 416 2016; Makri et al., 2010; Patsios et al., 2020). Over the last decade, a variety of studies have 417 focused on modifications of Y. lipolytica genome through genetic engineering to enable the 418 efficient assimilation of sugars found in lignocellulosic biomass (Ledesma-Amaro and 419 Nicaud, 2016; Niehus et al., 2018; Yook et al., 2020). 420 The oleaginous fungus C. echinulata was able to synthesize lipids during SSF on sole 421 PRs or blends of PRs with WB or OFs (Table 2). WB and OFs are also produced in 422 abundance, consisting yet again lignocellulosic residues which need management. In 2010, 423 the National Green Tribunal established control measures to stop such biomass burning, due 424 to air pollution, encouraging the exploitation of agricultural residues as a substrate for 425 microbial production of high added-value products using environmentally friendly 426 approaches. Filamentous fungi belonging to the Cunninghamella genus and related genera 427 play an important role in developing sustainable biorefinery processes thanks to their ability 428 to utilize a broad range of renewable feedstock, and waste materials (e.g. corn gluten, corn 429 steep, orange peel and tomato waste hydrolysate) and convert them into SCOs containing 430 significant quantities of GLA (Diwan and Gupta, 2019; Donot et al., 2014; Fakas et al., 2008; 431 Gema et al., 2002). 432 Phenolic compounds present in agro-industrial residues are principally responsible for 433 their phytotoxicity and microbial growth inhibition, while their breakdown is considered to be 434 the limiting step during biotreatment (Aggelis et al., 2003; Tsioulpas et al., 2002). Moreover, 435 phenolics can be released from lignin as by-products during the pretreatment of 436 lignocellulosic biomass, depending on the parameters of the process, such as temperature and

437 duration of the treatment. Phenolic compounds, when present in the growth media, penetrate

438 biological membranes and cause loss of their integrity affecting cell growth and the whole

439 fermentation process (Baral and Shah, 2014). Therefore, their degradation and/or removal

[17]

440	prior to the fermentation process is of high biotechnological interest. In this investigation, the
441	PR extract used as a growth medium for submerged cultures of L. lipofer and Y. lipolytica
442	was diluted in some cases with water to reduce the initial phenolic concentration and the
443	results were compared to those obtained on undiluted PR hydrolysate (Table 2, see letters d,
444	e, f). In addition, phenolic compounds were reduced in the case of SSF of C. echinulata by
445	the incorporation of cereals. Nevertheless, remarkable phenolic removal (up to 30%) was
446	performed in some cases by C. echinulata, L. lipofer, M. guilliermondii, S. paludigena and Y.
447	lipolytica. Benzene compounds are degraded by a few stains belonging to the phylum
448	Ascomycota (e.g. the yeasts Debaryomyces hansenii, L. starkeyi, and S. cerevisiae, the fungus
449	Geotrichum candidum, and the yeast-like Aureobasidium pullulans) and the phylum
450	Basidiomycota (Rhodotorula, Trichosporon cutaneum) (Pasha and Rao, 2009).
451	Low pH media are generally suitable for large scale applications since they are self-
452	protected against bacterial contamination. Indeed, in media having exceptionally low pH,
453	sterilization can be omitted, and the maintenance of aseptic conditions is not necessary. Thus,
454	the fermentation cost can be significantly reduced. In the present study, the strains M .
455	guilliermondii, S. coipomoensis, and S. paludigena were able to grow at $pH = 2.6$, S.
456	<i>cerevisiae</i> at pH = 3.5 and 5.0, <i>C. tropicalis</i> at pH = 4.5, while <i>C. echinulata</i> , <i>L. lipofer</i> and <i>Y</i> .
457	lipolytica were cultivated at their optimal pH value of 6.5.
458	
459	3.4 Bioethanol production
460	Bioethanol produced using low- or negative- acquisition cost substrates, such as carbon-rich
461	agro-industrial residues, is at the forefront of biotechnological/industrial interest for many
462	years. Bioethanol can be used as a raw material in the food, pharmaceuticals and cosmetics
463	industry or as biofuel. During alcoholic fermentation, the sugars in the form of hexoses or
464	pentoses are transformed into pyruvic acid (through the metabolic path of glycolysis), which
465	under anaerobic conditions, is converted into ethanol and CO_2 . The strain AXAZ-1 of S.
466	cerevisiae, as well as M. guilliermondii, S. coipomoensis, and S. paludigena were used in the
467	current investigation and proved able to grow well in PR extract and to efficiently convert

[18]

468	sugars to ethanol cultivated under anaerobic conditions (Fig. 1 and 2). The yeast S. cerevisiae
469	is widely used worldwide in winemaking, in the brewery and baking industry, as well as in
470	many other biotechnological applications, as it possesses key features, such us quick
471	fermentation ability, genetic stability, tolerance to low pH environments, ethanol tolerance,
472	osmotolerance and thermotolerance (Nevoigt, 2008; Sarris et al., 2014). PR extracts derived
473	under laboratory and industrial processing conditions were used as a fermentation medium for
474	S. cerevisiae. As mentioned above, the difference between these processes is that under
475	industrial juicing the resulting extract had a higher sugar concentration. M. guilliermondii, is a
476	promising species implicated in various biotechnological applications, including the
477	conversion of pentoses to ethanol (Martini et al., 2016; Matos et al., 2014; Yan et al., 2021).
478	Similarly, Scheffersomyces and Sugiyamaella genera are reported as xylose-fermenting
479	genera containing species having an ethanol production capacity (Jia et al., 2020; Lopes et al.,
480	2018; Morais et al., 2020; Sena et al., 2017). This is the first report that describes bioethanol
481	production from S. coipomoensis and S. paludigena strains.
482	Several mathematical models have been developed to describe the alcoholic
482 483	Several mathematical models have been developed to describe the alcoholic fermentation process (Birol et al., 1998). Among them, the Monod (Monod, 1942) and
	•
483	fermentation process (Birol et al., 1998). Among them, the Monod (Monod, 1942) and
483 484	fermentation process (Birol et al., 1998). Among them, the Monod (Monod, 1942) and Hinshelwood (Hinshelwood, 1947) models have been considered as suitable to describe the
483 484 485	fermentation process (Birol et al., 1998). Among them, the Monod (Monod, 1942) and Hinshelwood (Hinshelwood, 1947) models have been considered as suitable to describe the process under low/very low product inhibition (Birol et al., 1998; Kostov et al., 2012). In the
483 484 485 486	fermentation process (Birol et al., 1998). Among them, the Monod (Monod, 1942) and Hinshelwood (Hinshelwood, 1947) models have been considered as suitable to describe the process under low/very low product inhibition (Birol et al., 1998; Kostov et al., 2012). In the current paper, the Monod model was initially employed to describe microbial growth, ethanol
483 484 485 486 487	fermentation process (Birol et al., 1998). Among them, the Monod (Monod, 1942) and Hinshelwood (Hinshelwood, 1947) models have been considered as suitable to describe the process under low/very low product inhibition (Birol et al., 1998; Kostov et al., 2012). In the current paper, the Monod model was initially employed to describe microbial growth, ethanol production and sugars consumption during fermentation and to calculate parameter values.
483 484 485 486 487 488	fermentation process (Birol et al., 1998). Among them, the Monod (Monod, 1942) and Hinshelwood (Hinshelwood, 1947) models have been considered as suitable to describe the process under low/very low product inhibition (Birol et al., 1998; Kostov et al., 2012). In the current paper, the Monod model was initially employed to describe microbial growth, ethanol production and sugars consumption during fermentation and to calculate parameter values. However, it was observed that this model was not able to simulate the process for most of the
483 484 485 486 487 488 489	fermentation process (Birol et al., 1998). Among them, the Monod (Monod, 1942) and Hinshelwood (Hinshelwood, 1947) models have been considered as suitable to describe the process under low/very low product inhibition (Birol et al., 1998; Kostov et al., 2012). In the current paper, the Monod model was initially employed to describe microbial growth, ethanol production and sugars consumption during fermentation and to calculate parameter values. However, it was observed that this model was not able to simulate the process for most of the yeast strains, probably due to the inhibitory effect of ethanol on growth and ethanol
483 484 485 486 487 488 489 490	fermentation process (Birol et al., 1998). Among them, the Monod (Monod, 1942) and Hinshelwood (Hinshelwood, 1947) models have been considered as suitable to describe the process under low/very low product inhibition (Birol et al., 1998; Kostov et al., 2012). In the current paper, the Monod model was initially employed to describe microbial growth, ethanol production and sugars consumption during fermentation and to calculate parameter values. However, it was observed that this model was not able to simulate the process for most of the yeast strains, probably due to the inhibitory effect of ethanol on growth and ethanol production (data not shown). Alternatively, the Hinshelwood model, which includes K_{px} and
483 484 485 486 487 488 489 490 491	fermentation process (Birol et al., 1998). Among them, the Monod (Monod, 1942) and Hinshelwood (Hinshelwood, 1947) models have been considered as suitable to describe the process under low/very low product inhibition (Birol et al., 1998; Kostov et al., 2012). In the current paper, the Monod model was initially employed to describe microbial growth, ethanol production and sugars consumption during fermentation and to calculate parameter values. However, it was observed that this model was not able to simulate the process for most of the yeast strains, probably due to the inhibitory effect of ethanol on growth and ethanol production (data not shown). Alternatively, the Hinshelwood model, which includes K_{px} and K_{pp} parameters indicating a week inhibition on cell growth and ethanol production by ethanol
483 484 485 486 487 488 489 490 491 492	fermentation process (Birol et al., 1998). Among them, the Monod (Monod, 1942) and Hinshelwood (Hinshelwood, 1947) models have been considered as suitable to describe the process under low/very low product inhibition (Birol et al., 1998; Kostov et al., 2012). In the current paper, the Monod model was initially employed to describe microbial growth, ethanol production and sugars consumption during fermentation and to calculate parameter values. However, it was observed that this model was not able to simulate the process for most of the yeast strains, probably due to the inhibitory effect of ethanol on growth and ethanol production (data not shown). Alternatively, the Hinshelwood model, which includes K_{px} and K_{pp} parameters indicating a week inhibition on cell growth and ethanol production by ethanol

495	The μ_{max} values ranged between 0.0038 and 0.0079 1/h, except for the value
496	obtained from the yeast S. coipomoensis in anaerobic conditions, which was 0.00024 1/h. The
497	corresponding values in the literature using the Hinshelwood model range from 0.231 to
498	0.289 1/h by using free or immobilized cells of yeast S. cerevisiae growing on glucose
499	(Kostov et al., 2012), sweet sorghum stalk juice (Jin et al., 2012) and corn stover (Tian and
500	Chen, 2016). The low μ_{max} values in the present study may be due to the cell growth
501	inhibition by ethanol and/or inhibitory compounds generated during PRs pretreatment. It has
502	been reported that the presence in the fermentation medium of phenolics at 2.0 g/L negatively
503	affects both cell viability of S. cerevisiae and ethanol production (Liu et al., 2016). In the
504	present study, the initial concentration of phenolic compounds was about 2.0 g/L and
505	remained almost constant during fermentation of S. cerevisiae. Y_{ps} calculated under anaerobic
506	conditions ranged from 0.389 (for <i>M. guilliermondii</i>) to 0.364 (for <i>S. paludigena</i>), while the
507	experimental values are close to those predicted by the model (Table 3). For Y_{sx} , the values
508	predicted by the model were in all cases higher compared to the experimental values for all
509	yeast strains. These discrepancies may be due to the presence of growth inhibitors on PR
510	extract that are not included in the Hinshelwood model. The estimated values of K_{pp} , K_{px} ,
511	K_{sx} and K_{sp} are in the range of values reported in the literature (Birol et al., 1998; Jin et al.,
512	2012; Kostov et al., 2012; Tian and Chen, 2016).
513	In all experiments, the mathematical model adequately predicts the biomass and
514	ethanol production as well as sugar consumption, which was confirmed by the high R^2 values
515	in most of the cases. The kinetic parameters values vary among strains indicating that each of
516	them exhibits a different growth behavior on PR extract under aerobic and anaerobic
517	conditions (Table 3). Most yeast strains produced ethanol ranged between 3.6 and 12.5 g/L $$
518	showing high productivities evidenced by the high values of the parameter q_{max} (ranged

- between 0.592 and 0.841 g/g \square h). Exceptionally, *S. coipomoensis* cultivated under aerobic
- 520 conditions did not produce significant ethanol quantities (up to 0.186 g/L at the end of
- 521 fermentation), thus low q_{max} value was observed. Kostov et al. (2012) found that q_{max} ,

[20]

522 calculated using the Hinshelwood model fitted on the experimental data, of free cells of *S*.

- 523 *cerevisiae* was 0.452 g/g \square h when cultivated on 110 g/L of glucose, while this value increased
- by above 1 g/g \square h using immobilized cells of *S. cerevisiae*.
- 525 Worthy of mentioning is that all fermentations were conducted under low pH values.
- 526 Specifically, *S. cerevisiae* was cultivated at pH=3.5 (natural pH of PR extract) and pH=5.0
- 527 (after adjustment) on PR extract derived under laboratory processing conditions (Table 2),
- and ethanol and cell mass production was similar. Moreover, the pH during fermentation of
- 529 M. guilliermondii, S. paludigena and S. coipomoensis was 2.6. The above-mentioned strains,
- 530 having inherent tolerance of low pH, are suitable for industrial ethanol production.

531 Ethanol production by S. cerevisiae is reported using as substrate a variety of agro-532 industrial residues, such as enriched pasteurized grape musts, blends of molasses and olive 533 mill wastewaters, olive mill wastewater enriched with glucose, sugarcane bagasse, dried fruits 534 etc., reporting yields up to 0.5 g/g (Behera et al., 2011; Sarris et al., 2014, 2013, 2009; Singh 535 et al., 2013). Other yeasts such as C. shehatea, S. stipitis and Pachysolen tannophilus have 536 been reported as ethanol producers from xylose or cellobiose. Given the fact that S. cerevisiae 537 cannot utilize xylose as part of its natural metabolism, the concurrent use of more than one 538 microorganism, for instance, S. stipitis and S. cerevisiae, has gained popularity in the context 539 of lignocellulose valorization (De Bari et al., 2013; Karagoz et al., 2019; Ntaikou et al., 2018; 540 Santosh et al., 2017).

541

542 3.5 Single cell oil production

543 When undiluted PR extract was used as a culture medium for *L. lipofer*, lipid accumulation
544 (L/x%, w/w) was 7.0%, probably restricted by the presence of phenolics or other inhibitors,

- while when the extract was diluted by 50%, L/x increased to 13.5% (Table 2). Dien et al.
- 546 (2016) reported that the same strain of *L. lipofer* cultivated in sugar-rich media (i.e. 100 g/L)
- 547 accumulated 61.6% lipids in the dry cell mass cultivated on glucose, 54.8% on xylose and
- 548 56.9% on arabinose. Therefore the low lipid accumulation reported in the current paper
- should be attributed, in addition to the presence of phenolics, to the low sugar content in the

550	growth medium. On the other hand, yeast growth seems to be unaffected by the concentration
551	of phenolics, as biomass production was proportional to the initial sugar concentration. The
552	biotechnological potential of M. guilliermondii, S. coipomoensis, and S. paludigena to convert
553	lignocellulosic sugars to oily biomass was first reported by Valdés et al. (2020b). In the
554	present study, the above-mentioned strains, cultivated in undiluted PR extract presented an
555	oleaginous capacity depending on the growth conditions (Table 2). Specifically, M.
556	guilliermondii was able to produce 2.1 g/L dry cell mass and accumulate 18.1% lipids, while
557	increased lipid accumulation was achieved by S. paludigena cultivated under aerobic
558	conditions compared to anaerobic conditions (i.e. 15.4 and 9.0% respectively). Low lipid
559	accumulation was achieved by S. coipomoensis under both aerobic and anaerobic conditions
560	(i.e. $L/x\% = 8.3$ and 4.2%), although this yeast was able to accumulate almost 18% of lipids
561	cultivated on glucose and xylose, and 24% on mannose (Valdés et al., 2020b). Although Y.
562	lipolytica can grow on a variety of substrates and accumulate lipid in high percentages
563	(Dourou et al., 2018; Papanikolaou and Aggelis, 2011a, 2011b, 2002), during submerged
564	cultures on undiluted PR extract, X_{max} did not exceed 1.7 g/L containing only 7.0% of lipids.
565	However, when PR extract diluted by 50% lipid accumulation increased to 11.0% in the dry
566	cell mass.
567	Oleic acid (C18:1) was the major FA in all lipids produced by the yeasts, followed by
568	palmitic acid (C16:0) in the lipids of M. guilliermondii, S. coipomoensis, and S. paludigena
569	(Table 4). In the lipids produced by Y. lipolytica, C16:0, palmitoleic (C16:1), and linoleic acid
570	(C18:2) participated in non-negligible percentages. Stearic acid (C18:0) was detected in
571	limited amounts in all lipids. According to these data, the oil produced seems to be suitable as
572	raw material in the biodiesel industry. Y. lipolytica presented a similar FA profile to that
573	previously reported when cultivated on olive mill wastewater or glycerol (Dourou et al., 2016;
574	Makri et al., 2010; Papanikolaou and Aggelis, 2002). Contrary to the present study, Valdés et
575	al. (2020b) reported that lipids of <i>M. guilliermondii</i> and <i>S. coipomensis</i> were rich in C16:1,
576	and lipids of S. paludigena were rich in C18:2, suggesting that the nature of the carbon source
577	affects the FA profile of these strains.

[22]

578	SSF, a fermentation technique suitable for low moisture solid substrates, is frequently
579	used as an effective technology, alternative to submerged fermentation, for the valorization of
580	various agro-industrial by-products (Čertík et al., 2012). PUFA-rich fermented substrates
581	derived from SSFs, after the necessary processing, can be utilized in human diet or as a feed
582	supplement (Čertík et al., 2013; Economou et al., 2010; Gema et al., 2002; Slaný et al., 2021).
583	Though the presence of R.S. in PRs was high (up to 160 mg/g of substrate, Fig. 3A),
584	C. echinulata presented a low ability to grow on PRs used as sole substrate in SSF. This is
585	probably the result of the presence of phenolic compounds in high amounts (i.e. up to 14.0
586	mg/g substrate, Fig. 3B) or other inhibitors, the high substrate humidity (Fig. 3C) and/or the
587	loss of nutrients during sterilization process. To reduce moisture to adequate levels, blends of
588	PRs with two cereal substrates, WB and OFs, were used. These cereals, treated also as wastes,
589	are a good source of carbon and other nutrients, supporting fungal proliferation (Čertík et al.,
590	2013; Slaný et al., 2020). Actually, their incorporation in high percentage, positively affected
591	fungal growth as R.S. consumption (Fig. 3A) and % substrate utilization (Fig. 3C) confirm.
592	Specifically, when cereals were present at 70 to 90%, % substrate utilization was satisfactory.
593	On the contrary, when PRs were present at a level higher than 30%, R.S. consumption and %
594	substrate utilization were not satisfactory. During mixed cultures, R.S. originated from PRs (0
595	day in Fig. 3A) were partly utilized by the fungus. Moreover, the addition of WB and OFs
596	resulted in a reduction of water content (Fig. 3C), as well as, of phenolic compounds (up to
597	3.5 mg/g substrate, Fig. 3B). In all cases, the percentage of substrate utilization and the level
598	of GLA in intracellular lipid gradually increased and maximized on the 5 th day (Fig. 3C and
599	Fig. 4). C. echinulata cultivated on blends of 90% WB and 10% PRs, produced the highest
600	GLA quantities (i.e. 4.8 mg GLA/g fermented substrate) corresponding to 13.6% GLA in total
601	lipids, while increasing PRs incorporation resulted in decreased GLA production. The
602	addition of 80% OFs resulted in the higher GLA production among OFs-blends (i.e. 3.1 mg
603	GLA/g of fermented substrate representing 4.3% in total lipids). As in the case of WB, when
604	PRs used in a higher percentage (up to 50%) C. echinulata formed a low amount of GLA (i.e.
605	0.5-0.8 mg/g). When PRs were incorporated in low percentages GLA produced was higher

[23]

than that reported for *C. echinulata* ATHUM 4411 cultivated on orange peel, where GLA

607 production was1.2-1.5 mg/g fermented substrate (Gema et al., 2002).

608 The FA composition of lipids extracted from the fermented substrate was similar 609 regardless of the starting substrate (PR or blends of PRs with WB or OFs) (Tables 5 and 6). 610 C18:2 was the dominant FA and its concentration reduced with time. The percentage of C16:0 611 in total lipids also decreased with time. On the contrary, the percentage of C18:1 increased 612 with time, mostly in WB-blends, suggesting biosynthesis of this FA by C. echinulata and/or 613 selective uptake of other FAs resulting in change of lipid profile. As expected GLA was not 614 detected in the initial substrate and therefore was synthesized by the fungus during substrate 615 assimilation. Some quantities of C18:2 were probably converted to GLA. In all cases, the 616 final fermented substrate containing C18:2, GLA and C18:3n-3, even in small quantities, is of 617 high nutritional value for animal or human consumption. The necessity for cereal-based 618 products enriched with essential FAs and other compounds (such as pigments) has been 619 reported (Čertík et al., 2013; Certik and Adamechova, 2009) and the use of oleaginous fungi 620 during SSF seems like a promising approach. 621 TLC analysis of total lipids by *C. echinulata* is depicted in Fig. 5. The lipids of the 622 fermented PRs contained various species of TAGs, while the absence of 1,3-DAG and 623 ergosterol is noticed. Lipids from SSF performed on WB and OF alone contained ergosterol 624 in significant percentages and TAGs were present in greater diversity. As the incorporation of 625 PRs increased in the substrate, specific species of TAGs (i.e. TAG1) also increased, while on 626 the contrary, the ergosterol content decreased. There are several distinct patterns of sterols 627 among fungi, depending on the phylum and/or environmental conditions (Volkman, 2003). 628 The presence of ergosterol in fungal or yeast lipids is essential for their response to stress by 629 inhibitors and therefore to their growth (Dupont et al., 2012). Phytosterol content was similar 630 in lipids produced during SSF on individual substrates (approximately 11%, w/w) and 631 decreased in blends of PRs with cereals, with exception of the substrate in which OFs 632 participated at a percentage of 80%, in which phytosterol remained in high levels. Moreover, 633 the incorporation of WB resulted in a higher amount of free FAs on the final product, while

[24]

634	the percentage of	polar lipids slightl	y increased in the cas	se of blends of PRs with	cereals

635 (ranging from 6.2 to 11.5%). During SSF of WB by Umbelopsis isabellina the percentage of

- free FAs and sterols increased (Slaný et al., 2021).
- 637
- 638 4. Conclusions
- 639 Agro-industrial residues, such as PRs, are suitable low-cost substrates for microbial
- 640 fermentation processes leading to a "green" and cost-effective production of value-added
- 641 products. These residues are largely available and abundant in nutrients. Researchers are
- 642 focused on pretreatment methods of lignocellulosic biomass, while they have to overcome a
- 643 variety of peculiarities to use such materials. In this investigation, efficient extraction and
- 644 hydrolysis of the polysaccharides found in PRs were conducted in a one-step process and the
- resulted broth was successfully utilized by several yeast strains, able to grow into such
- 646 extreme conditions, for either ethanol or SCOs production. Moreover, PRs combined with
- 647 cereals, were effectively operated by an oleaginous fungus for the production of a final
- 648 fermented substrate enriched with PUFAs. We conclude that new perspectives are emerging
- 649 for the use of PRs as a raw material to produce valuable microbial metabolites, using
- 650 environmentally friendly approaches.

651

652 Declaration of interests

653 The authors declare that they have no known competing financial interests or personal

relationships that could have appeared to influence the work reported in this paper.

655

656 Funding

This work was financial supported by a) the project "INVALOR: Research Infrastructure for
Waste Valorization and Sustainable Management" (MIS 5002495), which is implemented
under the Action "Reinforcement of the Research and Innovation Infrastructure," funded by
the Operational Program "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014–
2020) and co-financed by Greece and the European Union (European Regional Development

- 662 Fund), b) the project "Optimization of pomegranate tree cultivation in Achaia and
- development of innovative products", funded by the Regional Operational Program of
- 664 Western Greece 2014-2020 and The Bacfresh Company and c) the grant VEGA 1/0323/19
- from Ministry of Education, Science, Research and Sports, Slovak Republic.

666 Table 1: Polysaccharide extraction and hydrolysis from PRs under various experimental

667 conditions of H_2SO_4 concentration, processing time and temperature. The asterisk (*)

indicates one set experiments performed using an open vessel assuring the presence of O_2 .

669 Data are presented as mean values of three replications. Letters refer to comparisons at

670 vertical reading only; different letters indicate that differences of means are statistically

significant at $p \le 0.05$. Data were treated by one-way ANOVA test followed by Bonferroni

- 672 post hoc test.
- 673

Set	Time	Temperature	H_2SO_4	Total Sugars	Reducing	Extraction	Hydrolysis
	(min)	(°C)	(M)	(g/L)	Sugars (g/L)	(%)	(%)
	20	101	0.00	2478 . 22	$29.2^{a} + 0.0$	100 (91.6
а	20	121	0.00	$34.7^{a} \pm 2.3$	$28.3^{a} \pm 0.9$	100.6	81.6
b	30	121	0.00	$30.3^{a} \pm 1.6$	$29.0^{a} \pm 1.6$	86.6	95.7
с	60	121	0.00	$32.5^{a} \pm 2.6$	$29.8^{\rm a}\pm2.6$	94.2	91.7
d	60	121	0.03	$32.5^a\pm2.2$	$31.6^{a} \pm 3.0$	94.2	97.2
e	60	121	0.05	$33.5^{a} \pm 2.7$	$32.5^{b} \pm 3.4$	97.1	97.0
f	60	121	0.07	$30.4^{a} \pm 2.0$	$28.5^{a} \pm 3.3$	88.1	93.8
g	60	121	0.10	$34.5^{\rm a}\pm1.9$	$28.6^{a} \pm 3.1$	100.0	82.9
h	120	121	0.00	$30.9^{a}\pm0.8$	$31.1^{a} \pm 0.3$	89.6	100.6
i	120	100	0.00	$31.7^{a}\pm0.2$	$26.1^{a}\pm0.6$	91.9	82.3
j*	120	100	0.00	$30.1^{\rm a}\pm0.5$	$24.9^{b}\pm0.2$	87.2	82.7

674	Table 2: Cell mass, ethanol production, lipid a	ccumulation and phenolic removal by	different microorganisms cu	ltivated on PR extract or solid residue under

different culture conditions. Abbreviations: R.S., reducing sugars; nd, not determined; ND, not detected

Microbial strain	Culture	conditions		Initial R.S. concentration	X _{max} (g/L)	Ethanol _{max} (g/L)	L/X _{max} %	Initial phenolic concentration	Phenolic removal
	Fermentation	Growth	pН	(g/L or mg/g by-product)				(g/L or mg/g by- product)	(%, w/w)
C. echinulata	Solid state	Aerobic	6.5	163.7 ^a	nd	-	11.7	14.0	16.8
			6.5	22.3 ^b	nd	-	4.8	0.8	44.3
			6.5	7.5 [°]	nd	-	7.1	2.5	59.9
C. tropicalis	Submerged	Aerobic	4.5	37.0 ^{d, #}	nd	4.9	-	nd	nd
		Anaerobic	4.5	32.1 ^{d,*}	nd	6.8	-	nd	nd
L. lipofer		Aerobic	6.5	22.5 ^{d, #}	2.1	-	7.0	1.6	29.8
			6.5	15.3 ^{e, #}	1.6	-	3.9	0.9	18.3
			6.5	9.6 ^{f, #}	1.0	-	13.5	0.5	36.5
M. guilliermondii		Aerobic	2.6	18.0 ^{d, #}	2.1	3.2	18.1	2.3	48.8
		Anaerobic	2.6	19.3 ^{d, #}	1.7	5.8	4.7	2.3	22.3
S. cerevisiae		Anaerobic	3.5	30.8 ^{d, #}	2.7	7.4	-	2.6	ND
			3.5	37.4 ^{d, *}	2.8	12.5	-	nd	nd
			3.5	32.3 ^{d, *}	2.7	9.3	-	nd	nd
			5.0	33.3 ^{d, #}	2.8	9.7	-	2.5	ND
S. coipomoensis		Aerobic	2.6	20.8 ^{d, #}	0.7	0.2	8.3	2.0	22.7
		Anaerobic	2.6	21.5 ^{d, #}	1.0	3.6	4.2	2.0	30.6
S. paludigena		Aerobic	2.6	18.0 ^{d, #}	2.1	1.6	15.4	2.3	61.0
		Anaerobic	2.6	19.3 ^{d, #}	1.5	5.3	9.0	2.3	22.1
Y. lipolytica		Aerobic	6.5	21.8 ^{d, #}	1.7	-	7.0	2.6	45.0
- *			6.5	7.6 ^{f, #}	0.9	-	11.0	1.3	64.5

^aFermentation on 100% PRs; ^bFermentation on blend 10% PRs and 90% WB; ^cFermentation on blend 20% PRs and 80% OFs; ^d100% PR extract; ^e80% PR

677 extract and 20% water; ^f50% PR extract and 50% water; [#]laboratory processing conditions; ^{*}industrial processing conditions

678 Table 3: Kinetic parameter values of yeast strains growing under aerobic and anaerobic conditions in PRs extract. The asterisk (*) indicates the experimental
 679 values.
 Yeast strain Culture Parameter R²

Yeast strain Culture Parameter									\mathbf{R}^2			
	condition	K _{pp}	K _{px}	K _{sp}	K _{sx}	q _{max}	μ_{max}		Y _{ps}	3	Y _{sx}	-
		(g/L)	(g/L)	(g/L)	(g/L)	(1/h)	(1/h)	(g	g/g)	(g	g/g)	
M. guilliermondii	Aerobic	0.762	0.586	1.478	3.097	0.841	0.0074	0.297	0.240*	0.199	0.149*	0.679
	Anaerobic	0.196	0.209	10.601	1.864	0.728	0.0050	0.389	0.333*	0.242	0.099*	0.815
S. cerevisiae	Anaerobic	0.109	0.095	0.128	2.122	0.592	0.0038	0.373	0.321*	0.357	0.080*	0.844
S. coipomoensis	Aerobic	10.055	9.397	13.750	5.003	0.101	0.0079	0.150	0.022*	0.096	0.072*	0.579
	Anaerobic	0.480	0.437	1.961	0.039	0.706	0.00024	0.369	0.369*	0.197	0.102*	0.654
S. paludigena	Aerobic	0.741	0.413	0.165	1.847	0.734	0.0042	0.304	0.120*	0.208	0.152*	0.636
	Anaerobic	0.242	0.249	14.290	4.641	0.736	0.0055	0.364	0.364*	0.277	0.104*	0.641

Table 4: Fatty acid composition (%, w/w) of total lipids produced by oleaginous yeasts

- 682 cultivated on PRs. Data represent the mean of two determinations. Abbreviations: ND, not
- 683 detected.

Yeast strain	Fatty acid composition (%, w/w)								
-	C16:0	C16:1	C18:0	C18:1	C18:2	Others			
				n-9	n-6				
M. guilliermondii	35.1	ND	ND	61.9	ND	3.0			
	± 0.1			± 0.9		± 0.2			
S. coipomoensis	35.5	ND	ND	62.5	ND	2.0			
	± 0.3			± 1.0		± 0.9			
S. paludigena	26.0	11.6	3.9	37.5	4.5	16.7			
	± 0.2	± 0.3	± 0.0	± 0.5	± 0.0	± 1.1			
Y. lipolytica	12.7	14.3	4.5	43.2	19.6	1.7			
	± 0.1	± 0.2	± 0.1	± 0.3	± 0.2	± 0.5			

685 Table 5: Fatty acid composition (%) of total lipids of *Cunninghamella echinulata* during

solid-state fermentation on PRs and WB used in different ratios. Data represent the mean of

687	two determinations.	Abbreviations:	ND, not detected
-----	---------------------	----------------	------------------

Ratio of PRs:WB (%)										
PRs	WB	_	C16:0	C16:1	C18:0	C18:1 n-9	C18:2 n-6	C18:3 n-6	C18:3 n-3	Others
0	100	0	19.6	ND	3.7	24.5	48.6	ND	3.3	0.3
0	100	0	± 0.2	ND	± 0.3	± 0.9	± 1.3	ΠD	± 0.2	± 0.1
		5	14.6	0.6	2.9	26.4	39.8	14.4	1.1	0.2
		5	± 0.1	± 0.0	± 0.1	± 1.1	± 1.1	± 0.4	± 0.0	± 0.0
10	90	0	20.1	0.6	1.3	25.2	48.6	ND	3.6	0.3
10	20	0	± 0.7	± 0.0	± 0.0	± 1.2	± 0.6	112	± 0.1	± 0.1
		3	15.7	0.9	_ 0.0 4.4	29.7	40.5	5.0	3.3	0.5
		-	± 0.3	± 0.1	± 0.5	± 0.7	± 0.7	± 0.1	± 0.2	± 0.2
		5	13.9	0.8	3.5	32.1	34.1	13.6	1.7	0.3
			± 0.1	± 0.2	± 0.2	± 1.0	± 0.3	± 0.2	± 0.0	± 0.0
20	80	0	19.9	0.2	2.2	26.0	48.5	ND	3.0	0.2
			± 0.5	± 0.0	± 0.0	± 0.9	± 1.2		± 0.2	± 0.0
		3	16.6	0.5	5.5	30.9	37.2	7.3	1.6	0.4
			± 0.4	± 0.0	± 0.4	± 0.2	± 1.0	± 0.1	± 0.0	± 0.1
		5	16.5	0.8	5.9	33.9	33.3	8.1	1.1	0.4
			± 0.5	± 0.1	± 0.6	± 0.7	± 0.4	± 0.2	± 0.1	± 0.1
30	70	0	19.9	1.0	2.5	25.3	47.6	ND	3.5	0.2
			± 1.0	± 0.3	± 0.1	± 0.3	± 0.9		± 0.3	± 0.0
		3	18.0	0.4	4.3	26.5	44.2	3.6	2.7	0.3
			± 0.2	± 0.0	± 0.1	± 0.5	± 0.7	± 0.0	± 0.2	± 0.0
		5	17.6	1.0	5.9	34.5	32.2	6.8	1.6	0.4
			± 0.1	± 0.0	± 0.3	± 1.1	± 0.7	± 0.5	± 0.1	± 0.1
40	60	0	21.2	0.5	3.0	23.8	48.2	ND	3.1	0.2
			± 1.1	± 0.1	± 0.2	± 0.6	± 0.2		± 0.2	± 0.0
		3	20.2	0.3	2.4	25.1	47.4	1.3	3.0	0.3
			± 0.9	± 0.0	± 0.2	± 0.5	± 1.4	± 0.0	± 0.9	± 0.0
		5	17.3	0.4	4.3	30.3	40.3	4.6	2.5	0.3
			± 0.3	± 0.0	± 0.7	± 1.0	± 1.1	± 0.2	± 0.7	± 0.1
50	50	0	19.3	0.3	2.1	23.6	52.6	ND	0.2	1.9
			± 0.4	± 0.1	± 0.1	± 0.2	± 0.9		± 0.0	± 0.3
		3	16.2	0.2	3.2	23.3	51.7	5.0	0.2	0.2
			$\pm 0,1$	± 0.0	± 0.0	± 0.5	± 0.6	± 0.1	± 0.0	± 0.0
		5	17.9	0.8	3.4	24.6	46.1	2.2	4.1	0.9
			± 0.3	± 0.2	± 0.2	± 0.4	± 1.0	± 0.1	± 0.2	± 0.2

689 Table 6: Fatty acid composition (%) of total lipids of *Cunninghamella echinulata* during

690 solid-state fermentation on PRs and OFs used in different ratios. Data represent the mean of

691	two	determinations.

Ratio of PRs:OFs (%)		Day of SSF	Fatty acid composition (%)							
PRs	OFs	_	C16:0	C16:1	C18:0	C18:1 n-9	C18:2 n-6	C18:3 n-6	C18:3 n-3	Others
0	100	1	15.7	0.9	1.3	38.9	41.3	ND	1.5	0.4
			± 1.1	± 0.1	± 0.2	± 1.1	± 0.2		± 0.1	± 0.1
		5	14.5	1.4	2.5	35.4	34.3	9.5	2.1	0.3
			± 1.2	± 0.2	± 0.2	± 1.3	± 0.4	± 0.5	± 0.5	± 0.1
10	90	0	16.9	0.3	1.5	37.7	41.5	ND	1.9	0.2
			± 0.9	± 0.0	± 0.1	± 0.7	± 1.0		± 0.2	± 0.0
		3	16.5	0.6	2.6	38.2	37.4	2.9	1.6	0.2
			± 1.0	± 0.1	± 0.3	± 0.6	± 0.9	± 0.1	± 0.1	± 0.0
		5	14.8	1.2	4.4	29.4	39.9	5.8	4.3	0.2
			± 0.5	± 0.1	± 0.5	± 0.3	± 0.4	± 0.3	± 0.6	± 0.0
20	80	0	16.1	0.7	1.3	37.8	41.8	ND	2.1	0.2
			± 0.3	± 0.0	± 0.0	± 1.1	± 0.3		± 0.2	± 0.1
		3	15.5	0.5	2.3	37.0	38.6	3.8	2.0	0.3
			± 0.8	± 0.0	± 0.2	± 1.2	± 0.8	± 0.2	± 0.3	± 0.0
		5	16.6	0.7	4.0	40.4	32.8	4.3	0.9	0.3
			± 0.5	± 0.2	± 0.6	± 0.5	± 0.5	± 0.1	± 0.0	± 0.1
30	70	0	17.2	0.6	1.9	38.1	39.6	ND	2.4	0.2
			± 0.2	± 0.1	± 0.4	± 0.2	± 0.6		± 0.2	± 0.0
		3	16.8	0.2	2.3	37.3	39.7	1.6	1.8	0.3
			± 0.9	± 0.0	± 0.3	± 0.6	± 0.2	± 0.0	± 0.1	± 0.1
		5	16.4	0.4	2.1	38.2	40.0	1.1	1.6	0.2
			± 1.1	± 0.0	± 0.1	± 0.7	± 1.0	± 0.1	± 0.1	± 0.0
40	60	0	16.9	0.8	2.4	36.5	41.2	ND	2.1	0.1
			± 0.9	± 0.2	± 0.1	± 0.5	± 0.8		± 0.3	± 0.0
		3	17.2	0.7	3.0	39.7	35.7	1.9	1.5	0.3
			± 0.5	± 0.0	± 0.6	± 1.1	± 0.3	± 0.1	± 0.3	± 0.0
		5	17.8	0.2	1.6	37.4	40.4	0.6	1.7	0.3
			± 0.4	± 0.0	± 0.5	± 0.8	± 0.2	± 0.0	± 0.2	± 0.1
50	50	0	19.7	0.5	5.0	37.7	34.4	ND	1.9	0.8
			± 1.1	± 0.1	± 0.9	± 0.2	± 0.4		± 0.2	± 0.2
		3	16.9	0.5	3.3	35.4	39.3	2.2	2.2	0.2
			± 0.6	± 0.1	± 0.4	± 0.3	± 0.1	± 0.2	± 0.1	± 0.0
		5	19.0	0.6	3.8	36.9	38.1	1.4	0.1	0.1
			± 0.8	± 0.2	± 0.2	± 0.4	± 0.1	± 0.1	± 0.0	± 0.0

693	Figure	captions

694	Fig. 1 : K	Kinetics of growth	, ethanol production	and substrate co	onsumption of	Saccharomyces
-----	-------------------	--------------------	----------------------	------------------	---------------	---------------

- 695 *cerevisiae* under anaerobic conditions, cultivated at pH=3.5 and laboratory processing
- 696 conditions (i), at pH=3.5 and industrial processing conditions (ii), (iii) and at pH=5.0 and
- 697 laboratory processing conditions (iv). Points and lines represent experimental data and model
- 698 prediction, respectively.

699

- 700 Fig. 2: Kinetics of growth, ethanol production and substrate consumption of Meyerozyma
- 701 guilliermondii (A), Scheffersomyces coipomoensis (B), and Sugiyamaella paludigena (C)
- 702 cultivated under anaerobic conditions at pH=2.6 and laboratory processing conditions. Points
- and lines represent experimental data and model prediction, respectively.

- **Fig. 3**: Content of reducing (mg/g by-product) and total sugars (g/g by-product) (A), phenolic
- compounds (mg/g by-product) (B), and substrate humidity and utilization (%) (C) after solid-
- state fermentation using Cunninghamella echinulata on sole PRs (i), different amounts of PRs
- and WB (ii), and different amounts of PRs and OFs (iii).
- 709
- **Fig. 4**: Content of total lipids (%), GLA on total lipids (%), yield of GLA (mg/g by-product)
- 711 after solid-state fermentation using Cunninghamella echinulata on sole PRs (i), different
- amounts of PRs and WB (ii), and different amounts of PRs and OFs (iii).
- 713
- **Fig. 5**: TLC analysis of non-polar lipids of *Cunninghamella echinulata*.

715 References

- 716 https://www.worldbank.org/en/topic/agriculture/overview
- 717 Aggelis, G., Iconomou, D., Christou, M., Bokas, D., Kotzailias, S., Christou, G., Tsagou, V.,
- 718 Papanikolaou, S., 2003. Phenolic removal in a model olive oil mill wastewater using
- 719 *Pleurotus ostreatus* in bioreactor cultures and biological evaluation of the process.
- 720 Water Res. 37, 3897–3904. https://doi.org/10.1016/S0043-1354(03)00313-0
- 721 Akhtar, S., Ismail, T., Fraternale, D., Sestili, P., 2015. Pomegranate peel and peel extracts:
- 722 Chemistry and food features. Food Chem. 174, 417-425.
- 723 https://doi.org/10.1016/j.foodchem.2014.11.035
- Arevalo-Gallegos, A., Ahmad, Z., Asgher, M., Parra-Saldivar, R., Iqbal, H.M.N., 2017.
- 725 Lignocellulose: A sustainable material to produce value-added products with a zero
- 726 waste approach—A review. Int. J. Biol. Macromol. 99, 308–318.
- 727 https://doi.org/10.1016/j.ijbiomac.2017.02.097
- 728 Banković-Ilić, I.B., Stojković, I.J., Stamenković, O.S., Veljkovic, V.B., Hung, Y.T., 2014.
- 729 Waste animal fats as feedstocks for biodiesel production. Renew. Sustain. Energy Rev.
- 730 32, 238-254. https://doi.org/10.1016/j.rser.2014.01.038
- 731 Baral, N.R., Shah, A., 2014. Microbial inhibitors: formation and effects on acetone-butanol-
- ethanol fermentation of lignocellulosic biomass. Appl. Microbiol. Biotechnol. 98, 9151–
- 733 9172. https://doi.org/10.1007/s00253-014-6106-8
- 734 Bassiri-Jahromi, S., 2018. Punica granaturn (Pomegranate) activity in health promotion and

735 cancer prevention. Oncol. Rev. https://doi.org/10.4081/oncol.2018.345

- 736 Behera, S., Mohanty, R.C., Ray, R.C., 2011. Ethanol production from mahula (Madhuca
- 737 *latifolia L.*) flowers with immobilized cells of *Saccharomyces cerevisiae* in *Luffa*
- 738 *cylindrica L.* sponge discs. Appl. Energy. 88, 212-215.
- 739 https://doi.org/10.1016/j.apenergy.2010.07.035
- 740 Bellou, S., Triantaphyllidou, I.E., Aggeli, D., Elazzazy, A.M., Baeshen, M.N., Aggelis, G.,
- 741 2016. Microbial oils as food additives: Recent approaches for improving microbial oil
- production and its polyunsaturated fatty acid content. Curr. Opin. Biotechnol. 37, 24–35.

- 743 https://doi.org/10.1016/j.copbio.2015.09.005
- 744 Birol, G., Doruker, P., Kirdar, B., Önsan, Z.I., Ülgen, K., 1998. Mathematical description of
- ethanol fermentation by immobilised *Saccharomyces cerevisiae*. Process Biochem. 33,
- 746 763-771. https://doi.org/10.1016/S0032-9592(98)00047-8
- 747 Bravo, C., Garcés, D., Faba, L., Sastre, H., Ordóñez, S., 2017. Selective arabinose extraction
- from *Pinus* sp. sawdust by two-step soft acid hydrolysis. Ind. Crops Prod. 104, 229-236.
- 749 https://doi.org/10.1016/j.indcrop.2017.04.027
- 750 Çam, M., Hişil, Y., 2010. Pressurised water extraction of polyphenols from pomegranate
- 751 peels. Food Chem. 123, 878–885. https://doi.org/10.1016/j.foodchem.2010.05.011
- 752 Caporusso, A., De Bari, I., Valerio, V., Albergo, R., Liuzzi, F., 2021. Conversion of cardoon
- crop residues into single cell oils by *Lipomyces tetrasporus* and *Cutaneotrichosporon*
- 754 *curvatus*: process optimizations to overcome the microbial inhibition of lignocellulosic
- hydrolysates. Ind. Crops Prod. 159, 113030.
- 756 https://doi.org/10.1016/j.indcrop.2020.113030
- 757 Carota, E., Petruccioli, M., D'Annibale, A., Crognale, S., 2020. Mixed glycerol and orange
- 758 peel-based substrate for fed-batch microbial biodiesel production. Heliyon 6, e04801.
- 759 https://doi.org/10.1016/j.heliyon.2020.e04801
- 760 Catania, P., Comparetti, A., De Pasquale, C., Morello, G., Vallone, M., 2020. Effects of the
- r61 extraction technology on pomegranate juice quality. Agronomy 10, 1483.
- 762 https://doi.org/10.3390/agronomy10101483
- 763 Certik, M., Adamechova, Z., 2009. Cereal-based bioproducts containing polyunsaturated fatty
 764 acids. Lipid Technol. 21, 250-253. https://doi.org/10.1002/lite.200900058
- 765 Čertík, M., Adamechová, Z., Guothová, L., 2013. Simultaneous enrichment of cereals with
- polyunsaturated fatty acids and pigments by fungal solid state fermentations. J.
- 767 Biotechnol. 168, 130–134. https://doi.org/10.1016/j.jbiotec.2013.03.016
- 768 Čertík, M., Adamechová, Z., Laoteng, K., 2012. Microbial production of γ-linolenic acid:
- 769 Submerged versus solid-state fermentations. Food Sci. Biotechnol. 21, 921–926.
- 770 https://doi.org/10.1007/s10068-012-0121-2

- 771 Chatzifragkou, A., Makri, A., Belka, A., Bellou, S., Mavrou, M., Mastoridou, M., Mystrioti,
- P., Onjaro, G., Aggelis, G., Papanikolaou, S., 2011. Biotechnological conversions of
- biodiesel derived waste glycerol by yeast and fungal species. Energy 36, 1097–1108.
- 774 https://doi.org/10.1016/j.energy.2010.11.040
- da S. Pereira, A., Fontes-Sant'Ana, G.C., Amaral, P.F.F., 2019. Mango agro-industrial wastes
- for lipase production from *Yarrowia lipolytica* and the potential of the fermented solid
- as a biocatalyst. Food Bioprod. Process. 115, 68–77.
- 778 https://doi.org/10.1016/j.fbp.2019.02.002
- da Silveira, F.A., de Oliveira Soares, D.L., Bang, K.W., Balbino, T.R., de Moura Ferreira,
- 780 M.A., Diniz, R.H.S., de Lima, L.A., Brandão, M.M., Villas-Bôas, S.G., da Silveira,
- 781 W.B., 2020. Assessment of ethanol tolerance of *Kluyveromyces marxianus* CCT 7735
- selected by adaptive laboratory evolution. Appl. Microbiol. Biotechnol. 104, 7483–
- 783 7494. https://doi.org/10.1007/s00253-020-10768-9
- 784 Daskalaki, A., Perdikouli, N., Aggeli, D., Aggelis, G., 2019. Laboratory evolution strategies
- 785 for improving lipid accumulation in *Yarrowia lipolytica*. Appl. Microbiol. Biotechnol.

786 103, 8585–8596. https://doi.org/10.1007/s00253-019-10088-7

- 787 De Bari, I., De Canio, P., Cuna, D., Liuzzi, F., Capece, A., Romano, P., 2013. Bioethanol
- 788 production from mixed sugars by *Scheffersomyces stipitis* free and immobilized cells,
- and co-cultures with *Saccharomyces cerevisiae*. N. Biotechnol. 30, 591-597.
- 790 https://doi.org/10.1016/j.nbt.2013.02.003
- 791 De Melo, A.H.F., Lopes, A.M.M., Dezotti, N., Santos, I.L., Teixeira, G.S., Goldbeck, R.,
- 792 2020. Evolutionary engineering of two robust Brazilian industrial yeast strains for
- thermotolerance and second-generation biofuels. Ind. Biotechnol. 16, 91-98.
- 794 https://doi.org/10.1089/ind.2019.0031
- 795 Di Fidio, N., Dragoni, F., Antonetti, C., De Bari, I., Raspolli Galletti, A.M., Ragaglini, G.,
- 796 2020. From paper mill waste to single cell oil: Enzymatic hydrolysis to sugars and their
- fermentation into microbial oil by the yeast *Lipomyces starkeyi*. Bioresour. Technol.
- 798 315, 123790. https://doi.org/10.1016/j.biortech.2020.123790

- 799 Dien, B.S., Slininger, P.J., Kurtzman, C.P., Moser, B.R., O'Bryan, P.J., 2016. Identification
- 800 of superior lipid producing *Lipomyces* and *Myxozyma* yeasts. AIMS Environ. Sci. 3, 1–
- 801 20. https://doi.org/10.3934/environsci.2016.1.1
- 802 Diwan, B., Gupta, P., 2020. Conversion of rice straw to caprylic acid-rich microbial oils by
- 803 oleaginous yeast isolates. Biomass Convers. Biorefinery.
- 804 https://doi.org/10.1007/s13399-020-01039-8
- 805 Diwan, B., Gupta, P., 2019. Lignocellulosic biomass to fungal oils: A radical bioconversion
- toward establishing a prospective resource, in: Yadav, A., Singh, S., Mishra, S., Gupta,
- A. (Eds.), Recent advancement in white biotechnology through fungi. Springer, pp.

808 407–440. https://doi.org/10.1007/978-3-030-14846-1_14

- 809 Dobrowolski, A., Mituła, P., Rymowicz, W., Mirończuk, A.M., 2016. Efficient conversion of
- 810 crude glycerol from various industrial wastes into single cell oil by yeast *Yarrowia*
- 811 *lipolytica*. Bioresour. Technol. 207, 237-243.
- 812 https://doi.org/10.1016/j.biortech.2016.02.039
- 813 Donot, F., Fontana, A., Baccou, J.C., Strub, C., Schorr-Galindo, S., 2014. Single cell oils
- 814 (SCOs) from oleaginous yeasts and moulds: Production and genetics. Biomass and
- 815 Bioenergy 68, 135–150. https://doi.org/10.1016/j.biombioe.2014.06.016
- 816 Dourou, M., Aggeli, D., Papanikolaou, S., Aggelis, G., 2018. Critical steps in carbon
- 817 metabolism affecting lipid accumulation and their regulation in oleaginous
- 818 microorganisms. Appl. Microbiol. Biotechnol. 102, 2509–2523.
- 819 https://doi.org/10.1007/s00253-018-8813-z
- 820 Dourou, M., Kancelista, A., Juszczyk, P., Sarris, D., Bellou, S., Triantaphyllidou, I.E.,
- 821 Rywinska, A., Papanikolaou, S., Aggelis, G., 2016. Bioconversion of olive mill
- 822 wastewater into high-added value products. J. Clean. Prod. 139, 957–969.
- 823 https://doi.org/10.1016/j.jclepro.2016.08.133
- 824 Dourou, M., Mizerakis, P., Papanikolaou, S., Aggelis, G., 2017. Storage lipid and
- 825 polysaccharide metabolism in *Yarrowia lipolytica* and *Umbelopsis isabellina*. Appl.
- 826 Microbiol. Biotechnol. 101, 7213–7226. https://doi.org/10.1007/s00253-017-8455-6

017	Dului M	$C^{(1)}_{1} \rightarrow U$	TT 114	IV D.1		Constate E	1051	A colorimetric method
X//	DIDDOIS IVI	CTILLES K	Hamilton	тк ке	ners PA	Smith F	ברפו ב	a colorimetric method

- for the determination of sugars. Nature 168, 167. https://doi.org/10.1038/168167a0
- 829 Dupont, S., Lemetais, G., Ferreira, T., Cayot, P., Gervais, P., Beney, L., 2012. Ergosterol
- biosynthesis: A fungal pathway for life on land? Evolution. 66, 2961-2968.
- 831 https://doi.org/10.1111/j.1558-5646.2012.01667.x
- 832 Economou, C.N., Makri, A., Aggelis, G., Pavlou, S., Vayenas, D. V., 2010. Semi-solid state
- fermentation of sweet sorghum for the biotechnological production of single cell oil.
- Bioresour. Technol. 101, 1385–1388. https://doi.org/10.1016/j.biortech.2009.09.028
- Fakas, S., Čertik, M., Papanikolaou, S., Aggelis, G., Komaitis, M., Galiotou-Panayotou, M.,
- 836 2008. γ-Linolenic acid production by *Cunninghamella echinulata* growing on complex
- 837 organic nitrogen sources. Bioresour. Technol. 99, 5986–5990.
- 838 https://doi.org/10.1016/j.biortech.2007.10.016
- 839 Fakas, S., Makri, A., Mavromati, M., Tselepi, M., Aggelis, G., 2009. Fatty acid composition
- 840 in lipid fractions lengthwise the mycelium of *Mortierella isabellina* and lipid production
- by solid state fermentation. Bioresour. Technol. 100, 6118–6120.
- 842 https://doi.org/10.1016/j.biortech.2009.06.015
- 843 Fernandes, S., Murray, P.G., 2010. Metabolic engineering for improved microbial pentose
- fermentation. Bioeng. Bugs 1, 424–428. https://doi.org/10.4161/bbug.1.6.12724
- Folch, J., Lees, M., Stanley, G.H.S., 1957. A simple method for the isolation and purification
- of total lipides from animal tissues. J. Biol. Chem. 226, 497–509.
- Folin, O., Ciocalteau, V., 1927. Tyrosine and tryptophane in proteins. J. Biol. Chem. 73, 627–
 648.
- 849 Gajdoš, P., Nicaud, J.M., Rossignol, T., Čertík, M., 2015. Single cell oil production on
- 850 molasses by *Yarrowia lipolytica* strains overexpressing *DGA2* in multicopy. Appl.
- 851 Microbiol. Biotechnol. 99, 8065-8074. https://doi.org/10.1007/s00253-015-6733-8.
- 852 Gema, H., Kavadia, A., Dimou, D., Tsagou, V., Komaitis, M., Aggelis, G., 2002. Production
- 853 of γ-linolenic acid by *Cunninghamella echinulata* cultivated on glucose and orange peel.
- Appl. Microbiol. Biotechnol. 58, 303–307. https://doi.org/10.1007/s00253-001-0910-7

- 855 Ghinea, C., Apostol, L.C., Prisacaru, A.E., Leahu, A., 2019. Development of a model for food
- waste composting. Environ. Sci. Pollut. Res. 26, 4056–4069.
- 857 https://doi.org/10.1007/s11356-018-3939-1
- 858 Gong, Z., Wang, Q., Shen, H., Hu, C., Jin, G., Zhao, Z.K., 2012. Co-fermentation of
- 859 cellobiose and xylose by *Lipomyces starkeyi* for lipid production. Bioresour. Technol.
- 860 117, 20–24. https://doi.org/10.1016/j.biortech.2012.04.063
- 861 Gopinarayanan, V.E., Nair, N.U., 2019. Pentose metabolism in *Saccharomyces cerevisiae*:
- The need to engineer global regulatory systems. Biotechnol. J. 14, 1800364.
- 863 https://doi.org/10.1002/biot.201800364
- 864 Goula, A.M., Ververi, M., Adamopoulou, A., Kaderides, K., 2017. Green ultrasound-assisted
- 865 extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrason.

866 Sonochem. 34, 821-830. https://doi.org/10.1016/j.ultsonch.2016.07.022

- Gray, K.A., Zhao, L., Emptage, M., 2006. Bioethanol. Curr. Opin. Chem. Biol. 10, 141–146.
- 868 https://doi.org/10.1016/j.cbpa.2006.02.035
- 869 Gutiérrez, C.D.B., Serna, D.L.R., Alzate, C.A.C., 2017. A comprehensive review on the
- 870 implementation of the biorefinery concept in biodiesel production plants. Biofuel Res. J.
- 4, 691-703. https://doi.org/10.18331/BRJ2017.4.3.6
- 872 Haghighi Mood, S., Hossein Golfeshan, A., Tabatabaei, M., Salehi Jouzani, G., Najafi, G.H.,
- 873 Gholami, M., Ardjmand, M., 2013. Lignocellulosic biomass to bioethanol, a
- comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev. 27,
- 875 77–93. https://doi.org/10.1016/j.rser.2013.06.033
- 876 Hahn-Hägerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I., Gorwa-Grauslund, M.F.,
- 877 2007. Towards industrial pentose-fermenting yeast strains. Appl. Microbiol. Biotechnol.
- 878 74, 937–953. https://doi.org/10.1007/s00253-006-0827-2
- 879 Hasnaoui, N., Wathelet, B., Jiménez-Araujo, A., 2014. Valorization of pomegranate peel from
- 880 12 cultivars: Dietary fibre composition, antioxidant capacity and functional properties.
- 881 Food Chem. 160, 196–203. https://doi.org/10.1016/j.foodchem.2014.03.089
- Hinshelwood, C.N., 1947. The chemical kinetics of the bacterial cell. J. Am. Chem. Soc.

883 https://doi.org/10.1021/ja01201a035

- Janga, K.K., Hägg, M.B., Moe, S.T., 2012. Influence of acid concentration, temperature, and
- time on decrystallization in two-stage concentrated sulfuric acid hydrolysis of pinewood
- and aspenwood: A statistical approach. BioResources. 7, 391-411.
- 887 http://ncsu.edu/bioresources ISSN: 1930-2126
- Jia, R., Lv, S., Chai, C., Hui, F., 2020. Three new Scheffersomyces species associated with
- insects and rotting wood in China. MycoKeys 71, 87–99.
- 890 https://doi.org/10.3897/mycokeys.71.56168
- Jin, H., Liu, R., He, Y., 2012. Kinetics of batch fermentations for ethanol production with
- 892 immobilized *Saccharomyces cerevisiae* growing on sweet sorghum stalk juice. Procedia
- 893 Environ. Sci. 12, 137-145. https://doi.org/10.1016/j.proenv.2012.01.258
- Joseph, M.M., Aravind, S.R., George, S.K., Varghese, S., Sreelekha, T.T., 2013. A
- galactomannan polysaccharide from *Punica granatum* imparts in vitro and in vivo
- anticancer activity. Carbohydr. Polym. 98, 1466-1475.
- 897 https://doi.org/10.1016/j.carbpol.2013.07.023
- 898 Kaderides, K., Goula, A.M., Adamopoulos, K.G., 2015. A process for turning pomegranate
- peels into a valuable food ingredient using ultrasound-assisted extraction and
- 900 encapsulation. Innov. Food Sci. Emerg. Technol. 31, 204–215.
- 901 https://doi.org/10.1016/j.ifset.2015.08.006
- 902 Kanakdande, A.P., Khobragade, C.N., Mane, R.S., 2020. Utilization of pomegranate waste-
- 903 peel as a novel substrate for biodiesel production by: *Bacillus cereus* (MF908505).
- 904 Sustain. Energy Fuels 4, 1199–1207. https://doi.org/10.1039/c9se00584f
- 905 Karagoz, P., Bill, R.M., Ozkan, M., 2019. Lignocellulosic ethanol production: Evaluation of
- new approaches, cell immobilization and reactor configurations. Renew. Energy. 143,
- 907 741-752. https://doi.org/10.1016/j.renene.2019.05.045
- 908 Klempová, T., Slaný, O., Šišmiš, M., Marcinčák, S., Čertík, M., 2020. Dual production of
- 909 polyunsaturated fatty acids and beta-carotene with *Mucor wosnessenskii* by the process
- 910 of solid-state fermentation using agro-industrial waste. J. Biotechnol. 311, 1–11.

- 911 https://doi.org/10.1016/j.jbiotec.2020.02.006
- 912 Kostov, G., Popova, S., Gochev, V., Koprinkova-Hristova, P., Angelov, M., Georgieva, A.,
- 913 2012. Modeling of batch alcohol fermentation with free and immobilized yeasts
- 914 Saccharomyces cerevisiae 46 EVD. Biotechnol. Biotechnol. Equip. 26, 3021-3030.
- 915 https://doi.org/10.5504/bbeq.2012.0025
- 916 Ledesma-Amaro, R., Nicaud, J.-M., 2016. Metabolic engineering for expanding the substrate
- 917 range of *Yarrowia lipolytica*. Trends Biotechnol. 34, 798–809.
- 918 https://doi.org/10.1016/j.tibtech.2016.04.010
- Li, Q., Du, W., Liu, D., 2008. Perspectives of microbial oils for biodiesel production. Appl.
- 920 Microbiol. Biotechnol. 80, 749–756. https://doi.org/10.1007/s00253-008-1625-9
- 921 Li, W.C., Zhu, J.Q., Zhao, X., Qin, L., Xu, T., Zhou, X., Li, X., Li, B.Z., Yuan, Y.J., 2019.
- 922 Improving co-fermentation of glucose and xylose by adaptive evolution of engineering
- 923 xylose-fermenting *Saccharomyces cerevisiae* and different fermentation strategies.
- 924 Renew. Energy. 139, 1176-1183. https://doi.org/10.1016/j.renene.2019.03.028
- 925 Liang, M.H., Jiang, J.G., 2013. Advancing oleaginous microorganisms to produce lipid via
- 926 metabolic engineering technology. Prog. Lipid Res. 52, 395–408.
- 927 https://doi.org/10.1016/j.plipres.2013.05.002
- 928 Liu, X., Xu, W., Mao, L., Zhang, C., Yan, P., Xu, Z., Zhang, Z.C., 2016. Lignocellulosic
- 929 ethanol production by starch-base industrial yeast under PEG detoxification. Sci. Rep. 6,
- 930 20361. https://doi.org/10.1038/srep20361
- 931 Lopes, M.R., Batista, T.M., Franco, G.R., Ribeiro, L.R., Santos, A.R.O., Furtado, C., Moreira,
- 932 R.G., Goes-Neto, A., Vital, M.J.S., Rosa, L.H., Lachance, M.-A., Rosa, C.A., 2018.
- 933 Scheffersomyces stambukii f.a., sp. nov., a d-xylose-fermenting species isolated from
- rotting wood. Int. J. Syst. Evol. Microbiol. 68, 2306–2312.
- 935 https://doi.org/10.1099/ijsem.0.002834
- 936 Makri, A., Fakas, S., Aggelis, G., 2010. Metabolic activities of biotechnological interest in
- 937 *Yarrowia lipolytica* grown on glycerol in repeated batch cultures. Bioresour. Technol.
- 938 101, 2351–2358. https://doi.org/10.1016/j.biortech.2009.11.024

[41]

- 939 Martini, C., Tauk-Tornisielo, S.M., Codato, C.B., Bastos, R.G., Ceccato-Antonini, S.R., 2016.
- 940 A strain of *Meyerozyma guilliermondii* isolated from sugarcane juice is able to grow and
- 941 ferment pentoses in synthetic and bagasse hydrolysate media. World J. Microbiol.
- 942 Biotechnol. 32, 80. https://doi.org/10.1007/s11274-016-2036-1
- 943 Matos, I.T.S.R., Cassa-Barbosa, L.A., Galvão, R. de S.M., Nunes-Silva, C.G., Filho, S.A.,
- 944 2014. Isolation, taxonomic identification and investigation of the biotechnological
- 945 potential of wild-type *Meyerozyma guilliermondii* associated with Amazonian termites
- able to ferment D-xylose. Biosci. J. 30, 260-266.
- 947 Miller, G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar.

948 Anal. Chem. 31, 426–428. https://doi.org/10.1021/ac60147a030

- 949 Monod, J., 1942. Recherches sur la croissance des cultures bacteriennes. Ann. Inst. Pasteur.
- 950 Morais, C.G., Sena, L.M.F., Lopes, M.R., Santos, A.R.O., Barros, K.O., Alves, C.R.,
- 951 Uetanabaro, A.P.T., Lachance, M.A., Rosa, C.A., 2020. Production of ethanol and
- 952 xylanolytic enzymes by yeasts inhabiting rotting wood isolated in sugarcane bagasse
- 953 hydrolysate. Fungal Biol. 124, 639–647. https://doi.org/10.1016/j.funbio.2020.03.005
- 954 Mosier, N., 2005. Features of promising technologies for pretreatment of lignocellulosic
- biomass. Bioresour. Technol. 96, 673–686.
- 956 https://doi.org/10.1016/j.biortech.2004.06.025
- 957 Mphahlele, R.R., Fawole, O.A., Mokwena, L.M., Opara, U.L., 2016. Effect of extraction
- 958 method on chemical, volatile composition and antioxidant properties of pomegranate
- 959 juice. South African J. Bot. 103, 135–144. https://doi.org/10.1016/j.sajb.2015.09.015
- 960 Nevoigt, E., 2008. Progress in metabolic engineering of Saccharomyces cerevisiae.
- 961 Microbiol. Mol. Biol. Rev. 72, 379–412. https://doi.org/10.1128/MMBR.00025-07
- 962 Niehus, X., Crutz-Le Coq, A.-M., Sandoval, G., Nicaud, J.-M., Ledesma-Amaro, R., 2018.
- 963 Engineering *Yarrowia lipolytica* to enhance lipid production from lignocellulosic
- 964 materials. Biotechnol. Biofuels 11, 11. https://doi.org/10.1186/s13068-018-1010-6
- 965 Nitsos, C., Matsakas, L., Triantafyllidis, K., Rova, U., Christakopoulos, P., 2018.
- 966 Investigation of different pretreatment methods of Mediterranean-type ecosystem

- 967 agricultural residues: characterisation of pretreatment products, high-solids enzymatic
- 968 hydrolysis and bioethanol production. Biofuels 9, 545–558.
- 969 https://doi.org/10.1080/17597269.2017.1378988
- 970 Ntaikou, I., Menis, N., Alexandropoulou, M., Antonopoulou, G., Lyberatos, G., 2018.
- 971 Valorization of kitchen biowaste for ethanol production via simultaneous
- 972 saccharification and fermentation using co-cultures of the yeasts *Saccharomyces*
- 973 *cerevisiae* and *Pichia stipitis*. Bioresour. Technol. 263, 75-83.
- 974 https://doi.org/10.1016/j.biortech.2018.04.109
- 975 Osorio-González, C.S., Hegde, K., Brar, S.K., Kermanshahipour, A., Avalos-Ramírez, A.,
- 976 2019. Challenges in lipid production from lignocellulosic biomass using
- 977 *Rhodosporidium* sp.; A look at the role of lignocellulosic inhibitors. Biofuels, Bioprod.
- 978 Biorefining. 13, 740-759. https://doi.org/10.1002/bbb.1954
- 979 Papanikolaou, S., Aggelis, G., 2011a. Lipids of oleaginous yeasts. Part I: Biochemistry of
- 980 single cell oil production. Eur. J. Lipid Sci. Technol. 113, 1031–1051.
- 981 https://doi.org/10.1002/ejlt.201100014
- 982 Papanikolaou, S., Aggelis, G., 2011b. Lipids of oleaginous yeasts. Part II: Technology and
- 983 potential applications. Eur. J. Lipid Sci. Technol. 113, 1052–1073.
- 984 https://doi.org/10.1002/ejlt.201100015
- 985 Papanikolaou, S., Aggelis, G., 2002. Lipid production by Yarrowia lipolytica growing on
- 986 industrial glycerol in a single-stage continuous culture. Bioresour. Technol. 82, 43–49.
- 987 https://doi.org/10.1016/S0960-8524(01)00149-3
- 988 Pasha, C., Rao, L.V., 2009. Yeast biotechnology: Diversity and applications. Springer
- 989 Netherlands, Dordrecht. pp. 551-588. https://doi.org/10.1007/978-1-4020-8292-4
- 990 Pathak, P.D., Mandavgane, S.A., Kulkarni, B.D., 2017. Valorization of pomegranate peels: A
- biorefinery approach. Waste and biomass valorization. 8, 1127-1137.
- 992 https://doi.org/10.1007/s12649-016-9668-0
- 993 Patsios, S.I., Dedousi, A., Sossidou, E.N., Zdragas, A., 2020. Sustainable animal feed protein
- 994 through the cultivation of *Yarrowia lipolytica* on agro-industrial wastes and by-products.

- 995 Sustainability 12, 1398. https://doi.org/10.3390/su12041398
- 996 Pereira, P.H.F., Oliveira, T.Í.S., Rosa, M.F., Cavalcante, F.L., Moates, G.K., Wellner, N.,
- 997 Waldron, K.W., Azeredo, H.M.C., 2016. Pectin extraction from pomegranate peels with
- 998 citric acid. Int. J. Biol. Macromol. 88, 373-379.
- 999 https://doi.org/10.1016/j.ijbiomac.2016.03.074
- 1000 Pocan, P., Bahcegul, E., Oztop, M.H., Hamamci, H., 2018. Enzymatic hydrolysis of fruit
- 1001 peels and other lignocellulosic biomass as a source of sugar. Waste and Biomass
- 1002 Valorization. 9, 929-937. https://doi.org/10.1007/s12649-017-9875-3
- 1003 Rastogi, M., Shrivastava, S., 2017. Recent advances in second generation bioethanol
- 1004 production: An insight to pretreatment, saccharification and fermentation processes.
- 1005 Renew. Sustain. Energy Rev. 80, 330–340. https://doi.org/10.1016/j.rser.2017.05.225
- 1006 Reichert, P., 1998. AQUASIM 2.0 Computer Program for the identification and simulation

1007 of aquatic systems - User Manual, Water Science and Technology.

- 1008 Roukas, T., Kotzekidou, P., 2020. Pomegranate peel waste: a new substrate for citric acid
- 1009 production by *Aspergillus niger* in solid-state fermentation under non-aseptic conditions.
- 1010 Environ. Sci. Pollut. Res. 27, 13105–13113. https://doi.org/10.1007/s11356-020-07928-
- 1011

9

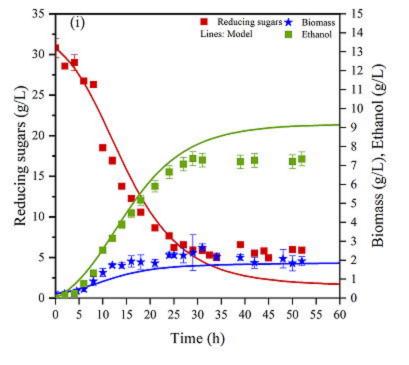
- 1012 Sadh, P.K., Duhan, S., Duhan, J.S., 2018. Agro-industrial wastes and their utilization using
- 1013 solid state fermentation: a review. Bioresour. Bioprocess. 5, 1.
- 1014 https://doi.org/10.1186/s40643-017-0187-z
- 1015 Sánchez, Ó.J., Cardona, C.A., 2008. Trends in biotechnological production of fuel ethanol
- 1016 from different feedstocks. Bioresour. Technol. 99, 5270–5295.
- 1017 https://doi.org/10.1016/j.biortech.2007.11.013
- 1018 Santos, M.P., Souza, M.C., Sumere, B.R., da Silva, L.C., Cunha, D.T., Bezerra, R.M.N.,
- 1019 Rostagno, M.A., 2019. Extraction of bioactive compounds from pomegranate peel
- 1020 (*Punica granatum L.*) with pressurized liquids assisted by ultrasound combined with an
- 1021 expansion gas. Ultrason. Sonochem. 54, 11–17.
- 1022 https://doi.org/10.1016/j.ultsonch.2019.02.021

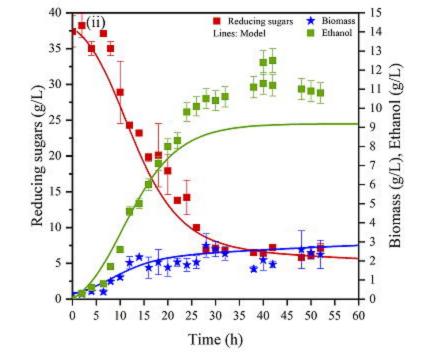
- 1023 Santosh, I., Ashtavinayak, P., Amol, D., Sanjay, P., 2017. Enhanced bioethanol production
- 1024 from different sugarcane bagasse cultivars using co-culture of *Saccharomyces cerevisiae*
- and *Scheffersomyces (Pichia) stipitis*. J. Environ. Chem. Eng. 5, 2861-2868.
- 1026 https://doi.org/10.1016/j.jece.2017.05.045
- 1027 Sarkar, N., Ghosh, S.K., Bannerjee, S., Aikat, K., 2012. Bioethanol production from
- agricultural wastes: An overview. Renew. Energy 37, 19–27.
- 1029 https://doi.org/10.1016/j.renene.2011.06.045
- 1030 Sarris, D., Giannakis, M., Philippoussis, A., Komaitis, M., Koutinas, A.A., Papanikolaou, S.,
- 1031 2013. Conversions of olive mill wastewater-based media by *Saccharomyces cerevisiae*
- 1032 through sterile and non-sterile bioprocesses. J. Chem. Technol. Biotechnol. 88, 958–
- 1033 969. https://doi.org/10.1002/jctb.3931
- 1034 Sarris, D., Kotseridis, Y., Linga, M., Galiotou-Panayotou, M., Papanikolaou, S., 2009.
- 1035 Enhanced ethanol production, volatile compound biosynthesis and fungicide removal
- 1036 during growth of a newly isolated *Saccharomyces cerevisiae* strain on enriched
- 1037 pasteurized grape musts. Eng. Life Sci. 9, 29–37.
- 1038 https://doi.org/10.1002/elsc.200800059
- 1039 Sarris, D., Matsakas, L., Aggelis, G., Koutinas, A.A., Papanikolaou, S., 2014. Aerated vs non-
- 1040 aerated conversions of molasses and olive mill wastewaters blends into bioethanol by
- 1041 *Saccharomyces cerevisiae* under non-aseptic conditions. Ind. Crops Prod. 56, 83–93.
- 1042 https://doi.org/10.1016/j.indcrop.2014.02.040
- 1043 Sarris, D., Papanikolaou, S., 2016. Biotechnological production of ethanol: Biochemistry,
- 1044 processes and technologies. Eng. Life Sci. 16, 307–329.
- 1045 https://doi.org/10.1002/elsc.201400199
- 1046 Sena, L.M.F., Morais, C.G., Lopes, M.R., Santos, R.O., Uetanabaro, A.P.T., Morais, P.B.,
- 1047 Vital, M.J.S., de Morais, M.A., Lachance, M.A., Rosa, C.A., 2017. d-Xylose
- 1048 fermentation, xylitol production and xylanase activities by seven new species of
- 1049 Sugiyamaella. Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 110, 53–67.
- 1050 https://doi.org/10.1007/s10482-016-0775-5

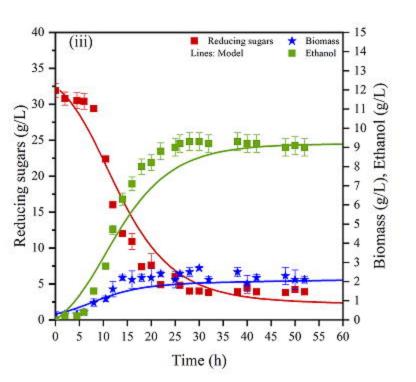
- 1051 Sharma, P., McClees, S.F., Afaq, F., 2017. Pomegranate for prevention and treatment of
- 1052 cancer: An update. Molecules. 22, 177. https://doi.org/10.3390/molecules22010177
- 1053 Siddiqui, M.T.H., Nizamuddin, S., Mubarak, N.M., Shirin, K., Aijaz, M., Hussain, M.,
- 1054 Baloch, H.A., 2019. Characterization and process optimization of biochar produced
- 1055 using novel biomass, waste pomegranate peel: A response surface methodology
- approach. Waste and Biomass Valorization 10, 521–532.
- 1057 https://doi.org/10.1007/s12649-017-0091-y
- 1058 Singh, A., Sharma, P., Saran, A.K., Singh, N., Bishnoi, N.R., 2013. Comparative study on
- 1059 ethanol production from pretreated sugarcane bagasse using immobilized
- 1060 *Saccharomyces cerevisiae* on various matrices. Renew. Energy. 50, 488-493.
- 1061 https://doi.org/10.1016/j.renene.2012.07.003
- 1062 Singh, J., Gu, S., 2010. Commercialization potential of microalgae for biofuels production.
- 1063 Renew. Sustain. Energy Rev. 14, 2596–2610. https://doi.org/10.1016/j.rser.2010.06.014
- 1064 Sitepu, I.R., Sestric, R., Ignatia, L., Levin, D., German, J.B., Gillies, L.A., Almada, L.A.G.,
- 1065 Boundy-Mills, K.L., 2013. Manipulation of culture conditions alters lipid content and
- 1066 fatty acid profiles of a wide variety of known and new oleaginous yeast species.
- 1067 Bioresour. Technol. 144, 360–369. https://doi.org/10.1016/j.biortech.2013.06.047
- 1068 Slaný, O., Klempová, T., Marcinčák, S., Čertík, M., 2020. Production of high-value
- 1069 bioproducts enriched with γ -linolenic acid and β -carotene by filamentous fungi
- 1070 *Umbelopsis isabellina* using solid-state fermentations. Ann. Microbiol. 70, 17.
- 1071 https://doi.org/10.1186/s13213-020-01559-8
- 1072 Slaný, O., Klempová, T., Shapaval, V., Zimmermann, B., Kohler, A., Čertík, M., 2021.
- 1073 Animal fat as a substrate for production of n-6 fatty acids by fungal solid-state
- 1074 fermentation. Microorganisms 9, 170. https://doi.org/10.3390/microorganisms9010170
- 1075 Slininger, P.J., Dien, B.S., Kurtzman, C.P., Moser, B.R., Bakota, E.L., Thompson, S.R.,
- 1076 O'Bryan, P.J., Cotta, M.A., Balan, V., Jin, M., Sousa, L. da C., Dale, B.E., 2016.
- 1077 Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic
- 1078 biomass and process strategy for high titers. Biotechnol. Bioeng. 113, 1676-1690.

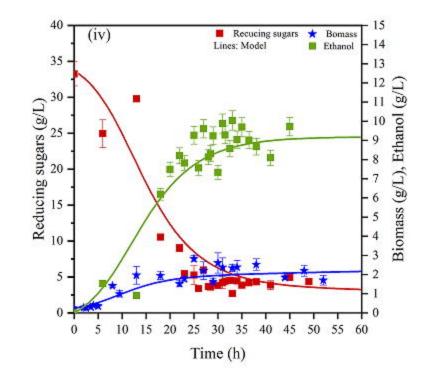
1079	https://doi.org/10.1002/bit.25928					
1080	Sood, A., Gupta, M., 2015. Extraction process optimization for bioactive compounds in					
1081	pomegranate peel. Food Biosci. 12, 100-106. https://doi.org/10.1016/j.fbio.2015.09.004					
1082	Tian, SQ., Chen, ZC., 2016. Dynamic analysis of bioethanol production from corn stover					
1083	and immobilized yeast. BioResources 11. https://doi.org/10.15376/biores.11.3.6040-					
1084	6049					
1085	Tsioulpas, A., Dimou, D., Iconomou, D., Aggelis, G., 2002. Phenolic removal in olive oil mill					
1086	wastewater by strains of <i>Pleurotus</i> spp. in respect to their phenol oxidase (laccase)					
1087	activity. Bioresour. Technol. 84, 251-257. https://doi.org/10.1016/S0960-					
1088	8524(02)00043-3					
1089	Türkyılmaz, M., Tağı, Ş., Dereli, U., Özkan, M., 2013. Effects of various pressing programs					
1090	and yields on the antioxidant activity, antimicrobial activity, phenolic content and colour					
1091	of pomegranate juices. Food Chem. 138, 1810–1818.					
1092	https://doi.org/10.1016/j.foodchem.2012.11.100					
1093	Valdés, G., Mendonça, R.T., Aggelis, G., 2020a. Lignocellulosic biomass as a substrate for					
1094	oleaginous microorganisms: A review. Appl. Sci. 10, 7698.					
1095	https://doi.org/10.3390/app10217698					
1096	Valdés, G., Mendonça, R.T., Parra, C., Aggelis, G., 2020b. Patterns of lignocellulosic sugar					
1097	assimilation and lipid production by newly isolated yeast strains from Chilean Valdivian					
1098	Forest. Appl. Biochem. Biotechnol. 192, 1124–1146. https://doi.org/10.1007/s12010-					
1099	020-03398-4					
1100	Vasaki, M., Karri, R.R., Ravindran, G., Paramasivan, B., 2021. Predictive capability					
1101	evaluation and optimization of sustainable biodiesel production from oleaginous					
1102	biomass grown on pulp and paper industrial wastewater. Renew. Energy 168, 204-215.					
1103	https://doi.org/10.1016/j.renene.2020.12.038					
1104	Volkman, J.K., 2003. Sterols in microorganisms. Appl. Microbiol. Biotechnol. 60, 495–506.					
1105	https://doi.org/10.1007/s00253-002-1172-8					
1106	Wei, Y., Siewers, V., Nielsen, J., 2017. Cocoa butter-like lipid production ability of non-					
	[47]					

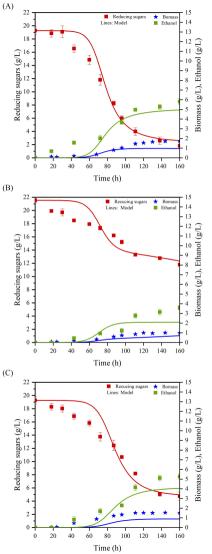
- 1107 oleaginous and oleaginous veasts under nitrogen-limited culture conditions. Appl.
- 1108 Microbiol. Biotechnol. 101, 3577–3585. https://doi.org/10.1007/s00253-017-8126-7
- 1109 Xu, M., Ran, L., Chen, N., Fan, X., Ren, D., Yi, L., 2019. Polarity-dependent extraction of
- 1110 flavonoids from citrus peel waste using a tailor-made deep eutectic solvent. Food Chem.
- 1111 297, 124970. https://doi.org/10.1016/j.foodchem.2019.124970
- 1112 Yan, W., Gao, H., Qian, X., Jiang, Y., Zhou, J., Dong, W., Xin, F., Zhang, W., Jiang, M.,
- 1113 2021. Biotechnological applications of the non-conventional yeast *Meyerozyma*
- 1114 guilliermondii. Biotechnol. Adv. 46, 107674.
- 1115 https://doi.org/10.1016/j.biotechadv.2020.107674
- 1116 Yook, S. Do, Kim, J., Gong, G., Ko, J.K., Um, Y., Han, S.O., Lee, S., 2020. High vield lipid
- 1117 production from lignocellulosic biomass using engineered xylose \u00e4 utilizing Yarrowia

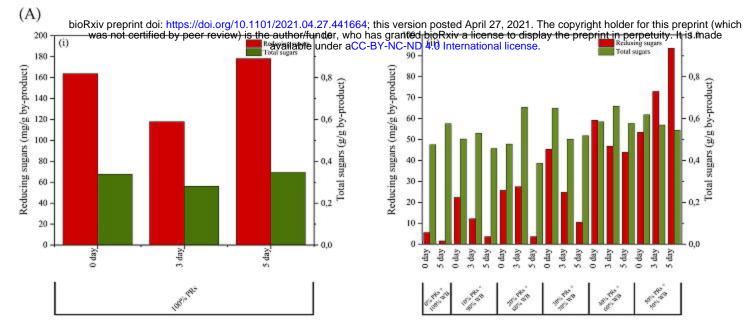

1118 *lipolytica*. GCB Bioenergy 12, 670–679. https://doi.org/10.1111/gcbb.12699

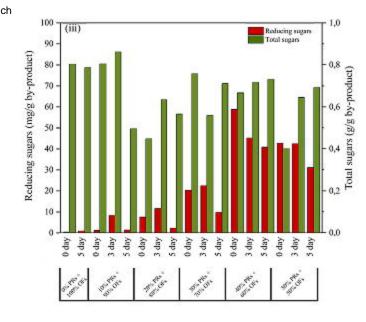

- 1119 Yu, Z., Du, Y., Shang, X., Zheng, Y., Zhou, J., 2018. Enhancing fermentable sugar yield from
- 1120 cassava residue using a two-step dilute ultra-low acid pretreatment process. Ind. Crops
- 1121 Prod. 124, 555-562. https://doi.org/10.1016/j.indcrop.2018.08.029
- 1122 Zhai, X., Zhu, C., Li, Y., Zhang, Y., Duan, Z., Yang, X., 2018a. Optimization for pectinase-
- 1123 assisted extraction of polysaccharides from pomegranate peel with chemical
- 1124 composition and antioxidant activity. Int. J. Biol. Macromol. 109, 244–253.
- 1125 https://doi.org/10.1016/j.ijbiomac.2017.12.064
- 1126 Zhai, X., Zhu, C., Zhang, Y., Sun, J., Alim, A., Yang, X., 2018b. Chemical characteristics,
- 1127 antioxidant capacities and hepatoprotection of polysaccharides from pomegranate peel.
- 1128 Carbohydr. Polym. 202, 461–469. https://doi.org/10.1016/j.carbpol.2018.09.013
- 1129 Zhang, J., Bao, J., 2018. Lignocellulose pretreatment using acid as catalyst, in: Handbook of
- biorefinery research and technology. https://doi.org/10.1007/978-94-007-6724-9_3-1
- 1131 Zhao, X., Kong, X., Hua, Y., Feng, B., Zhao, Z., 2008. Medium optimization for lipid
- 1132 production through co-fermentation of glucose and xylose by the oleaginous yeast
- 1133 *Lipomyces starkeyi*. Eur. J. Lipid Sci. Technol. 110, 405-412.
- 1134 https://doi.org/10.1002/ejlt.200700224


[48]


- 1135 Zhu, C., Liu, X., 2013. Optimization of extraction process of crude polysaccharides from
- 1136 Pomegranate peel by response surface methodology. Carbohydr. Polym. 92, 1197–1202.
- 1137 https://doi.org/10.1016/j.carbpol.2012.10.073


1138





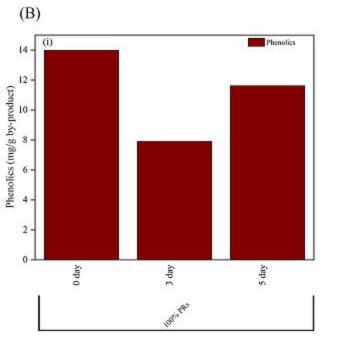
0.8

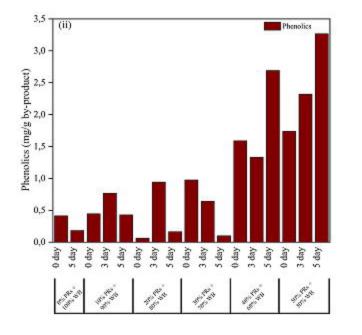
0.6

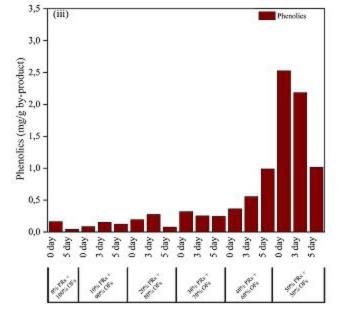
0.2

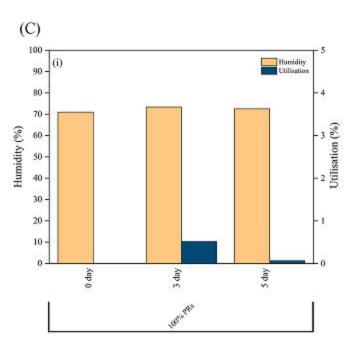
0.0

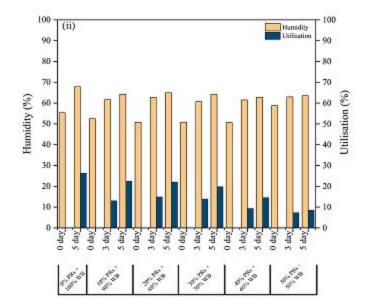
3 day 5 day

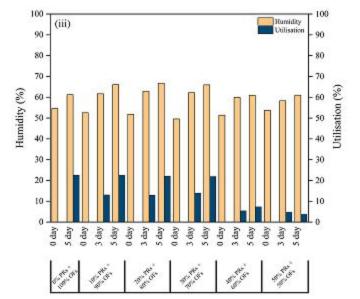

5 day

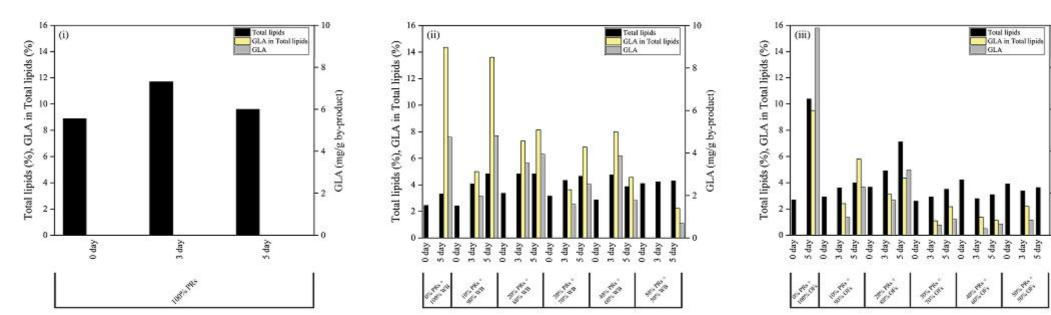

3 day 5 day 0 day

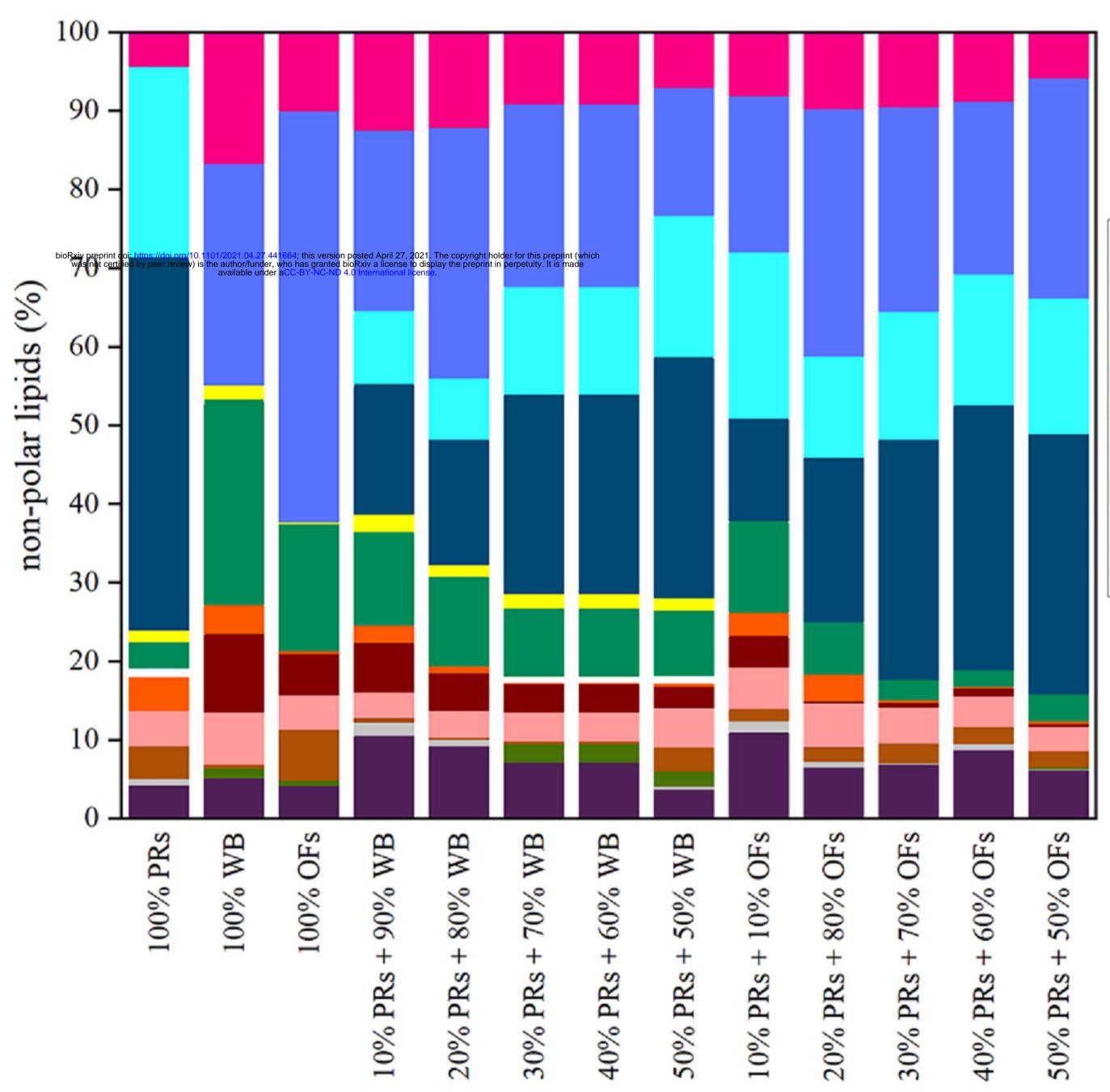

ABIN THE B


0 day


Fotal sugars (g/g by-product)







-8

- 6

- 4

GLA (mg/g by-product)

Squalene
TAG3
TAG2
TAG1
Coenzym Q 10
FFA
Fytosterols 3
Ergosterol
Fytosterolos 2
Fytosterolos 1
1,3-DAG
1,2-DAG
Polar lipids