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ABSTRACT 

The functions of RNA are often tied to its structure, hence analyzing structure is of significant interest 
when studying cellular processes. Recently, large-scale structure probing (SP) studies have enabled 
assessment of global structure-function relationships via standard data summarizations or local 
folding. Here, we approach structure quantification from a hairpin-centric perspective where putative 
hairpins are identified in SP datasets and used as a means to capture local structural effects. This has 
the advantage of rapid processing of big (e.g., transcriptome-wide) data as RNA folding is 
circumvented, yet it captures more information than simple data summarizations. We reformulate a 
statistical learning algorithm we previously developed to significantly improve precision of hairpin 
detection, then introduce a novel nucleotide-wise measure, termed the hairpin-derived structure level 
(HDSL), which captures local structuredness by accounting for the presence of likely hairpin 
elements. Applying HDSL to data from recent studies recapitulates, strengthens, and expands on 
their findings which were obtained by more comprehensive folding algorithms, yet our analyses are 
orders of magnitude faster. These results demonstrate that hairpin detection is a promising avenue for 
global and rapid structure-function analysis, furthering our understanding of RNA biology and the 
principal features which drive biological insights from SP data. 

 

INTRODUCTION 

RNA structure is driven primarily by the complementarity of nucleotide bases comprising it, which 
allows for hydrogen bonding between various segments of the molecule. Intramolecular base pairing, 

combined with the flexible and single-stranded nature of the molecule’s backbone, allows for intricate 

secondary and tertiary structural elements. These structures, as well as their ability to dynamically 

change between relevant configurations, are known to play central roles in almost every facet of 

cellular regulation (1–6). Understanding the structures of RNA is therefore important, which has led to 

an explosion of methods which probe (7–17), computationally predict (18–28), and interpret them in 

various contexts (1, 5, 29–35).  

Structure probing (SP) experiments currently provide the most practical approach for measuring RNA 

structures in their natural environment. These experiments work by exposing RNA to chemicals, 

enzymes, or photons which react differentially with parts of the molecule depending on their structural 

context (for example, paired/unpaired nucleotides or ds/ssRNA) (7, 8, 10–13, 36, 37). Specific 

protocols vary, but typically the probing reaction induces changes to the RNA bases or backbone 

which are detected via sequencing or electrophoresis as mutations or truncations (38, 39). The rate of 
mutation or truncation at a particular nucleotide is used to summarize that nucleotide’s reactivity with 
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the probe (40). These data contain critical information on the structural conformation of an RNA, and 

incorporating them as soft constraints within thermodynamics-based folding algorithms greatly 

improves their accuracy (18, 26, 41). 

Next-generation sequencing has allowed SP experiments to scale to the level of the whole cell (i.e., 

transcriptome-wide). Exploration of these data have typically begun with straightforward global-level 

quantifications and simple comparisons (11, 42–46). More recent studies expanded the intricacy of 

structural analysis to disentangle the dynamic functional roles of RNA structure in fundamental 

cellular processes (47). For example, Saha et al. compared reactivity profiles in the vicinity of spliced 

introns and retained introns, and found evidence of increased structure upstream and decreased 
structure downstream of retained introns (48). Yang et al. characterized structural impacts on miRNA-

mediated mRNA cleaving by computing mean reactivity and mean base-pairing probability profiles 

around miRNA target sites, which illuminated a strong connection between transcript cleavage and 

unpaired bases immediately downstream of the miRNA target site (49). Work by Mustoe et al. (30) 

and Mauger et al. (50) have linked changes in gene expression within E. coli and human cells to the 

structural dynamics within coding sequences and UTRs as quantified by local median reactivities. 

Twittenhoff et al. (51) performed structure probing of Y. pseudotuberculosis at different temperatures 

and used averaged reactivity scores to highlight differential structure changes due to temperature in 
5’UTRs versus coding regions in addition to using condition-wise reactivity differences to identify 

temperature-sensitive genes. 

A common theme to such studies is the quantification of local “structuredness” and comparisons of it 

at global scales. To this end, measures of structure are typically founded on basic statistical 

summarization of reactivities, sometimes combined with data-directed thermodynamics-based folding 
algorithms to quantify base-pairing probabilities. Current state-of-the-art algorithms for predicting 

base-pairing probabilities (and specific RNA structures) are founded on dynamic programming 

strategies and a nearest neighbor thermodynamic model (NNTM) (52, 53). Although relatively 

efficient, these scale as O(L3) with the length of an RNA, meaning that complete folding analyses of 

long RNA transcripts are often computationally infeasible. NNTM-based processing (i.e., RNA folding 

and computation of base-pairing probabilities) of the massive data associated with recent studies is 

thus challenging. As a consequence, transcriptome-wide studies have typically utilized ad-hoc folding 

strategies which attempt to strike a balance between computational overhead and prediction quality 
by locally folding pre-screened candidate regions or rolling windows of long transcripts. Even with 

such compromises, in silico analyses can take days to complete, depending on the scale of the 

experiment. The process itself is also susceptible to high error rates especially in molecules with 

multiple stable conformations (54). It is worth noting that some of the aforementioned experiments 

relied solely on simple reactivity summarization; nevertheless, even in such situations, detections are 

typically limited to the most pronounced effects. More sophisticated analysis which accounts for 

structure in addition to reactivity has the potential to refine such findings and expand on them (55, 56). 
This highlights a need for methods capable of rapidly extracting pertinent structural information from 

reactivity data. 
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Motivated by this need, we harnessed patteRNA, an NNTM-free method we previously introduced for 

rapidly mining structural motifs (57, 58), to quantify global trends in RNA structure dynamics from SP 

data. Briefly, the method works in two phases: training and scoring. The training phase learns a 

hidden Markov model (HMM) of secondary structure and a Gaussian mixture model (GMM) of the 
reactivity distributions of paired and unpaired nucleotides. The learned distributions are used to score 

sites for their likelihood to harbor any target structural motif (see Figure 1A). patteRNA can 

automatically process data from any type of SP experiment. Although we previously demonstrated 

that patteRNA accurately detects structural motifs in diverse datasets, we found that there was 

nevertheless room for significant improvement. Namely, there was a need for improved precision of 

motif detection, particularly pertaining to the vast search space encountered in transcriptome-wide 

experiments. Additionally, we found that our method, although suitable for comparative analysis of 

motifs (58), did not provide a clear quantitative framework for making practical and direct structural 
inferences in large datasets. 

In this article, we expand and improve the capabilities of patteRNA and demonstrate that motif 

detection can be used to rapidly quantify RNA structuredness in SP datasets. As a first step, we 

investigate the properties of hairpin elements in RNA structures and their prevalence among all 

structural elements. We then present an improved unsupervised training approach which yields more 
accurate motif detection, especially for hairpins, and benchmark it against diverse types of data. Next, 

we describe a novel measure, the hairpin-derived structure level (HDSL), which uses patteRNA’s 

detected hairpins to quantify the local structure context around nucleotides. We apply HDSL to three 

recent large-scale SP datasets to demonstrate that our hairpin-driven analysis is 1) capable of 

recapitulating, strengthening, and expanding on previously detected structural effects and 2) orders of 

magnitude faster than comparable NNTM-based routines. Simply put, our method bridges the gap 

between quick but naïve data summarization and intensive but more sophisticated folding-based 

analysis to provide rapid structure-aware interpretations. Overall, the results of our work also serve to 
further our understanding of the ways in which diverse SP datasets can be automatically quantified 

and interpreted without dependence on the assumptions driving NNTM predictions and the 

complexities associated with them. 

 

MATERIAL AND METHODS 

Hairpin Counting and Quantification in Known Structures 

All hairpins (hairpins and associated stems, with or without bulges). Hairpins in reference dot-bracket 

structures were retrieved by first identifying hairpin-loops, and then backtracking to determine the full 

stem length. Hairpin loops are defined as locations in the dot-bracket structures where a base pair 

flanks a sequence of unpaired states of any length (for example, “(...)” or “(.......)”). Once a hairpin 

loop is identified, the stem length is determined by walking along the structure in both directions until 

a branching base pair is detected (i.e., a “)” to the left of the stem-loop or a “(“ to the right). At this 
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point, the stem length is called as the number of nested base pairs before the first branching base 

pair on either side of the stem. As a consequence, bulges and internal loops are generally ignored, so 

long as they occur before a branching base pair. Loops which are involved in pseudo-knotted base-

pairing are treated as unpaired loops for the purpose of hairpin identification. 

Regular hairpins (hairpins without bulges). We defined regular hairpins as hairpins having a stem 

length between 4–15 nt and loop length between 3–10 nt with no bulges or internal loops within the 

helix. For these motifs, identifying their locations amounts to simply searching the dot-bracket data for 

the exact dot-bracket sequence defined for each hairpin size. For example, a regular hairpin with 

stem length 4 and loop length 4 has dot-bracket sequence (“((((....))))”); a regular hairpin with stem 
length 7 and loop length 5 has dot-bracket sequence (“(((((((.....)))))))”). As before, loops which are 

involved in pseudo-knotted base pairing are treated as unpaired loops for the purpose of hairpin 

identification. 

Regular hairpins with or without bulges. Identifying locations of regular hairpins that may also have 

one or two bulges was performed similarly to the identification procedure used for regular hairpins. 
However, due to the increased flexibility of dot-bracket sequences and combinatorial explosion of 

qualified motifs when allowing for bulges, we used a regular expression scheme to perform the 

search. The regular expression has the form “({2,10}.{0,5}({3,10}.{3,MAXLOOP}){3,10}.{0,5}){2,10}” 

where MAXLOOP is the maximum loop length to include in the search. As the flexibility to allow for 

bulges in our regular expression necessitates the inclusion of stems possibly longer than 15 nt, any 

constructed structure patterns with a stem longer than 15 nt through were manually discarded prior to 

the search. As before, loops which are involved in pseudo-knotted base pairing are treated as 

unpaired loops for the purpose of hairpin identification. 

Representative RNA Structures from STRAND 

To more comprehensively assess the properties of hairpins within RNA structures, we compiled a 

dataset of quality reference structures from the RNA Secondary Structure and Statistical Analysis 
Database (RNA STRAND) (59). This database houses 4666 high-quality RNA structures as 

determined from NMR, X-ray crystallography, or comparative sequence analysis. For our work, we 

pruned the number of structures significantly (to 797 structures) to account for unequal representation 

of RNA types within the database (for example, overrepresentation of ribosomal RNA structures). This 

pruning was achieved by sampling a defined number of structures from each RNA type in the 

database. The total numbers of original structures within each RNA type, as well as the corresponding 

numbers of RNA structures sampled, are given in Supplementary Table S1. A simple visualization of 
the fraction of (1) transcripts, (2) nucleotides, and (3) hairpins in the data coming from each RNA 

class is given in Supplementary Figure S1. 

Discretized Observation Model (DOM) 

The discretized observation model serves as an alternative approach for describing the probabilities 

of a particular state (unpaired/paired) to yield a particular reactivity value (state emission 
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distributions). Typically, the emission distributions are modeled as continuous distributions, as is the 

case when patteRNA uses a GMM of reactivity. However, the DOM framework instead discretizes 

reactivities based on percentiles, then constructs probability mass functions (PMFs) over the discrete 

reactivity classes for the two pairing states. The state PMFs are then learned in an unsupervised 
fashion by coupling the emission model to an HMM and performing expectation-maximization (EM) 

optimization of parameters, analogously to the original GMM implementation. Also analogous to the 

GMM’s number of Gaussian kernels, the resolution of bins used in the DOM is gradually increased 

until an optimal model is reached via a minimum in Bayesian information criteria (BIC) (58). Typically, 

7–10 bins are deemed optimal. 

A more complete description of the mathematical formulation behind the DOM, including initialization 

and M-step parameter updating, is available in Supplementary Material. 

Scoring with patteRNA 

patteRNA mines structural elements as represented in dot-bracket notation. In the context of 

patteRNA, this representation of a structure is referred to as a target motif. To mine for a motif, 

patteRNA first encodes the structure as a sequence of pairing states (0: unpaired, 1: paired), called 

the target path. Then, all possible locations in the data are scored for the presence of the target path. 

With sequence constraints enforced, this amounts to all sites in an RNA where the nucleotide 

sequence permits folding of the target motif via Watson-Crick and Wobble base pairs. Sequence 

constraints can also be disabled, and in such situations all windows of length equal to the length of 

target motif are considered. (i.e., a full sliding window approach). Regardless of sequence constraints, 

the patteRNA score for a site (a window of length 𝑛 beginning at nucleotide 𝑚)  is computed as the 

log ratio of joint probabilities between the target path and its inverse path (i.e., the opposite binary 

sequence) (57). More specifically, 

𝐬𝐜𝐨𝐫𝐞(𝑧) = log !"($,	'|))
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where 𝑦 is the reactivity profile at a site, 𝑧 is the target path, 𝑧′ is the inverse path, 𝜃 represents the 

parameters of a trained GMM/DOM-HMM model, 𝑎5,6 is the transition probability from state 𝑖 to state 𝑗, 

𝑏5,2 is the emission likelihood for state 𝑖 at nucleotide 𝑡, and 𝛼5,2 and 𝛽5,2 are the forward and backward 

probabilities for state 𝑖 at nucleotide 𝑡, respectively.  A score of zero indicates the target path and 

inverse path are equally likely, and a positive score indicates the target path is more likely (and vice 

versa). Locations with the highest scores are subsequently deemed most likely to harbor the target 

motif. 

To facilitate the comparative analysis of scores between different motifs and datasets, scores were 

further processed into c-scores by normalizing against a null distribution of scores estimated via 

sampling of scores from locations which violate the sequence compatibility necessary for the motif’s 

base pairs (and therefore can be presumed to not harbor the target motif) (58). Example SP data with 
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real patteRNA scores superimposed is illustrated in Figure 1A. To mine data for the collection of all 

regular hairpins, the flag “--hairpins” was used when calling patteRNA, which automatically constructs 

the search space describing such motifs. 

Computation of Statistical Performance Metrics 

The accuracy of patteRNA to detect motifs is primarily assessed through the receiver operating 

characteristic (ROC) and precision-recall (PR) curves. These curves were computed by varying a 

theoretical c-score threshold between called positives and negatives and, at each threshold, 
computing the true-positive rate (TPR/recall), false positive rate (FPR), and precision (also referred to 

as positive predictive value, PPV). A site is deemed a positive if all base pairs in the target motif are 

also present in the corresponding location of the reference structure. These performance profiles are 

then visualized (ROC: FPR vs. TPR, PR: TPR vs. PPV) and summarized using the area under the 

curve (AUC) of the ROC and average precision (AP) of the precision-recall curve. The Scikit-learn 

Python module (v0.24) was utilized to perform these computations. 

Data 

Details about the datasets used throughout this study are compiled in Table 1. 

Simulated Datasets and Benchmarks 

We generated simulated data for RNAs in the Weeks set by sampling reactivities according to various 

state distributions schemes (see Table 2). 50 replicates of each scheme were generated for the 

performance benchmarks using in-house Python scripts. patteRNA was then used the train and mine 

the replicates for regular hairpins using the “patteRNA ${SHAPE} ${OUTPUT} -f ${FASTA} [--GMM or 
--DOM] --hairpins” command. The “-l” flag was added to use log-transformed data where applicable; 

training was performed independently for each replicate. Overall performance for a scheme was 

summarized as the mean of average precisions for the 50 replicates.  

Hairpin Mining Performance of NNTM Partition Function Approach 

We benchmarked the performance of partition function approaches to detect hairpins in the Weeks 

set by using the “RNAsubopt” command from ViennaRNA to generate 1000 structures for each 

transcript in the Weeks set, using that transcript’s SHAPE data as soft constraints (“RNAsubopt -p 

1000 --shape ${SHAPE_FILE} < ${SEQUENCE}”). For each hairpin in the generated structural 

ensemble, a “score” was assigned as the fraction of structures in the structural ensemble which 

contain the base pairs comprising that hairpin. Predicted hairpins and their scores were organized into 
a single list which was then processed into a receiver operating characteristic and precision-recall 

curve as done for patteRNA’s predicted hairpins (see Computation of Statistical Performance 

Metrics). 
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Posterior Pairing Probabilities 

patteRNA computes pairing probabilities as described (57). Briefly, a parameterized GMM-HMM or 
DOM-HMM model is utilized to compute emission likelihoods for each nucleotide, followed by the 

forward and backward probabilities via the forward-backward algorithm. Posteriors are then computed 

as the product of the forward and backward probabilities and appropriately scaled such that P(paired) 

+ P(unpaired) = 1 for each nucleotide. 

Hairpin-Driven Structure Level (HDSL) 

The hairpin-driven structure level (HDSL) is a nucleotide-wise measure quantifying the local level of 

structure from SP data. HDSL is initialized using posterior probabilities to be paired as computed by 

patteRNA. Then, the profile is augmented using high-scoring hairpins from patteRNA. For each 

detected hairpin with c-score greater than 0.5, the value 0.2 × (c-score – 0.5) is added to the profile at 

all nucleotides covered by the hairpin. After profile augmentation, profile smoothing is achieved via a 

5 nt sliding-window mean followed by a 15 nt sliding-window median to give the final HDSL profile. 

Analogous approaches using just a sliding mean or just a sliding median were also tested, but we 

found that the best results were obtained when coupling the two summary statistics together. 

A flow chart illustrating the flow of information as handled by patteRNA, including the relationship 

between HDSL and the training and scoring phases, is included as Figure 2. 

Averaging and Integrating HDSL over mRNA Coding Sequences 

We delineated the regions surrounding the 432 genes in the Mustoe data into 4 groups: (1) start site; 

±30 nt around AUG, (2) 5’UTR; -70 to -31 nt from AUG, (3) 3’ UTR; +1 to +40 from STOP codon, and 

(4) coding sequences; +31 nt from AUG to the STOP codon. For the start site, 5’UTR, and 3’UTR, 

averages were taken at each aligned position as these groups each have a constant length. For 

situations where all regions might not exist for a gene, aligned HDSL profiles were included in the 
analysis as far as the nucleotide sequence allowed, and remaining positions were treated as missing 

values and omitted from subsequent averaging. For instance, if the 5’UTR was 50 nt (i.e., less than 

70 nt), those 50 nt were aligned with the corresponding locations and the missing 20 nt upstream 

were treated as missing values. For coding sequences (which inherently have a non-constant 

distribution of lengths), the profiles were interpolated to a vector of length 300 to allow for aligned 

averaging relative to the beginning and end of the window. 99% confidence intervals were computed 

using the Wald formulation (mean HDSL ± 2.576 × SE). 

Local Folding Calculations 

Windowed partition function calculations were performed using the “RNAfold -p” command from 

ViennaRNA (19). Three schemes were utilized: windows of length 3000 nt, spaced 300 nt apart; 

windows of length 2000 nt, spaced 150 nt apart; and windows of length 150, spaced 15 nt apart. In 

each case, sequences within each window were parsed using custom Python scripts and then 
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processed sequentially with RNAfold. Only the time required to run RNAfold commands was 

measured in timing benchmarks (no integration of windowed outputs or post-processing were 

accounted for). RNALfold benchmarks were performed using the default arguments of the command 

to process all sequences in the Corley data sequentially. All timing comparisons in this study were 
performed on an AMD Ryzen 9 5900X CPU running Ubuntu 20.04 LTS. 

patteRNA Training and Scoring 

Unless otherwise noted, all patteRNA analyses were performed with default training parameters (KL 

divergence for training set: DKL = 0.01, convergence criterion e = 0.0001, automatic determination of 

model complexity, k, via Bayesian information criteria) (58). With the exception of benchmarks 

investigating the effect of log-transforming data, log-transformed data were always used when using a 

GMM and non-transformed data were used when using a DOM. Scoring for regular hairpins was 

achieved using the “--hairpins” flag and computation of HDSL profiles was achieved with the “--hdsl” 
flag. 

 

RESULTS 

Overview of patteRNA Mining 

To mine structure elements from SP data, patteRNA first learns the statistical properties of the data 
via the training phase. The purpose of this procedure is to estimate the distributions of reactivities 

associated with paired and unpaired nucleotides, respectively. Training is unsupervised and has been 

shown to accommodate diverse data distributions (see Ledda et al. (57) for a complete description). 

With the dataset characterized via its statistical model, patteRNA can then mine for structural motifs.  

Figure 1A demonstrates key concepts related to patteRNA’s motif mining. When mining a particular 
structural element (i.e., the target), sites which satisfy the sequence constraints necessary for the 

target’s secondary structure are scored for their probing data’s consistency with its pairing state 

sequence (57, 58). Sites which do not satisfy sequence constraints can also be scored, however 

these sites are almost certainly all negatives and can therefore be discarded (the only exception being 

the possibility of non-canonical base pairs). Sites which harbor the target motif presumably have SP 

data consistent with the desired state sequence and therefore score highly. patteRNA’s overall 

objective is to identify sites harboring particular structural elements, such as hairpins, as accurately as 

possible. 

Hairpins Comprise a Significant Portion of Structural Elements 

To assess the plausibility of a hairpin-centric approach in making general assessments of structure, 

we examined a diverse dataset of 22 RNAs with known structures (~10,000 nt) (57) to quantify the 
distribution of hairpins present as well as the proportion of base pairs contained within hairpins. We 

refer to this dataset as "the Weeks set." Analyzing the 278 distinct hairpins in the Weeks set reveals 
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that a majority fall within a narrow range of stem and loop lengths (Figure 1B). Specifically, hairpins 

most frequently have loop lengths between 3 and 10 nt, and stem lengths 15 nt or less. In other 

words, although their properties are diverse, there is a range of stem and loop sizes which represents 

a majority of hairpins (83%). Later in the study will we leverage these characteristic properties to 
focus our searches on this most representative subset of hairpins.  

Our results also illustrate that hairpins comprise a large fraction of structural elements. We first 

focused on hairpins with no bulges or internal loops (i.e., unpaired stretches flanked by some number 

of base pairs), which we call regular hairpins, and found that around 35% of paired nucleotides reside 

in such structures (Figure 1C). If you also consider hairpins with up to two bulges each with length up 
to 5 nt, this coverage increases to over 50%. This suggests that, although hairpins are only a subset 

of RNA structural elements, they are indeed the most prevalent, and therefore identifying them in SP 

data could provide a strong quantification of general structural trends. 

Understanding that the Weeks set is a small sample of structures to draw conclusions from, we 

repeated this hairpin counting and quantification on a diverse set of 797 reference structures from the 
STRAND database (59) representing a more complete profile of RNA structure properties. The 

distribution of hairpins in this dataset is shown in Supplementary Figure S2 and recapitulates the 

observations from the Weeks set. In fact, the STRAND data suggests that regular hairpins specifically 

comprise a slightly larger fraction (40%) of structural elements than is seen in the Weeks set (35%). 

One can further expand the definition of a hairpin to also include the associated stems that extend 

from a hairpin element up to the first nucleotide that base-pairs outside of the nested context of this 
element (see Supplementary Figure S3 for examples). We refer to these helices as external stems 

and note that such motifs are prevalent in structured RNAs. Figure 1C shows that relaxing the 

definition of a hairpin to include external stems leads to over 80% coverage of paired nucleotides. 

Although such elements are beyond the scope of the analysis that follows, this high coverage 

indicates that a large majority of RNA structure can be represented as motifs with local base pairing. 

Moreover, it’s important to note that virtually all types of canonical RNA structure motifs necessarily 

exist in the context of hairpin elements—internal stems, multibranch junctions, etc., only exist in the 
presence of hierarchical domains which all terminate in a hairpin-like fashion. 

Simplified Reactivity Model Improves Accuracy of Motif Detection 

In an attempt to improve patteRNA’s performance, we investigated alternative statistical models of 
reactivity and their downstream effects on scoring accuracy. While the GMM approach performs well, 

especially at the task of approximating the underlying state distributions, we encountered issues in 

motif scoring. Namely, reactivities from the tails of the overall data distribution would be strongly 

predicted to be paired or unpaired. This isn’t an inherent problem, as the most extreme reactivities 

should theoretically be the best candidates for confident prediction. However, these reactivities 

present problems during scoring as they have the propensity to dominate the score for sites they fall 

into. In other words, a single extreme reactivity consistent with the target state sequence could yield a 
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high score for a site, even if data within that site is otherwise inconsistent with the target (and vice 

versa). Generally speaking, for SP data such as SHAPE, the most extreme reactivities are only about 

3-5 times more likely to be in one state over the other (60), yet the GMM often arrives at likelihood 

ratios 10 or 100 times larger than this empirical ratio. Such predictions have negative consequences 
on the interpretation of scores. 

Motivated by these issues, we devised a simplified framework for unsupervised learning of the state 

reactivity distributions. It entails a discretized observation model (DOM) which substitutes for the 

GMM component of the statistical model (i.e., the emission probabilities), resulting in a DOM-HMM 

model of SP data. The DOM entails modeling reactivities as a discrete distribution where they are 
binned into classes based on percentiles. During training, pseudo-counts are estimated for each class 

(E-step) and then utilized in the M-step to infer the discrete reactivity distribution for paired and 

unpaired states. A schematical comparison of the GMM and DOM approaches is shown in Figure 3A 

(see Methods and Supplementary Material for a complete mathematical formulation). 

We benchmarked the capacity of patteRNA to identify regular hairpins in the Weeks set via the GMM 
and DOM. We assessed their discriminatory power primarily via the receiver operating characteristic 

(ROC) and precision-recall curve (PRC), which are shown in Figure 3B. Our results indicate that the 

DOM approach improves both the area-under-the-curve (AUC) of the ROC and the average precision 

(AP) of the PRC. Although the improvement to AUC appears minor, average precision was increased 

from 0.48 with a GMM to 0.64 with a DOM. Precision is a crucial performance metric in structure motif 

mining where the vast majority of scored sites are negatives (even with sequence constraints 

applied), so the improvements seen in the DOM are important through this perspective. Notably, 

precision at the highest scores is much better in the DOM compared to the GMM, which is susceptible 
to numerous negatives at the highest hairpin scores despite decent precision at moderate scores. 

This is evidenced by the large fluctuations in precision at low levels of recall for the GMM (see the top 

left of precision-recall plot in Figure 3B). The DOM approach, on the other hand, is far more reliable 

for returning positive hits at the highest scores. Figure 3B also includes a benchmark for data-

directed NNTM folding algorithms which shows that patteRNA is, although improved via the DOM, 

generally unable to match the precision of RNA folding. Notably, NNTM folding was performed with an 

ensemble-based approach, which, although much slower, outperforms a single MFE calculation (57). 

Importantly, the presented results show overall performance on the collection of all regular hairpins, 

which is comprised predominantly by motifs with shorter stems. Shorter stems present a challenge to 

patteRNA, as fewer base pairs render sequence constraints less effective in controlling the number of 

negative sites considered in the analysis. When comparing performance on individual motifs, 

however, we find that patteRNA matches the precision of NNTM-ensemble methods for longer stems. 

In some cases, such as hairpins with stem length 6 and loop length 7, it even surpasses the 
performance of the NNTM approach (see Supplementary Figure S4). We also observe a universal 

trend for the DOM to outperform the GMM at the motif-level, further validating its superior 

performance.  
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Not only does the DOM improve precision, but the model itself is described by fewer parameters and 

trains faster than a GMM. As seen in Figure 3C, faster training is achieved in two distinct ways. First, 

the DOM generally requires fewer EM iterations to converge. Second, EM iterations are significantly 

faster. The latter is presumably due to the DOM’s simpler M-step formulation, which reduces to simple 
counting as opposed to the GMM which requires multiplication and squaring to update the means and 

variances of each Gaussian kernel. 

Given the rapidly evolving field of structure probing and disparate statistical properties of SP datasets 

(47), we also investigated whether the benefits from the DOM generalize to other data distributions. 

Different probes have different quality (47, 61), different conditions yield different quality (47), and the 
quality of probes is constantly improving (62); therefore, adaptability of methods is crucial. Benchmark 

datasets like the Weeks set are not currently available for the plethora of probes used, so we resorted 

to simulations. We constructed several artificial datasets and benchmarked patteRNA's performance 

via the GMM or DOM approaches. We sampled reactivities for the underlying structures in the Weeks 

set according to various state distributions, including empirically-fitted distribution models from 

Sükösd et al. (63), referred to as the Heitsch distributions, as well as a collection of mock distributions 

with varying classification power (i.e., various degrees of separation between the state distributions). 

For each scheme, 50 replicates were created, and we benchmarked performance against both the 
regular and log-transformed data. We note that the fidelity of the GMM is dependent on the 

Gaussianity of the data, presenting a weakness of this approach as the decision to log-transform can 

have a major impact on scoring efficacy. 

The results of the benchmarks are shown in Table 3. Generally speaking, the DOM matches or 

exceeds the performance of the GMM. Depending on the data properties, the DOM’s performance 
gain ranges from minute to transformative. In only one of the benchmarks did the GMM outperform 

the DOM (poor quality Gaussian / Gaussian data), and only by a small margin. This specific outcome 

might be explained by the DOM’s simplification of SP data which effectively clips extreme reactivities 

when discretizing the data. In datasets of poor quality, the most extreme reactivities likely provide the 

only opportunity for reliable inference on pairing state, so it’s possible that the relatively coarse 

discretization scheme reduces the information content of the data. Regardless, it’s worth noting that 

data of such poor quality is uncommon, especially in light of on-going improvements to experimental 

protocols and probe quality (8, 10, 62, 64). Our results also demonstrate the adaptability of the DOM 
and its robustness to non-Gaussian data, which render the method broadly applicable. When using 

the DOM, log-transforming is largely irrelevant to model performance, as the discretization scheme is 

founded on data percentiles. The lone exception to this rule is when handling reactivities below zero, 

which are necessarily binned together if data is log-transformed. 

Overall, these results demonstrate the benefit of the DOM approach in more efficiently and effectively 
mining structures from SP data. Note, however, that the GMM still provides a specific utility when 

one’s objective is to arrive at continuous models of the state reactivity distributions (e.g., to use for 

simulations, or for data inspection). patteRNA includes both implementations such that the respective 

approach can be used depending on the intended use-case. 
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Summarizing Structuredness in RNAs from Hairpin Detection 

As hairpins comprise a large fraction of structural elements, we sought to utilize patteRNA to 
quantitatively summarize local “structuredness.” Due to the plethora of cellular processes affected by 

RNA structures, there are numerous contexts in which summarizing local structure is important. To 

name a few examples, one might wish to find structural domains and druggable pockets in viral 

genomes (29, 33, 65), quantify connections between mRNA structure and gene regulation (43, 48, 57, 

66–68), identify transcriptome-wide where RNA is differentially affected by particular stimuli (32, 69), 

or compare structure between conditions and/or logical regions of genomes (1, 30, 70). The most 

popular approach for quantifying structuredness relies on a combination of two metrics: local reactivity 
and local Shannon entropy. Local reactivity is generally computed via a rolling mean or median with 

windows ranging 25-500 nt, while local Shannon entropy derives from base pairing probabilities 

computed via NNTM folding routines. The combination of these two metrics yields regions which are 

largely unreactive (i.e., base paired) and stable (i.e., tending to adopt one conformation). We note that 

each metric by itself is generally insufficient in this context, as low reactivity regions sometimes 

include regions which see multiple competing conformations (but are nevertheless highly paired), and 

low Shannon entropy can also be observed for regions which are preferentially single stranded. 

To integrate patteRNA’s results into a quantification of structuredness, we propose a nucleotide-wise 

measure we term the hairpin-derived structure level, or HDSL. At the highest level, HDSL combines 

patteRNA’s computed base pairing probabilities with information from hairpin searches. This allows us 

to consider the locations of stable hairpins in addition to the overall pairing propensity of regions, the 

former of which typically does not account for all structured regions (e.g., external stems, stems with 

numerous bulges, or stems with non-canonical base-pairing). Briefly, the posterior pairing probabilities 
are used as a starting point. They are then amplified at nucleotides covered by highly scored hairpins, 

depending on the hairpin score—the higher a hairpin is scored, the larger the boost. Next, the profile 

is clipped to [0, 1] and locally smoothed by taking a 5 nt rolling mean followed by a 15 nt rolling 

median (see Methods for a complete description). We explored the properties of HDSL and validated 

its utility as an indicator of local structure by applying it to three recent datasets that were previously 

used to assess local structuredness in diverse contexts. 

Trends in Detected Hairpins Recapitulate Known mRNA Dynamics in E. coli 

We analyzed the set of 197 mRNA transcripts (comprising 432 genes) in E. coli probed in vitro, in 

vivo, and in vivo + kasugamycin with SHAPE-MaP by Mustoe et al. (30). In addition to Mustoe et al.’s 

analysis, previous studies have demonstrated that mRNAs fold differentially in cells compared to in 

vitro (50, 66, 70, 71). In vivo mRNAs have been observed to be less structured than their in vitro 

counterparts, with the magnitude of structural changes correlated with translation (31, 72). These 

effects have been observed most strongly in the context of the 5’UTR and CDS of highly expressed 

genes. Conversely, structural changes have also been observed around the 3’UTR, but evidence 

demonstrating both a decrease (71) and increase (72) in structures has been published in the 

literature, possibly correlating to the degree of post-transcriptional regulation of transcript decay (72). 
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We applied HDSL to Mustoe et al.’s data and investigated to what degree our measure reveals 

structural changes along mRNA transcripts in a prokaryotic organism like E. coli. 

The results of our analysis are compiled in Figure 4. In Figure 4A, we compare averaged HDSL 

profiles over the 432 genes included in the study between in vitro and in vivo conditions. The 

averaged HDSL profiles are delineated into 3 groups: nucleotides near the start site (AUG ± 30 nt), 

nucleotides within the coding sequence (at least 31 nt downstream of AUG), and nucleotides in UTRs 

(5’UTR: 31–70 nt upstream of AUG; 3’UTR: first 40 nt after STOP). Our results demonstrate that, as 
expected, UTRs are generally the most structured regions of the transcripts. They also show a strong 

intrinsic effect for mRNA to be relatively less structured around the start codon in both conditions. 

Moreover, in vivo data show that factors in this condition work to further unfold structures around the 

start site, as HDSL is significantly lower around the start codon in vivo than in vitro. Additionally, we 

did not detect a strong signal for structures in coding sequences to be de-structured overall when 

accounting for the region around the start codon separately. In contrast, Mustoe et al.’s analysis, 

which did not consider start sites separately (i.e., considered only CDS versus non-CDS), concluded 

that coding sequences are relatively unstructured in cells based on a slight increase in reactivities in 

vivo versus in vitro for nucleotides in CDS. The subtle unfolding effects observed in Mustoe et al. may 

be partially attributed to localized effects around the start codon observed here. Notably, the specific 

relevance of structure around this region of mRNA transcripts has been observed and recognized as 

important in several other studies on organisms of varying genetic complexity (45, 46, 50, 73). 

To further substantiate the effects we observed, we checked the similarity of patteRNA’s detected 
hairpins for each pairwise comparison of the three conditions included in the original study. Ideally, in 

the absence of significant structural remodeling between two conditions, we expect to find the same 

hairpins in both. On the other hand, if two conditions are substantially different, we expect to see 

larger differences in the hairpins detected by patteRNA. Searching for the aforementioned set of 

regular hairpins (see Hairpins Comprise a Significant Portion of Structural Elements) and using a c-

score threshold of 1 to indicate a “detected” hairpin, we computed the fraction of hairpins reproducible 

in both conditions of each comparison (Figure 4B). We see that in vivo and in vivo + kasugamycin 
have the highest level of hairpin conservation (less than 10% of detected hairpins are not present in 

both conditions, meaning >90% similarity in detected hairpins). This high similarity serves as a basic 

quality control measure, as the in vivo + kasugamycin condition, although affected by changes to 

translation initiation, is nevertheless highly similar to the in vivo condition. On the contrary, comparing 

in vivo to in vitro data shows that 20% of detected hairpins are unique to one condition. The very high 

level of similarity between in vivo and in vivo + kasugamycin reaffirms that the differences observed in 

Figure 4A between in vivo and in vitro reflect real differential effects, rather than the impact of 

biological variation or artifacts from patteRNA’s imperfect hairpin detection scheme. 

To further investigate the differences between the conditions around start codons, we visualized the 

condition-wise correlation of HDSL for all nucleotides within this region (Figure 4C). We detected a 

tendency in this area for the most structured regions in vitro to remain structured in vivo (see top right 
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of distribution, which is tightly concentrated around the diagonal). The density of HDSL in Figure 4C 

does reveal a tendency for HDSL to be reduced in the in vivo condition, but mostly for regions with 

moderate HDSL in vitro. Thus, the overall de-structuring effect from Figure 4A appears to be driven 

by unfolding of moderately structured regions. Figure 4D compares the HDSL distribution between in 

vitro and in vivo at the adenosine residue of the start codon. There is a noticeable reduction in HDSL 

in the in vivo condition (𝑝 < 1 × 10789, Wilcoxon signed-rank test), presumably driven by translation 

and possibly other cellular effects destabilizing mRNA structure, as discussed above. There is also a 

noticeable reduction in HDSL near the start of the 3’UTR (Figure 4E, 𝑝 < 1 × 10789, Wilcoxon signed-

rank test), although this effect disappears on average for nucleotides farther away from the end of the 

coding sequence (see Figure 4A). Overall, our results demonstrate that HDSL can rapidly measure 

local structure and gives results consistent with prior analyses. 

HDSL Correlates Strongly with Structured Regions of SARS-CoV-2 

To further explore the properties of HDSL, we applied it to the SARS-CoV-2 genome. Recently, 

multiple labs have independently probed the genome with SHAPE (33, 74) and dimethyl sulfate 

(DMS) (33, 75). These works have resulted in a complete structure model of the genome, highlighted 

by the identification of structured elements across its entire length. Here, we focus on SP data 
generated by Manfredonia et al. (33), which contained SHAPE data both in vitro and in vivo. Other 

studies either had data for only one condition or relied on DMS, which only reports reactivity for A and 

C nucleotides.  

We first characterized the consistency of patteRNA’s detected hairpins with the complete structure 

model proposed by Manfredonia et al. We took the published structure model as ground-truth, 
searched for all predicted regular hairpins, and quantified the accuracy of patteRNA via the ROC 

(Figure 5A) and PRC (Figure 5B). Our results reveal good consistency between detected hairpins 

and hairpins in the predicted genome structure, as evidenced by AUCs around 0.88 and APs above 

0.65 from analyses for both conditions. 

Next, we used patteRNA to generate in vivo and in vitro HDSL profiles. Inspecting them in the 5’UTR 
reveals trends consistent with the currently accepted structure models (see Figure 5C) (33, 74–78). 

Namely, HDSL is high at known stable stem-loops, such as SL2, SL4, SL5A/C, SL7, and SL8. A 

weaker signal is found at SL6, which also shows differential structuredness between in vitro and in 

vivo data. Comparative analysis (79), in vivo RNA-RNA interactions (76), and multiple probing 

datasets (33, 74, 75) support the presence of this element. However, mutagenesis studies on a 

related coronavirus, murine coronavirus (MHV), demonstrated that disrupting this stem loop did not 

significantly affect virus viability (80). Given that SL6 is within of ORF1ab, it is possible that the 

element is transient in nature. That said, NMR experiments concluded SL6 stably forms and 
additionally measured a significantly larger internal loop than was predicted with in silico structure 

models (78). The internal loop, also identified as a major binding site for the N protein (81), appears to 

be responsible for high reactivities and the observed differential structuredness of SL6 between in 

vitro and in vivo data. Similarly, for SL3, although comparative sequence analysis and NNTM-based 
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folding with in vitro data suggest the presence of this stem-loop, in vivo data does not agree with its 

presence (33, 74, 75). NMR investigations concluded that the stability of the element is strongly 

influenced by ionic conditions (78), and studies on RNA-RNA interactions suggest that this stem loop 

is unfolded in vivo to facilitate genome cyclization, as the region is involved in a long-range interaction 
with the 3’UTR (76). As such, differential structuredness between in vitro and in vivo conditions is 

consistent with current understandings of the stem-loop element. Finally, we observe relatively low 

HDSL for SL5B, an element confirmed via RNA-RNA interactions (76) and NMR (78). NMR studies, 

however, suggest that the upper part of the stem is destabilized at physiological temperatures by the 

presence of SL5C. The presence of a bulge and high reactivities near the apical loop of SL5B 

subsequently result in attenuated HDSL observations around this element, as the structure scores 

poorly for the regular hairpin motifs considered by patteRNA when summarizing structuredness. 

Although a complete analysis of the SARS-CoV-2 genome is beyond the scope of this study, full 
HDSL profiles for the two conditions are included in Supplementary Figure S5. 

Generally speaking, there is a reasonable correlation between HDSL in vitro and HDSL in vivo 

(Figure 5D), although some deviation is expected given that in vivo contexts alter RNA dynamics. We 

also compared the properties of HDSL within Manfredonia et al.’s called “low SHAPE, low Shannon 

entropy” regions (regions with locally low SHAPE and Shannon entropy). Inspecting HDSL properties 
within these regions confirms they are characterized by very high HDSL levels, as seen in Figure 5E 
and Figure 5F. We investigated this association in more detail by correlating Shannon entropy with 

the following: SHAPE reactivity, pairing probabilities from patteRNA, and HDSL (Supplementary 
Figure S6). Our results show that reactivity is loosely correlated with Shannon entropy, but pairing 

probabilities correlate slightly better. However, HDSL shows an even stronger correlation, suggesting 

that it captures structuredness better than the former measures. Lastly, our results on the SARS-CoV-

2 genome indicate that HDSL profiles retain sufficient resolution to capture locations of specific 

structural elements (e.g., individual stem-loops in the 5’UTR), boding for the plausible use of our 
measure to assist in more detailed analyses of regions in addition to quantifying local structuredness. 

RBPs Bind RNA at Structured Regions 

Corley et al. (32) devised a novel experimental procedure called fSHAPE which can detect RNA 

nucleotides engaging in hydrogen bonding with RNA binding proteins (RBPs). fSHAPE works by 

chemically probing RNA transcripts in the presence and absence of native binding factors, then 

quantifying the degree of modification change between the two conditions. Nucleotides bound by RBP 

would presumably be more reactive in the absence of binding factors, which translates to a high 

fSHAPE score. Integrating fSHAPE information with standard reactivity profiles therefore allows one 

to examine the structural context of RBP binding sites. In this regard, Corley et al. performed 

icSHAPE in tandem with fSHAPE to perform such analyses transcriptome-wide on human cell lines 
(K562, HepG2, and HeLa). Their work showed that nucleotides with high fSHAPE scores tend to fall 

in areas with relatively low Shannon entropy when compared to the regions flanking them, allowing 

them to conclude that RBP tend to associate with RNA in the general context of structured regions.  
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We sought to use HDSL to address the same question, namely, is there a structural context 

characteristic to RBP binding? To this end, we processed their icSHAPE data with patteRNA, mined 

for regular hairpins, and computed HDSL profiles. We first investigated what association exists, if any, 

between high fSHAPE nucleotides and pairing probabilities as computed by patteRNA’s DOM-HMM. 
Simply put, we found that nucleotides with high fSHAPE (fSHAPE > 2) are almost unanimously 

unpaired (Figure 6A), while nucleotides with lower fSHAPE follow a distribution encompassing both 

states yet biased towards paired states. The association of high fSHAPE with unpaired nucleotides 

recapitulates what Corley et al. demonstrated with pairing probabilities computed via partition function 

approaches. 

However, despite the increased accessibility observed at single nucleotides with high fSHAPE, when 

one expands the context to the nucleotides’ local neighborhood (i.e., via HDSL analysis), one 

observes significantly more local structure around nucleotides with high fSHAPE compared to 

nucleotides with low fSHAPE (Figure 6B). This result is consistent with results from NNTM analyses 

performed by Corley et al., whose interpretation again depended on the computation of Shannon 

entropy. Our results were achieved without any folding steps and are more statistically significant (𝑝 <

107:9; for all low/high fSHAPE comparisons in Figure 6B, Mann-Whitney U test) than originally 

demonstrated. They were also generated orders of magnitude faster than a comparable NNTM 
approach, as we will show next. We note that current approaches for summarizing local 

structuredness from SP data alone, specifically local median reactivity, are generally insufficient for 

reaching this conclusion (see Supplementary Figure S7). This highlights the capability of our method 

to extract more information from big SP datasets without relying on the additional assumptions and 

computational overhead of thermodynamic modeling. 

patteRNA Processes Large Data Rapidly 

An especially appealing property of patteRNA is its ability to process big datasets rapidly. To 

demonstrate its speed in the context of existing methods, we timed our analyses and compared to 

partition function-based assessment of structure. To this end, we processed the Weeks set, SARS-

CoV-2 genome, Mustoe data, and Corley data with three sliding-window partition function analyses of 
varying computational overhead: partition function calculations with windows of length 3000 nt, 

spaced 300 nt apart; windows of length 2000 nt, spaced 150 nt apart, and windows of length 150 nt, 

spaced 15 nt apart. The results of the benchmarks are in Supplementary Figure S8. We observe 

that patteRNA is orders of magnitude faster than sliding-window partition function analysis for 

massive datasets (e.g., SP data on human transcriptomes). Specifically, patteRNA processed the 

largest dataset included in this study, the Corley data, in less than 1 hour when using a single-

threaded implementation (compared to roughly 1 and 7 days for partition function calculation via 150 

nt and 2000 nt windows, respectively; 3000 nt window calculations on the Corley data were not 
performed as they could not be completed in reasonable timeframe). Additionally, our method is 

natively parallelized, and benchmarks using 12 threads allow patteRNA to process such data in less 

than 10 minutes. Analogous parallelization of partition function-based approaches on large batches of 

RNA transcripts is relatively simple in theory, but not natively provided “out-of-the-box” for ViennaRNA 
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(meaning it’s up to the user to program their own parallelized calls to the relevant methods). An 

alternative RNA folding package, RNAstructure (21), does provide scalable parallelization out-of-the-

box, but the core folding implementation is about one to two orders of magnitude slower than 

ViennaRNA. The method was therefore not included in our comparison. 

We also compared our method to RNALfold (82), an optimized routine within the ViennaRNA package 

designed to rapidly scan long RNAs for locally-stable structural elements. As expected, we found that 

this method is capable of processing large data significantly faster than the sliding-window partition 

function approaches, yet it is nevertheless outpaced by patteRNA. Moreover, this method only returns 

structural elements with sufficiently low free energy (“significantly low” energies judged via an SVM) 
and, to the best of our knowledge, has not been well-benchmarked against reference structures. 

Furthermore, RNALfold does not attempt to integrate its results to summarize local structuredness, 

which is key to the type of comparative analyses performed in this study and a central theme of a 

broad range of recent SP-based studies (32, 47, 71, 72). Nevertheless, this method arrives at a more 

specific and comprehensive description of local structures (i.e., it can de-novo identify stems with 

bulges and internal loops), whereas patteRNA’s analyses here focus specifically on hairpin elements. 

We note that the incorporation of such local folding routines would likely improve the efficacy of future 

methods aiming to summarize local structure in large SP datasets, and our results show promising 
evidence that localized folding can be incorporated without major sacrifices to computational speed. 

 

DISCUSSION 

RNA structure probing experiments are rapidly evolving in terms of their design, scale, and quality. 

This evolution is accompanied by a need for versatile and scalable methods capable of extracting 

information from diverse and massive SP data. patteRNA is one such tool which was developed to 

rapidly extract insights from such data. Here, we have demonstrated reformulation of the patteRNA 

framework which increases its speed, adaptability, and precision, enabling it to scale well to data 
containing millions or billions of nucleotides. Moreover, we have shown that RNA structure can be 

rapidly quantified and compared in various contexts by detecting the signatures of hairpin elements. 

Our work expands the repertoire of analyses which patteRNA is capable of and demonstrates the 

power of simpler schemes when interpreting reactivity information. As seen with our benchmarks 

using a DOM approach, relatively low-resolution discretization schemes (akin to those used to 

highlight low/medium/high reactivities when visualizing SP data) are valuable when quantifying and 

mining motifs.  

In the context of RNA structure determination, we note that patteRNA is not envisioned as a 

competing method or replacement to traditional NNTM-based approaches. Rather, we view the 

method as a tool to be used in tandem to RNA folding. As seen in Figure 3, NNTM-based methods 

provide a far more accurate prediction of specific structures and are capable of assessing the entire 

structure landscape including bulges, internal loops, and internal stems. The analyses via patteRNA 
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shown here, on the other hand, intentionally compromise on the type of structures considered in the 

analysis in order to maximize the speed and scalability of the approach. As a consequence, patteRNA 

is most useful when assessing large-scale data. For instance, as we demonstrated, it could be utilized 

to quantify macroscopic structural trends related to specific regions, or it could be used to identify 
regions of RNA which see differential structuredness associated to some factor, which might then be 

followed by more intensive RNA folding approaches (e.g., partition function computation). In this way, 

patteRNA helps mitigate the computational limitations of such methods, especially for those who do 

not have advanced computing hardware at their disposal. Finally, although analyses in this study 

generally focus on using patteRNA to derive information on structuredness via hairpins, the method 

itself is fundamentally a versatile structure-mining algorithm which has been demonstrated to 

effectively search for putative functional motifs across in transcriptome-wide data (57).  

Our analysis of the SARS-CoV-2 5’UTR is distinguished from the others by a comparison of HDSL 

with specific structures that have been validated in a plethora of ways, including NMR spectroscopy 

(78). We remarked on a great correspondence of HDSL peaks and stable structural elements, 

indicating that HDSL captures more than just local structure—it retains information on specific motifs 

with high resolution. This observation is important in the context of our analysis of Corley et al.’s 

fSHAPE data. Namely, the increase in HDSL around sites with high fSHAPE (Figure 6B) suggests 
the possibility that RBP frequently associate not only in the context of structured regions, but 

specifically in the context of hairpin-like elements. RBP which recognize sequence motifs in hairpin-

loops have previously been identified (83, 84), but our results demonstrate the plausibility that the 

association between hairpin elements and RBP is more prevalent than previously thought. This is not 

entirely unexpected, as RBP are known to bind both dsRNA and ssRNA in a manner that correlates 

with the structure of the protein (85). Moreover, RBP binding ssRNA are observed to associate at 

unpaired bases stemming from RNA helix irregularities (e.g., bulges and internal loops) (86), also 

placing them in the context of hairpin elements. Recent studies have further documented that 
structured RNAs interact with a larger number of proteins than less structured RNAs (85). Our result 

further strengthens the utility of patteRNA in mining biologically relevant structures transcriptome-

wide. 

Looking ahead to future development of rapid analysis of SP data, patteRNA is well-suited to adapt to 

evolving probing technologies and datasets. That being said, its current implementation does come 
with several limitations. First, motif mining depends on the definition of specific secondary structures, 

which limits its application to situations where a specific structure or small collection of similar 

structures can be defined. For motifs like hairpins, this means that considering situations where a 

bulge or internal loop may or may not be present complicates analyses due to the combinatorial 

explosion of unique secondary structures needed to define all possible hairpin architectures through 

loop size, bulge size, and bulge position. patteRNA is already capable of exhaustively mining such 

motifs, but such analyses come at the cost of significant computational overhead, generally working 
against the utility of the method. A more efficient approach for motif mining which naturally considers 

alternative similar structures within a region could theoretically address some parts of this limitation. 
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Secondly, although the circumvention of RNA folding enables rapid computational analyses, it also 

handicaps the accuracy of the approach, as the energetic favorability of sequences within stems and 

loops is ignored. The incorporation of an optimized local folding routine could likely assist in this 

regard, although the coupling of such models into a statistical model like patteRNA is non-trivial. 
Nevertheless, methods like RNALfold (82) bode for the potential incorporation of NNTM-derived 

information without sacrificing on speed and scalability. Regardless of these limitations, however, 

patteRNA remains a viable computational method for the rapid assessment and quantification of 

structural trends in the largest SP datasets. 

 

DATA AVAILABILITY 

The latest version of patteRNA, version 2.0, was used for all analyses in this study. patteRNA is an 

open-source Python 3 module and is freely available at www.github.com/AviranLab/patteRNA under 
the BSD-2 license. Python scripts for generating simulated datasets, computing statistical 

benchmarks (e.g., ROC and PRC), and post-processing of HDSL profiles related to genes in the 
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publicly available from the indicated references in Table 1. 
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TABLE AND FIGURES 
 

Dataset 
Name Description Size References 

Weeks set 
22 well-studied RNAs with 
reference structures and 
high-quality SHAPE data 

11,070 nt (18, 20, 41, 
57, 58) 

STRAND data 

797 diverse RNAs with 
experimentally determined 
structures (via NMR, 
crystallography, or 
comparative sequence 
analysis) [no probing data] 

276,290 nt This work, 
(59) 

Manfredonia 
data 

SARS-CoV-2 genome probed 
by: 
• In vitro DMS-MaP 
• In vitro SHAPE-MaP 
• In vivo SHAPE-MaP 

3 x 29,903 nt (33) 

Mustoe data 

194 E. coli mRNA transcripts 
probed by SHAPE across 
three conditions (each 
condition is the average of 
two replicates) 
• Cellfree (in vitro) 
• Incell (in vivo) 
• Kasugamycin (in vivo + 

10 mg/mL kasugamycin) 

3 x 442,421 nt 
 (30) 

Corley data 

In vivo and in vitro icSHAPE 
data (as well as fSHAPE 
data, not included in the 
dataset size) for RNA 
transcripts in two human cell 
lines: K562 and HepG2 
(each condition is the 
average of two replicates) 

2 x 40.8 million nt (K562) 
2 x 35.4 million nt (HepG2) (32) 

 
Table 1. Summary of datasets used throughout this study. 
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Scheme Name Paired Distribution Unpaired Distribution 

Heitsch distributions (63) 

Helix-end:  
GEV(µ = 0.09, s = 
0.114, x = -0.821) 
 
Stacked: 
GEV(µ = 0.04, s = 
0.040, x = -0.763) 

Exponential distribution 
with l = 1.468 

Gaussian / Gaussian (poor) Gaussian distribution 
with µ = 0, s = 1 

Gaussian distribution 
with µ = 0.5, s = 1 

Gaussian / Gaussian (medium) Gaussian distribution 
with µ = 0, s = 1 

Gaussian distribution 
with µ = 1, s = 1 

Gaussian / Gaussian (high) Gaussian distribution 
with µ = 0, s = 1 

Gaussian distribution 
with µ = 2, s = 1 

Exponential / Gaussian Exponential distribution 
with l = 2 

Gaussian distribution 
with µ = 2, s = 1 

Exponential / Exponential Exponential distribution 
with l = 2 

Exponential distribution 
with l = 1/2 

 

Table 2. Parameters of state distributions used to generate artificial data on the Weeks set. GEV: 

generalized extreme value. 
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 Mean AP 

Data Scheme GMM GMM 
(log data) DOM DOM 

(log data) 

Heitsch Distributions 0.43 0.58 0.63 0.63 
Gaussian / Gaussian (poor) 0.32 0.36 0.34 0.34 
Gaussian / Gaussian (medium) 0.48 0.48 0.49 0.49 
Gaussian / Gaussian (high) 0.65 0.62 0.72 0.72 
Exponential / Gaussian 0.58 0.55 0.71 0.71 
Exponential / Exponential 0.52 0.57 0.57 0.57 

 

Table 3. Average precisions of patteRNA for hairpin mining when utilizing a Gaussian mixture model 

(GMM) or discretized observation model (DOM) of reactivity against various artificial data schemes. 

For all benchmarks, average precision was averaged over 10 replicates. Bold entries highlight the 

best performing approaches for each scheme. AP: average precision. 
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Figure 1. Identification of structural motifs in probing data and representation of hairpins in structures. 

(A) Schematic illustrating reactivity profile (black, yellow, red) for a region against the corresponding 

patteRNA score profile (blue) when mining for a hairpin with loop length 5 and stem length 5 (dot-

bracket: “(((((.....)))))”). The score profile represents the likelihood of the target motif occurring at the 

site obtained by using the current nucleotide as the start (left side) of a sliding window. This profile 
achieves a maximum at the true positive site of the hairpin (indicated as black box). Locations which 

do not satisfy sequence constraints necessary for the base pairs of the motif are denoted by square-

shaped markers on the score profile, and vice versa for triangle-shaped markers. Data shown are 

SHAPE-Seq reactivities from the 23S rRNA of E. coli (nt 2531-2576) (41). Reactivities are color coded 

according to their magnitude (high: > 0.7; mid: > 0.3 and ≤ 0.7; low: ≤ 0.3). (B) Distribution of hairpin 

stem and loop lengths in a diverse set of structured RNAs (referred to as the Weeks set – see 

Methods). The vast majority of hairpins have stem lengths shorter than 15 nt and loop lengths 

between 3 and 10 nt. (C) Fraction of paired nucleotides in the Weeks set which can be represented 
as belonging to a regular hairpin (red), a regular hairpin with up to one or two bulges of length 1–5 nt 

(blue), or any/all type of hairpin and associated stems (black).  
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Figure 2. Overall flow of data and computing behind patteRNA and hairpin-derived structure level 

(HDSL). The measure is initialized as the pairing probability profiles, which are then augmented by 

boosting values at sites covered by highly scored hairpins (see Methods). The subsequent profile is 

clipped to the interval [0, 1] and local smoothing is achieved with sliding window mean and sliding 

window median approaches with windows of size of 5 nt and 15 nt, respectively. 
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Figure 3. A discretized observation model (DOM) of reactivity improves hairpin detection precision 

when compared to a Gaussian mixture model (GMM). (A) Schematic illustration of GMM and DOM 

approaches in the content of patteRNA’s unsupervised learning scheme. The DOM is founded upon a 

percentile-based discretization of reactivities which yields a discrete emission probability scheme. The 

discretization scheme it itself optimized during training based on Bayesian information criteria (BIC) of 
models using progressively smaller bins. (B) Receiver operating characteristic curves and precision-

recall curves when mining regular hairpins in a reference dataset (“the Weeks set,” see text) with 

patteRNA using either GMM (blue) or DOM (orange) approaches, or when using data-driven NNTM-

based folding (green). (C) Timing benchmarks of unsupervised training via GMM and DOM on the 

Weeks set. Shown are the number of EM iterations required for convergence on the Weeks set and 

time required for a single EM iteration. 5 repetitions were used when measuring EM cycle times. 
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Figure 4. Hairpin-derived structure level (HDSL) demonstrates regional differences in structure 

changes between in vivo and in vitro structures for mRNA transcripts in E. coli (probed by Mustoe et 

al. (30)). (A) Averaged HDSL profiles across all genes (N = 432) for nucleotides around the start 

codon (±30 nt, red), within the coding sequence (AUG+31 to STOP), and 5’/3’UTRs (black). Grey 

area indicates the 99% CI of mean HDSL. Dot-dashed lines indicate mean HDSL over all nucleotides. 

(B) Hairpin divergence (fraction of patteRNA-detected hairpins unique to one condition) for the three 

pairwise comparisons between in vivo, in vitro, and in vivo + kasugamycin conditions. Error bars 

represent the exact binomial (Clopper-Pearson) 99% CI. (C) 2D density plot of HDSL between the two 

conditions shown in (A) indicates a bias for weakly structured regions in vitro to become more 

unstructured in vivo. (D) Histograms of HDSL at the adenosine of start codons for both conditions in 

(A). (E) Histograms of HDSL at the fifth nucleotide after the STOP codon for both conditions in (A). 
Arrows indicate Wilcoxon signed-rank tests for mean HDSL at the noted positions to be equal in both 

conditions. *** indicates 𝑝 < 1 × 10789. 
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Figure 5. HDSL demonstrates correlated and differential structuredness between in vitro and in vivo 

SHAPE experiments on SARS-CoV-2 by Manfredonia et al. (33). (A, B) Receiver operating 

characteristic curves and precision-recall curves for patteRNA’s detected hairpins. (C) HDSL profiles 

for the 5’UTR of SARS-CoV-2 in vitro and in vivo with low SHAPE, low Shannon entropy (LS/LSE) 

regions (called by Manfredonia et al.) indicated in red. Grey regions indicate no data. (D) Scatterplot 
of HDSL in vitro and HDSL in vivo for all nucleotides of the genome. (E) Scatterplot of HDSL in vitro 

and HDSL in vivo for nucleotides in LS/LSE regions. (F) Boxplot comparison of HDSL profiles within 

LS/LSE regions and outside of them for both conditions. 
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Figure 6. patteRNA demonstrates a strong association of RNA structure and RBP binding sites in 
human cell lines probed as by Corley et al. (32). (A) Unpaired probability boxplots (determined from 

icSHAPE reactivity via patteRNA’s DOM-HMM) for nucleotides with low fSHAPE (fSHAPE < 0) and 

high fSHAPE (fSHAPE ³ 2). Within each of the two cell lines, K562 and HepG2, results are presented 

for both in vitro and in vivo SHAPE data. (B) HDSL boxplots for nucleotides under the same 

conditions as (A). Although reactivities indicate that nucleotides likely involved in RBP binding (i.e., 

nucleotides with high fSHAPE) are remarkedly accessible and therefore likely unpaired, HDSL 
demonstrates that these reactive nucleotides more frequently occur in the general context of 

structured regions when compared to nucleotides with low fSHAPE. 
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