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Abstract 20 

 21 

Being able to remove or weigh down the influence of outlier data is desirable for any statistical 22 

models. While Magnetic and ElectroEncephaloGraphic (MEEG) data used to average trials per 23 

condition, it is now becoming common practice to use information from all trials to build linear 24 

models. Individual trials can, however, have considerable weight and thus bias inferential results. 25 

Here, rather than looking for outliers independently at each data point, we apply the principal 26 

component projection (PCP) method at each channel, deriving a single weight per trial at each 27 

channel independently. Using both synthetic data and open EEG data, we show (1) that PCP is 28 

efficient at detecting a large variety of outlying trials; (2) how PCP derived weights can be 29 

implemented in the context of the general linear model with accurate control of type 1 family-30 

wise error rate; and (3) that our PCP-based Weighted Least Square (WLS) approach leads to in 31 

increase in power at the group results comparable to a much slower Iterative Reweighted Least 32 

Squares (IRLS), although the weighting scheme is markedly different. Together, results show that 33 

WLS based on PCP weights derived upon whole trial profiles is an efficient method to weigh down 34 

the influence of outlier data in linear models. 35 

 36 

Keywords: ElectroEncephaloGraphy, single trials, Weighted Least Squares, General Linear Model 37 

 38 

Data availability: all data used are publicly available (CC0), all code (simulations and data 39 

analyzes) is also available online in the LIMO MEEG GitHub repository (MIT license).  40 
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Introduction 41 

 42 

MEEG data are often epoched to form 3 or 4-dimensional matrices of, e.g., channel x time x trials 43 

and channel x frequency x time x trials. Several neuroimaging packages are dedicated to the 44 

analyses of such large multidimensional data, often using linear methods. For instance, in the 45 

LIMO MEEG toolbox (Pernet et al., 2011), each channel, frequency, and time frame is analyzed 46 

independently using the general linear model, an approach referred to as mass-univariate 47 

analysis. Ordinary Least Squares (OLS) are used to find model parameters that minimize the error 48 

between the model and the data. For least squares estimates to have good statistical properties, 49 

it is however expected that the error covariance off-diagonals are zeros, such that Cov(e) = σ2I, I 50 

being the identity matrix (Christensen, 2002) assuming observations are independent and 51 

identically distributed. It is well established that deviations from that assumption lead to 52 

substantial power reduction and to an increase in the false-positive rate. When OLS assumptions 53 

are violated, robust techniques offer reliable solutions to restore power and control the false 54 

positive rate. Weighted Least Squares (WLS) is one such robust method that uses different 55 

weights across trials, such that Cov(e) = σ2V, with V a diagonal matrix: 56 

 57 

  equation 1 58 

 59 

with y a n-dimensional vector (number of trials), X the n*p design matrix, β a p dimensional vector 60 

(number of predictors in X) and e the error vector of dimension n. The WLS estimators can then 61 

be obtained using an OLS on transformed data (eq. 2 and 3):  62 

 63 

  equation 2 64 

    equation 3 65 

 66 

with W a 1*n vector of weights. 67 

 68 

When applied to MEEG data, a standard mass-univariate WLS entails obtaining a weight for each 69 

trial but also each dimension analyzed, i.e. channels, frequencies and  time frames. Following 70 

such procedure, a trial could be considered as an outlier or be assigned a low weight, for a single 71 

frequency or time frame, which is implausible given the well-known correlations of MEEG data 72 

over space, frequencies and time. We propose here that a single or a few consecutive data points 73 

should never be flagged as outliers or weighted down, and that a single weight per trial (and 74 

channel) should be derived instead, with weights taking into account the whole temporal or 75 

spectral profile. In the following, we demonstrate how the Principal Component Projection 76 

method (PCP - Filzmoser et al., 2008) can be used in this context, and how those weights can then 77 

be used in the context of the general linear model, applied here to event-related potentials. 78 

 79 

  80 
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Method 81 

 82 

Trial-based Weighted Least Squares 83 

 84 

An illustration of the method is shown in figure 1. Trial weights are computed as a distance among 85 

trials projected onto the main (>=99%) principal components space. Here, the principal 86 

components computed over the f time frames are those directions which maximize the variance 87 

across trials for uncorrelated (orthogonal) time periods (figure 1B). Outlier trials are points in the 88 

f-dimensional space which are far away from the bulk. By virtue of the PCA, these outlier trials 89 

become more visible along the principal component axes than in the original data space. Weights 90 

(figure 1E) for each trial are obtained using both the Euclidean norm (figure 1C, distance location) 91 

and the kurtosis weighted Euclidean norm (figure 1D, distance scatter) in this reduced PCA space 92 

(see Filzmoser et al., 2008 for details). We choose to exploit this simple technique because it is 93 

computationally fast given the rich dimensional space of EEG data and because it does not 94 

assume the data to originate from a particular distribution. The only constraint is that there are 95 

more trials present than time frames. For instance, with trials ranging from -50 ms to +650 ms, 96 

sampled at 250 Hz, the method requires at least 177 trials. The PCP algorithm is implemented in 97 

the limo_pcout.m function, distributed with the LIMO MEEG toolbox (https://limo-eeg-98 

toolbox.github.io/limo_meeg/). The WLS solution, implemented in limo_WLS.m, consists of 99 

computing model beta estimates using weights from the PCP method on OLS standardized robust 100 

residuals, following three steps:   101 

  102 

(1) After the OLS solution is computed, an adjustment is performed on residuals by 103 

multiplying them by 1/√1 − ℎ where h is a vector of Leverage points (i.e. the diagonal of 104 

the hat matrix 𝐻 = 𝑋(𝑋′𝑋)−1𝑋′ where X is the design matrix). This adjustment is 105 

necessary because leverage points are the most influential on the regression space, i.e. 106 

they tend to have low residual values (Hoaglin & Welsch, 1978). 107 

(2) Residuals are then standardized using a robust estimator of dispersion, the median 108 

absolute deviation to the median (MAD), and re-adjusted by the tuning function. Here we 109 

used the bisquare function. The result is a series of weights with high weights for data 110 

points having high residuals (with a correction for Leverage).  111 

(3) The WLS solution is then computed following equation 3. 112 
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 113 
Figure 1. Illustration of the PCP weighting scheme using trials for ‘famous faces’ of the OpenNeuro.org 114 
publicly available ds002718 dataset in subject 3, channel 34 (see Section on empirical data analysis). Panel 115 
A shows the single-trial responses to all stimuli. The principal component analysis is computed over time, 116 
keeping the components explaining the most variance and summing to at least 99% of explained variance 117 
(giving here 69 eigenvectors i.e. ‘independent time components’ from the initial 176 time points) and the 118 
data are projected onto those axes (panel B). From the projected data onto the components, Euclidean 119 
distances for location and scatter are computed (panels C, D - showing smooth histograms of weights) and 120 
combined to obtain a distance for each trial. That distance is either used as weights in a linear model or 121 
used to determine outliers (panel E, with outliers identified for weights below ~0.27, shown in dark grey). 122 
At the bottom right, the mean ERP for trials classified as good (red) vs. outliers (black) and the weighted 123 
mean (green) are shown (panels F and G). Shaded areas indicate the 95% highest-density percentile 124 
bootstrap intervals.   125 
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Simulation-based analyses 126 

 127 

A. Outliers detection and parameters estimation.  128 

 129 

Simulated ERPs were generated to evaluate the classification accuracy of the PCP method and 130 

estimate the robustness to outliers and low signal-to-noise ratio of the WLS solution in 131 

comparison to an OLS solution and a standard Iterative Reweighted Least Squares (IRLS) solution 132 

which minimizes residuals at each time frame separately (implemented in limo_IRLS.m). To do 133 

so, we manipulated (i) the percentage of outliers (how robust is the method), testing for 10%, 134 

20%, 30%, 40% or 50% of outliers; (ii) the signal to noise ratio (defined relative to the mean over 135 

time of the background activity); and (iii) the type of outliers. The first set of outliers were defined 136 

based on the added noise: white noise, pink noise, alpha oscillations and gamma oscillations. In 137 

these cases, the noise started with the P1 component and lasted ~ 200ms (see below). The 138 

second set of outliers were defined based on their amplitude, or outlier to signal ratio (0.5, 0.8, 139 

1.2, and 1.5 times the ‘true’ N1 amplitude).  140 

 141 

Synthetic data were generated for one channel, using the model developed by (Yeung et al., 142 

2018). The simulated signal corresponded to an event-related potential with P1 and N1 143 

components (100 ms long) added to background activity with the same power spectrum as 144 

human EEG, generating 200 trials of 500 ms duration with a 250 Hz sampling rate. Examples for 145 

each type of simulation are shown in figure 2 and results are based, for each case, on a thousand 146 

random repetitions. Performance of the PCP algorithm at detecting outlying synthetic EEG trials 147 

was investigated by computing the confusion matrix and mapping the true and false positives 148 

rates in the Receiver Operating space, and by computing the Matthew Correlation Coefficients 149 

(MCC). Robustness was examined by computing the Pearson correlations and the Kolmorov-150 

Smirnov (KS) distances between the ground truth mean and the OLS, WLS, and IRLS means. 151 

Pearson values allowed to estimate the linear relationships between estimated means and the 152 

truth while KS distances provide a fuller picture of the overall differences in distributions. The 153 

code used to generate the ERP and the results are available at  https://github.com/LIMO-EEG-154 

Toolbox/limo_test_stats/tree/master/PCP_simulations. 155 
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 156 
Figure 2. Illustration of simulated ERP ground truth with the different types of outlier trials. At the top is 157 
shown the mean background, mean signal and resulting generated ERP with it’s 95% confidence intervals. 158 
In each subsequent subplot is shown the mean ERP ground truth from 160 trials with their 95% confidence 159 
intervals (blue) with a SNR of 1. The first row shows the mean ERP from outlier trials generated by adding 160 
white noise, pink noise, alpha or gamma oscillations; the second row shows the mean ERP from outlier 161 
trials generated with variable Outlier to Signal Ratio (OSR) on the N1 component.  162 

 163 

B. Statistical inference. 164 

 165 

Accurate estimation of model parameters (i.e. beta estimates in the GLM - equation 3)  is 166 

particularly important because it impacts group-level results. Inference at the single-subject level 167 

may, however, also be performed and accurate p-values need, therefore, to be derived. Here, 168 

error degrees of freedom are obtained using the Satterwaithe approximation (equation 4).  169 

 170 

𝑑𝑓𝑒 =  𝑡𝑟([𝐼 − 𝐻]𝑇[𝐼 − 𝐻])    equation 4 171 

 172 

with dfe the degree of freedom of the error, I the identity matrix and H the hat matrix 173 
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To validate p-values, simulations under the null were performed. Two types of data were 174 

generated: Gaussian data of size 120 trials x 100 time frames and EEG data of size 120 trials x 100 175 

time frames with a P1 and N1 component as above, added to coloured background activity with 176 

the same power spectrum as human EEG. In each case, a regression (1 Gaussian random 177 

variable), an ANOVA (3 conditions of 40 trials - dummy coding) and an ANCOVA (3 conditions of 178 

40 trials and 1 Gaussian random covariate) model were fitted to the data using the OLS, WLS and 179 

IRLS methods. The procedure was performed 10,000 times, leading to 1 million p-values per 180 

data/model/method combination and Type 1 errors with binomial confidence intervals were 181 

computed. 182 

 183 

Empirical data analysis 184 

 185 

A second set of analyses used the publicly available multimodal face dataset (Wakeman & 186 

Henson, 2016) to (i) investigate the PCP classification; (ii) validate the GLM implementation for 187 

type 1 error family-wise control at the subject level; (iii) evaluate group results, contrasting WLS 188 

against the OLS and IRLS methods. This analysis can be reproduced using the script 189 

@https://github.com/LIMO-EEG-190 

Toolbox/limo_meeg/blob/master/resources/code/Method_validation.m 191 

  192 

A. EEG Data and Preprocessing 193 

 194 

The experiment consisted in the presentation of familiar, unfamiliar, and scrambled faces, 195 

repeated twice at various intervals, leading to a factorial 3 (type of faces) by 3 (repetition) design. 196 

The procedure followed (Pernet et al., 2021). EEG data were extracted from the MEG fif files, 197 

time corrected and electrode position re-oriented and saved according to EEG-BIDS (Pernet et 198 

al., 2019 - available at OpenNeuro 10.18112/openneuro.ds002718.v1.0.2.). Data were imported 199 

into EEGLAB (Delorme & Makeig, 2004) using the bids-matlab-tools v5.2 plug-in and non-EEG 200 

channel types were removed. Bad channels were next automatically removed and data filtered 201 

at 0.5Hz using pop_clean_rawdata.m of the clean_radata plugin v2.2 (transition band [0.25 0.75], 202 

bad channel defined as a flat line of at least 5sec and with a correlation to their robust estimate 203 

based on other channels below 0.8). Data were then re-referenced to the average (pop_reref.m) 204 

and submitted to an independent component analysis (Onton et al., 2006) (pop_runica.m using 205 

the runnica algorithm sphering data by the number of channels -1). Each component was 206 

automatically labelled using the ICLabel v1.2.6 plug-in (Pion-Tonachini et al., 2019), rejecting 207 

components labeled as eye movements and muscle activity above 80% probability. Epochs were 208 

further cleaned if their power deviated too much from the rest of the data using the Artifact 209 

Subspace Reconstruction algorithm (Kothe & Makeig, 2013) (pop_clean_rawdata.m, burst 210 

criterion set to 20). 211 
   212 

B. High vs. low weight trials and parameters estimation. 213 

 214 

At the subject level, ERP were modelled at each channel and time frame with the 9 conditions 215 

(type of faces x repetition) and beta parameter estimates obtained using OLS, WLS, and IRLS. For 216 

each subject, high vs. low weight trials were compared with each other at the channel showing 217 
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the highest between trials variance to investigate what ERP features drove the weighting 218 

schemes. High and low trials were defined a priori as trials with weights (or mean weights for 219 

IRLS) below the first decile or above the 9th decile. We used two samples bootstrap-t on 20% 220 

trimmed means to compare these quantities in high and low trials in every participant: temporal 221 

SNR (the standard deviation over time); global power (mean of squared absolute values, 222 

Parseval’s theorem); autocorrelation (distance between the 2 first peaks of the power spectrum 223 

density, Wiener-Khinchin theorem). A similar analysis was conducted at the group level averaging 224 

across trials metrics. Computations of these three quantities have been automatized for LIMO 225 

MEEG v3.0 in the limo_trialmetric.m function. 226 

 227 

C. Statistical inference. 228 

  229 

In mass-univariate analyses, once p-values are obtained, the family-wise type 1 error rate can be 230 

controlled using the distribution of maxima statistics from data generated under the null 231 

hypothesis (Pernet et al., 2015). Here, null distributions were obtained by first centering data per 232 

conditions, i.e. the mean is subtracted from the trials in each condition, such that these 233 

distributions had a mean of zero, but the shape of the distributions is unaffected. We then 234 

bootstrap these centred distributions (by sampling with the replacement), keeping constant the 235 

weights (since they are variance stabilizers) and the design. We computed 2,500 bootstrap 236 

estimates per subject. A thousand of these bootstrap estimates were used to compute the family-237 

wise type 1 error rate (FWER), while maxima and cluster maxima distributions were estimated 238 

using the  from 500 to 1,500 bootstraps estimates from the remaining set (e.g. use 500 estimates 239 

to build the null distribution of maxima, and test FWER using 1000 draws, redo the analysis with 240 

600 estimates to build the null distribution of maxima, and test FWER using again the 1000 241 

independent draws, etc). This allowed analysing the convergence rate, i.e. how many resamples 242 

are needed to control the FWER. Since OLS was already validated in Pernet et al. (2015), here we 243 

present WLS results. Statistical validations presented here and other statistical tests 244 

implemented in the LIMO MEG toolbox v3.0 (GLM validation, robust tests, etc.) are all available 245 

at https://github.com/LIMO-EEG-Toolbox/limo_test_stats/wiki.   246 

 247 

D. Performance evaluation at the group level. 248 

 249 

At the group level, we computed 3 by 3 repeated measures ANOVA (Hotelling T^2 tests) 250 

separately on OLS, WLS, and IRLS estimates, with the type of faces and repetition as factors. 251 

Results are reported using both a correction for multiple comparisons with cluster-mass and with 252 

TFCE (threshold-free cluster enhancement) at p<.05 (Maris, E. & Oostenveld, R., 2007; C.R. Pernet 253 

et al., 2015).  254 

 255 

In addition to these thresholded maps, distributions were compared to further understand where 256 

differences originated from. First, we compared raw effect sizes (Hotelling T^2) median 257 

differences between WLS vs. OLS and WLS vs. IRLS for each effect (face, repetition and 258 

interaction), using a percentile t-test with alphav adjusted across all 6 tests using the Hochberg 259 

step-up procedure. This allowed checking if differences in results were due to effect size 260 

differences. Then, since multiple comparison correction methods are driven by the data 261 
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structure, we compared the shapes of the F value and of the TFCE value distributions (tfce 262 

reflecting clustering). Each distribution was standardized (equation 5) and WLS vs. OLS and WLS 263 

vs. IRLS distributions compared using shift function analyses (Rousselet et al., 2017).  264 

    265 

𝑌𝑧𝑖 =  
(𝑌𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑌)

√(𝑝𝑖/2)∗𝑀𝐴𝐷(𝑌)
     equation 5 266 

 267 

with Yzi the standardized data, Y the data, and MAD the median absolute deviation  268 

 269 

Results 270 

 271 

Outliers detection  272 

 273 

While the PCP method is used in the GLM to obtain weights and not to remove outliers directly, 274 

simulations allowed to better understand what kind of trials are weighted down and how good 275 

the method is at detecting such trials. Figure 3 shows all the results for ERP simulated with a SNR 276 

of 1. Similar results were observed when using a SNR of 2 (supplementary figure 1). First and 277 

foremost, in all cases and for up to 40% of outlying trials, the PCP data are located in the upper 278 

left corner of the ROC space, indicating good performances. When reaching 50% of outliers, the 279 

true positive rate falls down to ~40% and the false positive rate remains below 40%. This is best 280 

appreciated by looking at the plots showing perfect control over false positives when data are 281 

contaminated with up to 40% of white, alpha, and gamma outliers. For those cases, the Matthew 282 

Correlation Coefficients also remain high (>0.6) although not perfect (not =1), indicating some 283 

false negatives. Compared with other types of noise, pink noise elicited very different results, 284 

with Matthew Correlation Coefficients around 0 indicating chance classification level. Results 285 

from amplitude outliers also show Matthew Correlation Coefficients close to 0 with a linear 286 

increase in false positives and linear decrease in false positives as the percentage of outliers 287 

increases, i.e., the PCP method did not detect amplitude changes around peaks. These results are 288 

simply explained by the principal components being computed over time frames, and outliers 289 

with pink noise and weaker or stronger N1 do not show different ‘directions’ (eigen vectors) in 290 

this dimension when decomposing the covariance matrix, i.e. their temporal profiles do not differ 291 

from the ground truth.  292 
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293 
Figure 3. PCP performance at detecting outlying trials with a SNR of 1. (A) Results for outliers affected by 294 
white noise, pink noise, alpha, and gamma oscillations. (B) Results for trials affected by amplitude changes 295 
over the N1 component (0.5, 0.8, 1.2, 1.5 times the N1). The scatter plots map the Receiver Operating 296 
Characteristic Space (False Positive rate vs. True Positive rate); the curves display, from left to right, the 297 
median True Positive rate, False Positive rate, and Matthew Correlation Coefficients. 298 
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299 
Supplementary Figure 1. PCP performance at detecting outlying trials with a SNR of 2.  (A) Results for 300 
outliers affected by white noise, pink noise, alpha, and gamma oscillations. (B) Results for trials affected 301 
by amplitude changes over the N1 component (0.5, 0.8, 1.2, 1.5 times the N1). The scatter plots map the 302 
Receiver Operating Characteristic Space (False Positive rate vs. True Positive rate); the curves display, from 303 
left to right, the median True Positive rate, False Positive rate, and Matthew Correlation Coefficients. 304 

  305 
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High vs. low trial weights 306 

 307 

The classification for real ERP data confirmed results observed with simulations:  the PCP 308 

algorithm weighted down trials with different dynamics from the bulk. Single subject analyses 309 

(supplementary table 1) and group analyses (figure 4) for WLS showed that trials with a low 310 

weight are less smooth than trials with a high weight (higher temporal variance ~10 vs. 7.26uV 311 

and power ~131 vs. 69dB, lower autocorrelation 11 vs. 12.25ms), despite having similar spectra 312 

(as expected from data filtering and artefact reduction). In comparison, trials with low and high 313 

mean weight based on IRLS, were similar on those metrics (temporal variance ~9 vs. 7uV,  and 314 

power ~126 vs. 65dB, autocorrelation 12.25 vs. 12ms). While 11 out of 18 subjects show 315 

maximum between-trial variance on the same channels for WLS and IRLS, only 28% of low weight 316 

trials were the same vs. 56% of high weight trial, further indicating that the weighting scheme 317 

from WLS does not reflect amplitude variations only, as does IRLS. 318 

 319 

 320 

 tSNR difference (uV) Power difference (dB) autocorrelation difference (ms) 

 WLS IRLS WLS IRLS WLS IRLS 

s2 [-0.03 0.54] [0.26 1.14] [-2 6] [3 18] [-8.5 1.8] [5.09 16.4] 

s3 [2.35 2.92] [-4.48 -2.34] [35 50] [-55 -22] [-3.9 3.5] [16.6 45.9] 

s4 [0.14 069] [1.9 3.43] [1 13] [39 64] [-13 -6.7] [-12.8 3.2] 

s5 [4.03 8.25] [10.7 13.57] [77 200] [297 382] [-13 -4.7] [-14.6 -4.9] 

s6 [1.51 2.87] [-0.74 1.98] [24 48] [-6 33] [-4.8 -0.39] [-0.6 17.8] 

s7 [1.16 5.1] [2.44 5.26] [38 141] [54 129] [-4 11.1] [-7.3 11.2] 

s8 [7.49 8.21] [7.57 8.55] [154 173] [159 183] [-24 -19.8] [-20.2 -14.1] 

s9 [2.97 7.96] [-4.55 0.44] [52 169] [-74 28] [-16 -7.1] [-1.5 7.1] 

s10 [-0.61 0.9] [-3.47 2.27] [-11 11] [-107 102] [0.9 9.1] [-0.2 1.5] 

s11 [-0.73 4.46] [4.57 7.27] [-11 168] [123 200] [-2.9 1.4] [0 7.8] 

s12 [6.69 11.17] [-2.06 4.85] [149 250] [-98 93] [-31 -22] [-13.1 -2.7] 

s13 [-5.06 0.1] [-6.8 2.91] [-222 2] [-285 142] [4.4 12] [-6.2 0.19] 

s14 [4.81 7.63] [3.54 7.77] [174 270] [123 270] [-0.4 24] [-6.9 13.3] 

s15 [1.69 3.91] [-0.97 2.06] [36 93] [-20 51] [-6.5 1.1] [1.8 10.5] 

s16 [-6.85 8.4] [-2.13 13.82] [-164 300] [-65 444] [-8.3 8.7] [-16 14.1] 

s17 [2.34 3.72] [2.31 4.09] [34 68] [45 83] [-29.4 -15.9] [-13.8 2.4] 
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s18 [0.54 1.28] [-0.64 1.86] [6 20] [-3 27] [-15.7 -2.43] [-28.8 11.4] 

s19 [-0.39 0.71] [-0.40 0.57] [-8 16] [-9 17] [-6.9 -1.3] [-7.1 -1.5] 

Supplementary Table 1. Subjects 95% percentile bootstrap confidence intervals of differences between 321 
high and low trials trimmed means obtained using PCP-WLS or IRLS at channels with the highest between 322 
trials variance. Intervals which do not include 0 (i.e., the difference between high vs. low trials is statistically 323 
significant) are shown on gray background. 324 

 325 

 326 
Figure 4. Face ERPs computed using low and high weight trials. The top of the figure displays the mean of 327 
low weight (red) and high weight (black) trials over right posterior temporal (subject 2, channel 50), left 328 
frontal (subject 14 channel 4), and left posterior central (subject 19, channel 66) areas obtained either with 329 
the PCP-WLS or the IRLS methods - as illustration of differences in tSNR, power, and autocorrelation. The 330 
bottom of the figure displays single subject mean tSNR, power and autocorrelation (scatter plots) along 331 
with the percentile bootstrap difference between low and high weight trials (black circles data points are 332 
the bootstrap trimmed mean differences and the pink rectangles show the 20% trimmed mean and 95% 333 
confidence intervals).  334 
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Estimation and Robustness  335 

 336 

The effect of adding outliers on the mean can be seen in figure 5 and supplementary figure 2. 337 

The standard mean, i.e. the ordinary least squares ERPs, shows an almost linear decrease in 338 

Pearson correlations and linear increase in KS distances to the ground truth as the percentage of 339 

outlier increases, an expected behaviour since OLS are not robust. Our reference robust 340 

approach, IRLS, shows robustness to white noise, alpha, and gamma oscillations with higher 341 

Pearson correlations than the OLS. Yet it performed worse than the OLS with pink noise and 342 

amplitude outliers showing lower correlations with the ground truth, despite having similar KS 343 

distances for all cases. As the IRLS solution for pink noise and amplitude outliers weights data to 344 

minimize residuals at each time point separately, these are also expected results, resulting in an 345 

average distance (over time) larger than OLS. The new WLS approach showed stronger resistance 346 

to outliers for white noise, alpha and gamma oscillations than the IRLS approach, with higher 347 

Pearson correlations. For pink noise and N1 amplitude outliers, it performs as the IRLS, despite 348 

different KS distances. The IRLS algorithm attenuates the influence of those data points that differ 349 

from the ground truth, but this may be from different trials at different time points. By doing so, 350 

KS distances to the ground truth were similar or lower (for alpha and gamma oscillations) than 351 

the OLS. The WLS approach attenuates the influence of trials with different time courses and 352 

thus, the WLS ERP mean is affected at every time point, even if the detection concerns a small 353 

part of the time course, leading to higher KS distances even with a small number of outliers. 354 

Conversely, the WLS ERP gets closer to the ground truth when the number of outliers is high 355 

(white noise, apha, gamma oscillations up to 40%) or stay constant independently of the number 356 

of outliers (pink noise, N1 amplitude outliers). 357 
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 358 
Figure 5. Robustness of the PCP method to outlying trials with a SNR of 1. The upper part of the figure 359 
shows median and 95% CI results for outliers affected by white noise, pink noise, alpha and gamma 360 
oscillations and the bottom part shows results for trials affected by amplitude changes over the N1 361 
component (0.5, 0.8, 1.2, 1.5 times the N1). Mean Pearson correlations indicate how similar the 362 
reconstructed means (OLS in blue, IRLS in green, WLS in red) are to the ground truth, while mean 363 
Kolmogorov-Smitnov distances indicate how much the overall distribution of values differ from the ground 364 
truth.   365 
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366 
Supplementary figure 2. Robustness of the PCP method to outlying trials with a SNR of 2. The upper part 367 
of the figure shows median and 95% CI results for outliers affected by white noise, pink noise, alpha and 368 
gamma oscillations and the bottom part shows results for trials affected by amplitude changes over the 369 
N1 component (0.5, 0.8, 1.2, 1.5 times the N1). Mean Pearson correlations indicate how similar the 370 
reconstructed means (OLS in blue, IRLS in green, WLS in red) are to the ground truth, while mean 371 
Kolmogorov-Smitnov distances indicate how much the overall distribution of values differ from the ground 372 
truth.   373 

 374 

Statistical inference for single subjects 375 

 376 

The average type 1 error rate for every channel and time frame tested with simulated data is at 377 

the nominal level (5%) for OLS. Results also show that IRLS are a little lenient, with small but 378 

significantly smaller p-values than expected, leading to an error rate of ~0.055. Conversely, WLS 379 
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are conservative for simulated ERP, with p-values slightly too high,  giving a type 1 error rate of 380 

~0.04) and lenient with purely Gaussian data (type 1 error ~0.065 – table 1). This behaviour of 381 

WLS is caused by the PCP method which optimizes weights based on distances across time, 382 

except that with simulated Gaussian data there is no autocorrelation and the PCA returns a much 383 

higher number of dimensions, leading to a meaningless feature reduction and thus meaningless 384 

trial distances and weights. 385 

 386 

  Null Gaussian Null ERP 

Regression OLS [0.0495 0.0503]   [0.0498 0.0507] 

 WLS [0.0636 0.0645]     [0.0400 0.0408] 

 IRLS [0.0555 0.0564] [0.0527 0.0536] 

ANOVA OLS [0.0493 0.0502] [0.0493 0.0501] 

 WLS [0.0695 0.0706] [0.0374 0.0382] 

 IRLS [0.0575 0.0584] [0.0540 0.0549] 

ANCOVA condition OLS [0.0494 0.0502] [0.0493 0.0502] 

 WLS [0.0699 0.0709] [0.0379 0.0386] 

 IRLS [0.0578 0.0587] [0.0546 0.0555] 

ANCOVA covariate OLS [0.0496 0.0505] [0.0496 0.0504 ]    

 WLS [0.0638 0.0648] [0.0410 0.0418] 

 IRLS [0.0563 0.0572] [0.0538 0.0547] 

Table 1. Type I error rate binomial 95% confidence intervals at every time frames and channels for 387 
simulated data under the null hypothesis. 388 

 389 

The WLS family-wise type 1 error rate (i.e. controlling the error for statistical testing across the 390 

whole data space) examined using nullified ERP data from Wakeman and Henson (2015) shows 391 

a good probability coverage for both maximum and cluster statistics with 95% confidence 392 

intervals overlapping with the expected nominal value (figure 6). Individual mean values ranged 393 

from 0.039 to 0.070 for maximum statistics (across subject average 0.052) and 0.044 to 0.07 for 394 

spatial-temporal clustering (across subject average 0.051). Those results do not differ 395 

significantly from OLS results (paired bootstrap t-test). Additional analyses based on the number 396 

of of bootstraps used to build the null distribution indicate that 800 to a 1000 bootstraps are 397 

enough to obtain stable results, and that the errors do not appear at any spatial-temporal 398 

locations, i.e. there are no sampling bias (maximum number of error occurring at the same 399 

location was 0.05% using maximum statistics and 0.9% using spatial-temporal clustering, see 400 

bottom for figure 6, error density maps). 401 
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 402 

 403 
Figure 6. Type 1 error rates under the null using the PCP-WLS method. On the top row are shown the 404 
subjects’ error rates: cell-wise, i.e. averaged across all time frames and channels, and corrected for the 405 
whole data space, i.e. type 1 family wise error rate using either the distribution of maxima or the 406 
distribution of the biggest cluster-masses. Results are within the expected range (marked by dotted black 407 
lines) with overlapping 95% confidence intervals for maximum statistics and spatial-temporal clustering. 408 
On the middle row are shown the effect of the number of resamples, with the tick lines representing the 409 
95% average confidence interval. The cell-wise error is not affected since it does not depend directly on 410 
this parameter to estimate the null (left) while using maximum statistics and cluster-mass distribution 411 
estimates show a stronger dependency with results stable after 800 to 1000 bootstraps. On the bottom 412 
row are shown error density maps (sum of errors out of 27000 null maps). The cell-wise error (i.e. no 413 
correction for multiple comparisons) shows that errors accumulate, with some channels showing many 414 
consecutive time frames with 5% error. By contrast, maximum statistics (middle) and the maximum 415 
cluster-masses (right) do not show this effect (maxima at 0.05% and 0.9%), suggesting little to no spatial 416 
bias in sampling.   417 

 418 

Performance evaluation at the group level 419 

 420 

Repeated measures ANOVAs using parameter estimates from each method revealed 2 spatial-421 

temporal clusters for the face effect for both WLS and IRLS, but only the 1st cluster was declared 422 

significant using OLS (table 2). The expected results (Wakeman & Henson, 2015) with full faces 423 

having stronger N170 responses than scrambled faces are replicated for all approaches.  424 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.04.27.441629doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.27.441629
http://creativecommons.org/licenses/by/4.0/


19 

 

Maximum differences were observed over the N170 only when using OLS parameters. Using WLS 425 

and IRLS gave maxima much later (P280), a result also observed when using TFCE rather than 426 

spatial-temporal clustering. In each case, a repetition effect was also observed in a much more 427 

consistent way among methods with the second presentation of stimuli differing from the 1st 428 

and 3rd presentations (figure 7).  429 

 430 

 OLS WLS IRLS 

Face effect 

cluster 1 
140ms to 504ms, 

 max=74, p=0.002 at 
184ms channel EEG049 

140ms to 424ms,  
 max=64, p= 0.002 at 

280ms channel EEG017    

136ms to 432ms,  
max=74, p= 0.002 at 

292ms channel EEG006  

cluster 2   
440ms to 648ms,  

max=17.6, p= 0.032 at 
616ms channel EEG057 

520ms to 648ms,  
max=22, p= 0.032 at 

636ms channel EEG055     

TFCE max=74, p=0.026 
at 184ms channel 

EEG049  

max=64, p=0.012 
at 280ms channel 

EEG017  

max=74, p=0.012 
at 292ms channel 

EEG006  

Repetition effect 

cluster 1 
232ms to 648ms,  

max=50, p= 0.001 at 
588ms channel EEG057  

232ms to 648ms, 
max=51, p= 0.001 at 

612ms channel EEG045 

236ms to 648ms,  
max=52, p= 0.001 at 

588ms channel EEG057  

TFCE max=50, p=0.002 
at 588ms channel 

EEG057  

max=51, p= 0.001 at 
612ms channel EEG045 

max=52, p= 0.001 at 
588ms channel EEG057  

Table 2: Face and repetition effects results using cluster-mass correction and TFCE for each of the three 431 
methods.  432 
  433 
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 434 
Figure 7. Face group effects observed using OLS, WLS or IRLS 1st level derived parameters. On the 435 

left hand side is shown the full channels * times thresholded maps using cluster-mass (p<.05) with 436 

topographies over maxima. In the middle and right hand side are shown time courses of the mean 437 

parameter estimates per condition (blue, red, orange) and condition differences (green, purple, 438 

black) over channel 50 (right inferior-temporal) and channel 6 (middle anterior frontal).  439 

  440 
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From the statistical maps, it can readily be observed that group results using 1st level WLS 441 

parameter estimates lead to smaller F values. Median differences in Hotelling T^2 values show 442 

that effects were always smaller compared to using parameter estimates from OLS or IRLS 443 

(Supplementary tables 2, 3 & table 3). Considering uncorrected p-values, this translates into less 444 

statistical power (Face effect OLS 34% WLS 31% IRLS 34% of significant data frames, Repetition 445 

effect OLS 39% WLS 35% IRLS 39% of significant data frames). Results based on corrected p-value 446 

based on clustering showed however more statistical power for the Face effect (OLS 20% WLS 447 

22% IRLS 25% of significant data frames with cluster mass and 3%, 5% 3% of significant data 448 

frames with TFCE), and mixed results for the Repetition effect (OLS 31% WLS 28% IRLS 31% of 449 

significant data frames with cluster mass and 7%, 8% 7% of significant data frames with TFCE).  450 

 451 

Comparison of standardized distributions for the face effect and repetition effect showed a 452 

general trend for more right skewed F-value and TFCE-value for WLS distributions than for OLS 453 

and IRLS distributions vs. shorter tail for the interaction effect (figure 8). For the face effect, WLS 454 

did not differ significantly from OLS or from IRLS when testing F-value deciles while TFCE values 455 

differed significantly, from the 2nd decile onward when compared to OLS, and for deciles 456 

2,3,4,7,8,9 compared to IRLS. For the repetition effect, WLS differed from OLS on deciles 2,7,8,9 457 

for both F-values and TFCE values while it differed from IRLS on decile 9 only when looking at F-458 

values, and deciles 2,5,8,9 when looking at TFCE values. Finally, for the interaction effect, WLS 459 

did not differ from OLS or IRLS in terms of F-values but had significantly weaker TFCE values than 460 

OLS (deciles 1,3,6,7,8,9) and IRLS (all deciles but the 4th). 461 

 462 

 463 

 face effect repetition effect interaction effect 

WLS vs OLS -0.32 [-0.36 -0.28] -0.54 [-0.59 -0.48]  -0.21 [-0.29 -0.13] 

WLS vs IRLS  -0.34 [-0.39 -0.30] -0.53 [-0.58 -0.48]  -0.14 -0.21 -0.08] 

Table 3. Median differences in Hotteling T^2 values for each effect tested with percentile 464 

bootstrap 95% confidence intervals (p=0.001).                            465 

                       466 

 467 

    OLS WLS IRLS 

Cluster 1 
Channel 50 

Famous Faces vs. 
Scrambled 

-4.93 
[-12.2 2.32] 

-4.52 
[-11.39 2.34] 

-5.82 
[-12.76 1.11] 

Unfamiliar Faces vs. 
Scrambled 

-4.77 
[-12.42 2.86] 

-4.64 
[-13.02 3.72] 

-5.19 
[-11.93 1.54] 

Famous vs Unfamiliar 
Faces 

-0.15 
[-3.13 2.81] 

0.12 
[-3.28 3.53] 

-0.62 
[-4.86 3.60] 
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Cluster 1 
Channel 6 

Famous Faces vs. 
Scrambled 

2 
[-5.25 9.25] 

1.71 
[-5.16 8.59] 

1.68 
[-6.05 9.41] 

Unfamiliar Famous Faces 
vs. Scrambled 

3.21 
[-5.80 12.22] 

2.20 
[-5.97 10.38] 

2.95 
[-6.08 11.99] 

Famous vs Unfamiliar 
Faces 

-1.20 
[-5.72 3.30] 

-0.49 
[-5.03 4.04] 

-1.27 
[-5.47 2.93] 

Cluster 2 
Channel 50 

Famous Faces vs. 
Scrambled 

-4 
[-13.82 5.82] 

-4.11 
[-15.62 7.40] 

-4.04 
[-13.31 5.23] 

Unfamiliar Faces vs. 
Scrambled 

-2.16 
[-9.20 4.87] 

-2.17 
[-9.83 5.48] 

-2.32 
[-8.96 4.31] 

Famous vs Unfamiliar 
Faces 

-1.83 
[-6.47 2.81] 

-1.93 
[-9.76 5.88] 

-1.71 
[-7.47 4.03] 

Supplementary table 2. Pairwise differences in mean parameter estimates (arbitrary unit) measured at 468 
channel 50 and 6 at the maximum of the famous faces reponses.  469 
 470 

 medianT maxT medianF maxF medianCluster maxCluster medianTFCE maxTFCE 

Face effect 

OLS 4.44 157.64 2.09 74.19 72.57 22591.41 130.41 40992.1 

WLS 3.98 136.27 1.87 64.13 64.29 19453.52 85.72 35828.8 

IRLS 4.49 157.77 2.11 74.25 34.41 23300.19 130.88 54888.48 

Repetition Effect 

OLS 5.38 107.03 2.53 50.37 35.25 39116.91 244.38 82143.67 

WLS 4.46 109.14 2.1 51.36 33.76 33979.02 129.89 76244.1 

IRLS 5.32 110.86 2.5 52.17 37.31 39870.66 212.27 98429.06 

Interaction 

Effect 

OLS 5.45 126.31 1.12 26.01 23.79 387.94 27.64 483.46 

WLS 5.17 78.15 1.06 16.09 21.14 317.38 25.69 470.1 

IRLS 5.32 135.67 1.09 27.93 30.57 283.44 22.9 366.41 

Supplementary table 3. Medians and maxima of the Hotelling T^2, F-values, Cluster-mass and TFCE scores 471 
for each effect of the ANOVA and methods used at the 1st level.  472 

 473 
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 474 
Figure 8. Shift function results comparing standardized F-value distributions for WLS to OLS  and to IRLS 475 
for the face effect, repetition effect and their interaction. 476 
 477 

 478 

Discussion 479 

 480 

Simulation and data driven results indicate that the proposed WLS-PCP method is efficient at 481 

down weighting trials with dynamics differing from the bulk, leading to more accurate estimates. 482 

Results show that, for ERP, deriving weights based on the temporal profile provides a robust 483 

solution against white noise or uncontrolled oscillations. For biological (pink) noise and amplitude 484 

variations which do not alter the temporal profile, the PCP algorithm does not classify well outlier 485 

trials, leading to a decrease in detection performance compared with white, alpha or gamma 486 

noise. Rather than a defect, we see this as biologically relevant (see below). Importantly, even in 487 

those cases of failed detection, the overall correlations with the ground truth remained high 488 

(>=0.99). When analyzing real data, differences in amplitude variations were nevertheless 489 

captured by the PCP/WLS approach, with variations related to trials which were out of phase with 490 

the bulk of the data. 491 

 492 

Group-level analyses of the face dataset replicated the main effect of face type (faces>scrambled) 493 

in a cluster from ~150ms to ~350ms but also revealed a late effect (>500ms), observed when 494 

using 1st level WLS and IRLS parameter estimates but absent when using OLS parameter 495 

estimates. Despite more data frames declared significant with WLS than OLS, effects sizes were 496 

smaller (and also smaller than IRLS). The shape of distributions when using WLS parameter 497 
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estrimates were however more right skewed than when using OLS or IRLS, leading clustering/tfce 498 

corrections to declare more data points as significant. Indeed under null, very similar 499 

distributions of maxima are observed leading to more power for the more skewed distributions. 500 

The interplay between 1st level regularization, 2nd level effect size, and multiple comparison 501 

procedures depends on many parameters and it is not entirely clear how statistical power is 502 

affected by their combination and requires deeper investigation via simulations. Empirically, we 503 

can nethertheless conclude that group results were statistically more powerful using robust 504 

approaches at the subject level than when using OLS. 505 

 506 

Using the trial dynamics (temporal or spectral profile) to derive a single weight per trial makes 507 

sense, not just because the observed signal is autocorrelated, but also because it is biologically 508 

relevant. Let’s consider first the signal plus noise model for ERP (Hillyard, 1985; Jervis et al., 1983; 509 

Shah, 2004). In this conceptualization, ERPs are time-locked additive events running on top of 510 

background activity. An outlier time frame for a given trial may occur if 1) the evoked amplitude 511 

deviates from the bulk, or 2) the background activity deviates from the rest of the background 512 

activity. In the former case, the additional signal may be conceived either as a single process (a 513 

chain of neural events at a particular location) or a mixture of processes (multiple, coordinated 514 

neural events). In both cases, the data generating process is thought to be evolving over time 515 

(auto-regressive) which speaks against flagging or weighting a strong deviation at a particular 516 

time frame only. What is likely, is that a minimum of consecutive time frames are seen as 517 

deviating, even though only one time frame is deemed an outlier. In the latter case (assuming no 518 

artefacts from recordings), a background deviation implies that for an extremely brief period of 519 

time, a large number of neurons synchronized for non-experimentally related reasons, and this 520 

event did not reoccur in other trials. Although we do not contend that such events cannot happen 521 

in general, this means that, in the context of ERP outlier detection, the background activity varies 522 

by an amount several folds bigger than the signal, which goes against theory and observations. 523 

Let's consider now the phase resetting model (Makeig, S. et al., 2002; Sayers et al., 1974). In this 524 

model, ERPs are emerging from the phase synchronization among trials, i.e., the occurrence of a 525 

stimulus reset the background activity. If a given trial deviates from the rest of other trials, this 526 

implies that it is out-of-phase. In this scenario, deriving different weights for different time 527 

frames (i.e. IRLS solution) means that the time course is seen as an alternation of 'normal' and 528 

outlying time frames, which has no meaningful physiological interpretation.  529 

 530 

In conclusion, we propose a fast and straightforward weighting scheme for trials based on their 531 

temporal (or spectral) profiles. Results indicate that it captures well undesired noise leading to 532 

increased precision and possibly increased statistical power (more effect detected) at the group 533 

level. 534 
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