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Abstract 27 

Neural oscillations are thought to reflect low-level operations that can be employed for higher-28 

level cognitive functions. Here, we investigated the role of brain rhythms in the 1–30 Hz range by 29 

recording MEG in human participants performing a visual delayed match-to-sample paradigm in 30 

which orientation or spatial frequency of sample and probe gratings had to be matched. A cue 31 

occurring before or after sample presentation indicated the to-be-matched feature. We 32 

demonstrate that alpha/beta power decrease tracks the presentation of the informative cue and 33 

indexes faster responses. Moreover, these faster responses coincided with an augmented phase 34 

alignment of slow oscillations, as well as phase-amplitude coupling between slow and fast 35 

oscillations. Importantly, stimulus decodability was boosted by both low alpha power and high 36 

beta power. In summary, we provide support for a comprehensive framework in which different 37 

rhythms play specific roles: slow rhythms control input sampling, while alpha (and beta) gates 38 

the information flow, beta recruits task-relevant circuits, and the timing of faster oscillations is 39 

controlled by slower ones.  40 
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Significance statement 42 

Brain oscillations reflect low-level operations, building blocks, that control the flow of 43 

information through the brain. We propose and test a novel comprehensive framework in which 44 

slow oscillations control input sampling, alpha gates information flow, beta recruits task-relevant 45 

circuits, and the timing of faster oscillations is controlled by slower ones. We collected MEG data 46 

while participants performed a visual delayed match-to-sample task with pre- & retro-cues. 47 

Phase alignment of slow oscillations, governing input sampling, indexed faster responses. 48 

Alpha/beta power, gating information flow, boosted behavior & tracked informative cues. Low 49 

alpha (gating) & high beta (circuit-setup) power boosted signal information content. This is an 50 

essential step towards a more unified framework regarding the role of oscillatory dynamics in 51 

shaping information processing. 52 
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1 Introduction 54 

Brain oscillations reflect rhythmic fluctuations of neuronal ensembles between states of low and 55 

high excitability (Bishop, 1932). Earlier research focused on investigating oscillations 56 

independently and linking them to high-level cognitive processes (e.g., theta to memory). 57 

However, this approach has been critiqued, as the exact role of each rhythm likely depends on 58 

an interplay between brain region, underlying neuronal substrate, and task context (Buzsaki, 59 

2006; Wang, 2010). Our work is based on the hypothesis that oscillations reflect low-level 60 

mechanisms that can be flexibly employed to change the dynamics of neuronal populations, 61 

thereby providing the scaffolding for information processing. Thus, oscillations set the state of 62 

the system, either enhancing or attenuating activity (Klimesch et al., 2007), and inhibiting or 63 

facilitating network formation (Singer, 1999; Varela et al., 2001). Here, we focus on oscillations 64 

in the delta-to-theta, alpha, and beta bands in the context of working-memory. 65 

Slow rhythms in the delta-to-theta bands have been proposed to govern the sampling of our 66 

surroundings by providing alternating phases of high and low neural excitability and thereby 67 

phases of high and low perceptual sensitivity (Fiebelkorn & Kastner, 2019; Helfrich et al., 2019; 68 

Herbst & Landau, 2016; VanRullen, 2016). Accordingly, sensory processing (and subsequent 69 

behavior) depends on the temporal coincidence of task-relevant targets with the oscillatory 70 

phase; i.e., when the phase with high excitability coincides with target occurrence, neural and 71 

behavioral responses are enhanced (Busch et al., 2009; Dugué et al., 2015; Fiebelkorn et al., 2013; 72 

Henry et al., 2016; Landau & Fries, 2012; VanRullen et al., 2011; Zion Golumbic et al., 2013). It 73 

has been shown that slow oscillations also control the timing of faster oscillations through phase-74 

amplitude coupling (Canolty et al., 2010; Meij et al., 2012; Sauseng et al., 2019). However, it 75 
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remains unclear how these cross-frequency interactions shape sensory processing and 76 

subsequent behavior. Here, we will investigate how the phase of slow rhythms, as well as 77 

coupling between slow and faster rhythms, correlates with behavior.   78 

The alpha rhythm is thought to reflect functional inhibition (Klimesch et al., 2007), such that 79 

increased alpha power suppresses processing in task-irrelevant regions and networks (i.e., 80 

increased alpha reflects reduced neural excitability), while decreased alpha facilitates processing 81 

in task-relevant ones, effectively gating the information flow (Jensen & Mazaheri, 2010). 82 

Accordingly, it has been demonstrated that working-memory performance correlates positively 83 

with alpha activity in task-irrelevant (Haegens et al., 2010; Yu et al., 2017) and negatively in task-84 

relevant regions (Jiang et al., 2015; van Ede et al., 2017), respectively. However, it remains 85 

unclear how alpha gating modulates internal sensory representations (as indexed by decoding 86 

performance), with studies reporting positive (i.e., decoding performance increases as alpha 87 

power increases; Kayser et al., 2016), negative (Barne et al., 2020), and null relationships 88 

(Griffiths et al., 2019). Here we will examine how alpha power correlates with working-memory 89 

performance as well as the decodability of task features.  90 

While the beta rhythm was traditionally regarded as a somatomotor rhythm (Pfurtscheller & 91 

Lopes da Silva, 1999), recent evidence suggests that beta is involved in top-down processing 92 

(Buschman & Miller, 2007) and long-range communication (Engel & Fries, 2010). However, it is 93 

unclear onto which low-level mechanisms beta oscillations map. One proposal is that beta, like 94 

alpha,  gates information processing through inhibition (Lundqvist et al., 2016; Miller et al., 2018). 95 

A more recent proposal is that beta facilitates the endogenous (re)activation of cortical content 96 

representations, e.g., during working memory (Spitzer & Haegens, 2017). In this framework, beta-97 
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band synchronization supports the endogenous transition from latent to active cortical 98 

representations during working memory, thereby providing a readout of the information held in 99 

memory. This proposal builds primarily upon evidence from non-human primate research 100 

(Bahmani et al., 2018; Haegens et al., 2017; Salazar et al., 2012) and is yet to be explicitly tested 101 

in the human brain (Herding et al., 2016). Here we will test the involvement of beta oscillations 102 

in circuit (re)activation, the possibility of the existence of multiple beta(s), and how these 103 

tentative different betas correlate with behavior.  104 

Combined, we propose a framework of oscillations as building blocks, in which delta-to-theta 105 

rhythms sample task-relevant input, while the alpha rhythm suppresses irrelevant input. 106 

Crucially, the beta rhythm recruits task-relevant circuits that maintain information in working 107 

memory. Finally, the timing of faster oscillations is controlled by slower rhythms via phase-108 

amplitude coupling. Critically, we propose that oscillations (separately and combined) 109 

orchestrate the functional architecture of information processing and thereby shape behavior. 110 

In order to elucidate unsettled oscillatory characteristics (including the relationship of alpha to 111 

sensory representations and phase-amplitude coupling to behavior), we recorded MEG in healthy 112 

participants preforming a visual delayed match-to-sample working-memory paradigm with pre- 113 

and retro-cueing. 114 

115 
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2 Materials & Methods 116 

2.1 Participants 117 

Participants were 33 healthy right-handed adults (21 female, 12 male; mean age 24.6 years; 118 

range 20–33) without neurological or psychiatric disorders, who reported normal hearing and 119 

normal or corrected-to-normal vision. The study was approved by the local ethics committee 120 

(CMO 2014/288 “Imaging Human Cognition”) and in accordance with the Declaration of Helsinki. 121 

Participants gave written informed consent and were remunerated for their participation. 122 

2.2 Visual working-memory task 123 

We used a single-item delayed match-to-sample working-memory task where participants were 124 

instructed to compare sample and probe stimuli and indicate whether the cued feature was the 125 

same or different between them (Figure 1). Each trial contained four main events: a visual cue 126 

followed by a visual sample, a second visual cue, and a probe. All events were presented at a 127 

fixed stimulus onset asynchrony (SOA) of 1.5 s. The inter-trial interval (ITI) duration was jittered 128 

between 2 and 2.4 s. 129 

We used a two (relevant feature: orientation vs. frequency) by two (informative cue: pre- vs. 130 

retro-cue) factorial design. Participants were cued to compare sample and probe orientation in 131 

half of the trials, and spatial frequency in the other half. They were informed about the relevant 132 

feature by an informative cue, which occurred either before (pre; 50%) or after (retro; 50%) the 133 

sample presentation. These four trial types were randomly interleaved such that within each 134 

block participants performed all task conditions. Participants gave their response (“same” or 135 

“different”) by pressing a button with their right index or middle finger. The response-button 136 
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mapping changed on a block-by-block basis in order to avoid motor preparation confounds in our 137 

decision-related analyses. 138 

Participants first performed a few short practice sequences of the task (20 trials each) in which 139 

feedback was provided on a trial-by-trial basis, with green and red fixation dots for correct and 140 

incorrect responses, respectively. During the main experiment, we recorded MEG while 141 

participants performed 8 blocks of 64 trials each, in which feedback was provided on a block-by-142 

block basis. The full recording session lasted around 90 minutes.  143 

2.3 Stimuli 144 

A bull’s eye (outer black ring = 0.5° × 0.5° degree of visual angle (dva), innermost black dot = 0.25° 145 

× 0.25° dva) was presented at the center of the screen as the fixation point. Participants were 146 

instructed to always maintain fixation, and not to blink during the presentation of the stimuli. 147 

Each trial started with a cue presented for 300 ms. Next, a sample consisting of an oriented 148 

grating (Michelson contrast: 40%, spatial frequency: 1 cycle per °, orientation: 45° clockwise or 149 

counterclockwise relative to vertical, randomized spatial phase) and a backward mask (a 150 

bandpass-filtered noise patch with matched contrast and spatial frequency as the grating) were 151 

presented sequentially for 230 ms. Both the grating and the mask were shown in an annulus 152 

(inner radius = 1.5°, outer radius = 7.5°, contrast of the stimuli decreased linearly to 0 over the 153 

outer and inner 0.5° radius of the annulus) around the central fixation (Figure 1A). After an SOA 154 

of 1.5 s, a second cue was presented for 300 ms. The trial presentation finished with the probe 155 

presentation, which, similar to the sample, consisted of an oriented grating and a backward mask. 156 

The probe’s cued feature matched with that of the sample grating in 50% of the trials. The 157 

experiment was programmed with PsychtoolBox (Brainard, 1997) in Matlab (Mathworks, Inc.). 158 
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2.4 Data acquisition 159 

Stimuli were displayed on a semitranslucent screen (1920 × 1080-pixel resolution, 120-Hz refresh 160 

rate) back-projected by a PROpixx projector (VPixx Technologies) during MEG recordings. Whole-161 

head MEG data were acquired at a sampling frequency of 1200 Hz with a 275-channel MEG 162 

system with axial gradiometers (CTF MEG Systems, VSM MedTech Ltd.) in a magnetically shielded 163 

room. Six permanently faulty channels were disabled during the recordings, leaving 269 recorded 164 

MEG channels. Three fiducial coils were placed at the participant’s nasion and both ear canals, 165 

to provide online monitoring of participant’s head position (Stolk et al., 2013) and offline 166 

anatomical landmarks for co-registration. Eye position was recorded using an eye tracker 167 

(EyeLink, SR Research Ltd.). Upon completion of the MEG session, participant’s head shape and 168 

the location of the three fiducial coils were digitized using a Polhemus 3D tracking device 169 

(Polhemus, Colchester, Vermont, United States). Anatomical T1-weighted MRIs were obtained 170 

during a separate session. To improve co-registration of the MRIs and MEG data, earplugs with a 171 

drop of Vitamin E were placed at participant’s ear canals during MRI acquisition. These 172 

anatomical scans were used for source reconstruction of the MEG signals.  173 

2.5 Behavioral analysis 174 

The influence of cue condition (two levels: pre- and retro-cue) and feature (two levels: 175 

orientation and spatial frequency) on median reaction time (RT; including correct responses only) 176 

and accuracy (percentage of correct responses) was tested using a linear mixed-effects model 177 

using the lme4 package (Bates et al., 2015) for R (Team, 2014). For post-hoc analysis we used the 178 

Lsmean package (Searle et al., 1980) where p-values were considered as significant at p<0.05 and 179 

adjusted for the number of comparisons performed (Tukey method). 180 
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2.6 MEG pre-processing 181 

MEG data were preprocessed offline and analyzed using the FieldTrip toolbox (Oostenveld et al., 182 

2011) and custom-built MATLAB scripts. The MEG signal was epoched based on the onset of the 183 

first cue (t= -1 to 7s). The data were downsampled to a sampling frequency of 300 Hz, after 184 

applying a notch filter to remove line noise and harmonics (50, 100, and 150 Hz). Bad channels 185 

and trials were rejected via visual inspection before independent component analysis (Jung et 186 

al., 2001) was applied. Subsequently, components representing eye-related and heart-related 187 

artefacts were projected out of the data (on average, four components were removed per 188 

participant). Finally, outlier trials of extreme variance were removed. This resulted in an average 189 

of 393 (± 9 SEM) trials and 268 channels per participant for the reported analyses.  190 

2.7 Event-related fields 191 

Single-trial data were baseline corrected (t = −0.1 to 0 s) before calculation of first-cue and grating 192 

locked event-related fields (ERFs). In addition, a planar representation of the MEG field 193 

distribution was calculated from the averaged data (ERFs) using the nearest-neighbor method. 194 

This transformation makes interpretation of the sensor level data easier as the signal amplitude 195 

is typically maximal above a source.  196 

2.8 Spectral analysis 197 

Our analysis aimed to highlight the (1) differential impacts of pre- and retro-cueing on the 198 

oscillatory dynamics of interest, and (2) the behavioral relevance of these dynamics. For both 199 

these contrasts, our spectral measures included delta-to-theta inter-trial phase coherence, alpha 200 

power, and beta power. For the cueing contrast, spectral measures were compared between pre- 201 

and retro-cue trials (including correct response trials only). For the behavioral contrast, trials 202 
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from all conditions (including both correct and incorrect response trials) were pooled together 203 

and divided into five quantile bins (approx. 80 trials per bin) according to RT. Spectral measures 204 

were contrasted between the slowest and fastest RT bins, to maximize statistical power.  205 

For the 20 MEG channels displaying the maximal post-grating ERFs (channels selected individually 206 

per participant), we extracted 1-s pre-stimulus windows (t = −1 to 0 s), multiplied these with a 207 

Hanning taper, and computed power spectra (1–30 Hz; 1-Hz resolution) using a fast Fourier 208 

transform (FFT) approach. In order to determine the individual alpha peak frequency, we 209 

detected the highest local maximum within the 7–14 Hz band. In order to detect the beta peak 210 

frequency, linear regression (least-squares fit) was used to fit a linear model to the log-211 

transformed spectrum in the beta range in order to compensate for the 1/f effect. The fitted 212 

linear trend was then subtracted from the spectrum, allowing for a more reliable beta peak 213 

frequency estimate within the 15–30 Hz band (Haegens et al., 2014).  214 

We identified distinct alpha peak frequencies for all participants (mean = 9.9 Hz ± 0.21 SEM; 215 

Figure 2), while for beta we identified peaks for 18 participants (mean = 20.8 Hz ± 0.37 SEM) and 216 

assigned the mean beta peak for the remainder of the participants (N=15). It is important to note 217 

that our peak estimations did not significantly vary when removing the 1/f background noise (p 218 

= 0.1 for alpha, p = 0.3 for beta). In order to create peak-centered signals, we computed TFRs of 219 

the power spectra for the full trials per experimental condition. To this end, we used an adaptive 220 

sliding time window of five cycles length per frequency (Δt = 5/f; 20-ms step size), and estimated 221 

power after applying a Hanning taper. We created alpha-peak (individualized) and beta-peak 222 

(individualized) centered time-resolved signals with spectral bandwidths of 2 Hz and 4 Hz, 223 
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respectively. Power normalization was performed relative to a baseline (t = -0.4 to -0.2 s) for the 224 

cueing contrast and relative to the average of all RT bins for the RT contrast. 225 

We estimated inter-trial phase coherence (Tallon-Baudry et al., 1996) across trials, for each time 226 

point, frequency and sensor, for each RT bin separately. This measure reflects the degree to 227 

which the phase of each frequency is aligned across trials. We averaged this measure between 1 228 

and 6 Hz in order to reduce data dimensionality. In addition, we used the Tensorpac toolbox 229 

(Combrisson et al., 2020) to compute a time-resolved measure of phase-amplitude coupling 230 

(PAC) on source level. This algorithm measures PAC across trials (rather than across time). 231 

2.9 Statistical analysis 232 

In order to investigate whether differences between conditions of interest (cueing contrast: pre- 233 

vs. retro-cue; RT contrast: slowest vs. fastest RT bin) were statistically significant, we used 234 

nonparametric cluster-based permutation analysis (Maris & Oostenveld, 2007). In brief, this test 235 

first calculates paired t-tests for each sensor at each time and/or frequency point, which are then 236 

thresholded at p < 0.05 and clustered on the basis of temporal, spatial and/or spectral adjacency. 237 

The sum of t-values within each cluster is retained, and the procedure is repeated 1000 times on 238 

permuted data in which the condition assignment within each individual is randomized. On each 239 

permutation, the maximum sum is retained. Across all permutations, this yields a distribution of 240 

1000 maximum cluster values. From this distribution, the probability of each empirically 241 

observed cluster statistic can be derived (evaluated at alpha = 0.05).  242 

2.10 Source reconstruction 243 

For each participant, an anatomically realistic single-shell headmodel based on individual T1-244 

weighted anatomical images was generated (Nolte, 2003). A grid with 0.5-cm resolution was 245 
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created using an MNI template onto which the brain volume of each participant was morphed 246 

using non-linear transformation. For each grid point, leadfields were computed with a reduced 247 

rank, which removes the sensitivity to the direction perpendicular to the surface of the volume 248 

conduction model. This procedure ensures that each grid point represents the same anatomical 249 

location across all participants.  250 

In order to visualize the sources of our sensor-level spectrotemporal (power and ITC) and 251 

temporal effects (ERFs), we utilized the frequency-domain adaptive spatial technique of 252 

dynamical imaging of coherent sources (DICS; Gross et al., 2001) and the linearly constrained 253 

minimum variance beamformer (LCMV; Van Veen et al., 1997), respectively. Data from all 254 

conditions of interest were concatenated in order to compute the cross-spectral density (CSD) 255 

matrices (t= -1 to 2 s; multitaper method (Mitra & Pesaran, 1999)) and the covariance matrices 256 

of the averaged single trials (t= -0.6 to 5.5 s; lambda 5%) for the DICS and LCMV beamformer, 257 

respectively. Leadfields for all grid points along with the CSD/covariance matrices were used to 258 

compute a common spatial filter (i.e., common for all trials and conditions) that was used to 259 

estimate the spatial distribution of power/amplitude for our windows of interest. The source 260 

orientation was fixed to the dipole orientation with the highest strength. 261 

Finally, the PAC analysis was performed on source level (i.e., virtual channels), for which the 262 

source space was subdivided into 22 anatomically defined brain parcels, including the 263 

intraparietal sulci, superior parietal lobes, frontal eye fields, middle frontal gyri and the 264 

temporoparietal junction (Wallis et al., 2015). Sensor-level time-series data were multiplied by 265 

spatial filters (constructed using LCMV beamformer) in order to obtain the time-resolved activity 266 

in each virtual channel. 267 
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2.11 Multivariate pattern analysis 268 

To investigate how oscillatory dynamics influence the information content of neural activity, we 269 

were interested in decoding two task features: (1) informative cue instruction (attend orientation 270 

or spatial frequency), and (2) sample (i.e., the first grating) properties (orientation: clockwise or 271 

counterclockwise; spatial frequency: low or high). For all multivariate pattern analysis (MVPA), 272 

we used MNE Python (Gramfort et al., 2013) and Scikit-learn (Pedregosa et al., 2011). We 273 

implemented a 4-fold cross-validation procedure within each participant. For each timepoint, we 274 

trained a logistic regression classifier (L2-regularized) on three folds and tested on the left-out 275 

fold. The analysis was shifted over time on a sample-by-sample basis. The input signal was the 276 

broadband signal lowpass filtered at 35 Hz (Gwilliams & King, 2020; King et al., 2016). We 277 

operationalized the decoding accuracy as area under the curve (AUC) by evaluating the similarity 278 

between the true label categories of the test set and the probabilistic class labels (normalized 279 

distance from the fit hyperplane: “predict_proba” in scikit-learn) of the same trials. We computed 280 

the AUC under the null hypothesis by randomly shuffling the label categories and obtained a p-281 

value as the proportion of the null AUC estimates that exceeded the true AUC (evaluated at alpha 282 

= 0.05).  283 

We aimed to first demonstrate the decodability of the aforementioned features from the 284 

broadband time-domain signal. We used trials from all conditions and tested decoding accuracy 285 

against chance level (i.e., AUC = 0.5 for binary classification) using nonparametric cluster-based 286 

permutation analysis (as described above). All task features could be decoded from the MEG 287 

signal: informative cue instruction (attend to frequency or orientation), grating orientation 288 

(clockwise or counterclockwise) and spatial frequency (low or high). For cue identity, group-level 289 
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decoding performance peaked around 150 ms after the onset of the first/second cue for the pre-290 

/retro-cue conditions, respectively (Figure 3AB), while for grating properties, group-level 291 

decoding performance (for orientation and spatial frequency) peaked around 100 ms (Figure 292 

3CD). It is important to note that the decodability of the grating features correlated negatively 293 

with reaction times (r = -0.5, p < 0.006) and positively with accuracy (r = 0.3, p = 0.042). This 294 

provides evidence that the decoded information reflects internal representation that are 295 

behaviorally relevant (Ritchie et al., 2019).  296 

Next, we asked whether oscillatory state shapes neural stimulus representations as reflected by 297 

decoding performance. To test this, we evaluated how decoder accuracy was related to trial-by-298 

trial fluctuations of prestimulus power. We used the classification procedure explained above, 299 

replacing the k-fold cross validation with a leave-one-out cross-validation (LOOCV) procedure. In 300 

LOOCV, the classifier is fit to all trials but one, evaluating model performance on the remaining 301 

“left-out” trial as a single-item test set. This is advantageous because: (1) it allows a maximal 302 

amount of data to be used for training, thus reducing noise in the model fit; (2) it provides an 303 

unbiased single-trial decoding estimate, which can be analyzed by a binning approach. For each 304 

timepoint and test trial, we computed the probabilistic estimates of the logistic regression for 305 

our feature of interest (cue information) and then grouped these results into five bins relative to 306 

occipital sensor theta, alpha and beta power. Afterwards, for each frequency band separately, 307 

the time-resolved AUC signal was contrasted between the bins of lowest and highest power using 308 

nonparametric cluster-based permutation analysis.  309 

Finally, to investigate the evolution of sample representations, we utilized the temporal 310 

generalization method (King & Dehaene, 2014). For this analysis, each classifier was trained on 311 
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time T and tested on its ability to predict a given trial at time T'. This method estimates the 312 

similarity of the coding pattern at T and T', and thus the stability of the neural representation. In 313 

order to facilitate the interpretation of our results, we averaged the AUC for training times within 314 

the first 0.3 s following the sample onset. This was done separately for each bin and each band, 315 

followed by contrasting the averaged temporal generalization matrices between the bins of 316 

lowest and highest power using nonparametric cluster-based permutation analysis. 317 

2.12 Data and code availability 318 

All data and code used for stimulus presentation and analysis are available online at the 319 

Donders Repository at https://doi.org/10.34973/tqy5-mh37. 320 

321 
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3 Results  322 

3.1 Behavioral results 323 

In order to test our framework, we recorded MEG data from 33 healthy participants who 324 

performed a delayed match-to-sample working-memory paradigm where they evaluated 325 

orientation or spatial frequency of two visual gratings. The to-be-matched feature was indicated 326 

by a visual cue occurring either before (pre-cue) or after (retro-cue) sample presentation. 327 

Overall, participants were faster matching the orientation than the spatial frequency of the 328 

gratings (F(1,32) = 11.2, p = 0.001; Figure 1B). There was no significant difference in RT between 329 

cue conditions (F(1,32) = 2.7, p = 0.07), nor a significant interaction between feature and cue 330 

conditions (F(1,128) = 12.7, p = 0.66). In terms of accuracy, participants were better at matching 331 

spatial frequency than orientation (F(1,128) = 13.4, p < 0.001; Figure 1C). There was no significant 332 

difference in accuracy between cue conditions (F(1,128) = 2.7, p = 0.10), though there was a 333 

significant interaction between the cue and feature conditions (F(1,128) = 12.7, p < 0.001): when 334 

matching the orientation of gratings, participants were better in the pre-cue than the retro-cue 335 

condition (t(32) = -3.7, p < 0.001), whereas when matching the spatial frequency of gratings, 336 

participants performed similarly in both cue conditions (t(32) = 1.35, p = 0.17).   337 

Note that the absence of main cue effects demonstrates that task difficulty (performance) was 338 

comparable across our conditions of interest (i.e., pre- and retro-cue) and therefore does not 339 

constitute a confound in our subsequent analyses. Furthermore, accuracy linearly decreased with 340 

increasing RT (R2 = 0.21, p < 0.001; Figure 1D), suggesting no speed-accuracy tradeoff.  341 
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3.2 Impact of cueing on oscillatory dynamics 342 

In order to establish the proposed low-level mechanisms, we first investigated the differential 343 

impacts of pre- and retro-cueing on oscillatory delta-to-theta phase, alpha power, and beta 344 

power. The critical difference between the pre- and retro-cue conditions is the time when 345 

participants are informed about the task-(ir)relevant feature. If alpha/beta decrease is critical for 346 

the inhibition of task-irrelevant features, we expect alpha/beta power decrease to be contingent 347 

upon the informative cues, after which selection (i.e., inhibition of the task-irrelevant feature 348 

and/or enhancement of the relevant one) is possible. Similarly, if delta-to-theta phase plays a 349 

role in input sampling, we would expect an increase in phase alignment following the informative 350 

cues.  351 

Indeed, we found significant differences between pre- and retro-cue conditions for all our 352 

frequency bands of interest (Figure 4). Following the first cue, alpha and beta power decrease 353 

was stronger for the pre-cue condition (in which the first cue was informative) in comparison to 354 

the retro-cue condition (Figure 4CD; cluster-based permutation test, p = 0.002 and 0.003; t = 0.35 355 

to 1 s and 0.34 to 0.77 s; centered on occipitoparietal and temporal sensors). Differences 356 

between pre- and retro-cue conditions were mainly localized to left and right occipital cortices, 357 

and right middle and superior temporal gyri. 358 

This pattern was reversed following the second cue, with alpha and beta power decrease being 359 

stronger for the retro-cue condition (in which the second cue was informative) in comparison to 360 

the pre-cue condition (Figure 4CD; p = 0.001; t = 3 to 4 s and 2.6 to 3.6 s; centered on 361 

occipitoparietal sensors). In addition, beta power decrease was stronger for the pre-cue vs. retro-362 

cue condition just prior to the probe presentation (Figure 4D; p = 0.004; t = 3.8 to 4.4 s; centered 363 
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on occipital sensors). Differences between pre- and retro-cue conditions were mainly localized 364 

to left and right occipital cortices and the precentral gyrus, with beta effects extending more 365 

towards the dorsolateral prefrontal cortex. 366 

Furthermore, following the second cue, delta-to-theta inter-trial phase coherence was stronger 367 

for the retro-cue condition in comparison to the pre-cue condition (Figure 4B; p = 0.001; t = 3.6 368 

to 4.1 s; centered on occipital, parietal and temporal sensors). Differences between pre- and 369 

retro-cue conditions were mainly localized to left and right occipital cortices, left inferior and 370 

middle temporal gyrus, and left and right prefrontal cortices.  371 

To summarize, the informative cue (i.e., the first cue on pre-cue trials and the second cue on 372 

retro-cue trials) was followed by a stronger decrease in alpha and beta power, consistent with 373 

the functional inhibition account. In addition, the informative cue on retro-cue trials was followed 374 

by an increased phase alignment in the delta-to-theta band, consistent with a role in regulating 375 

input sampling. 376 

3.3 Impact of oscillatory dynamics on behavioral performance 377 

Next, we asked whether any of the observed oscillatory dynamics impacted behavioral 378 

performance. We expected that faster responses would coincide with (1) an increase in the phase 379 

alignment of slow rhythms, reflecting their role in input sampling and temporal prediction, (2) a 380 

decrease in occipital alpha/beta power, reflecting their gating role, and (3) increased phase-381 

amplitude coupling between slow and fast rhythms, reflecting the temporal coordination of fast 382 

rhythms by slower ones. We binned trials into five bins based on RT and contrasted oscillatory 383 

dynamics between bins of the slowest and fastest RT to test these predictions.  384 
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In line with our predictions, faster responses were associated with weaker alpha and beta power 385 

before and during probe presentation (Figure 5CD; p = 0.002 and 0.001; t = 4.1 to 5.1 s; centered 386 

on occipitoparietal sensors). These effects were localized to occipital cortices and the left inferior 387 

and parietal cortices. Furthermore, faster responses were accompanied by an increase in ITC in 388 

delta-to-theta frequencies (Figure 5B; p < 0.001; t = 4.3 to 5.5 s; across widespread sensors). 389 

Differences were maximal in left and right post- and precentral gyri and lateral prefrontal 390 

cortices.  391 

We found that the coupling between the phase of 1–3 Hz oscillations and the amplitude of 30–392 

35 Hz oscillations was stronger for fast vs. slow RT in the intraparietal sulcus (Figure 6C; p = 0.02; 393 

t = 0 to 5.5 s) and the superior parietal lobe (Figure 6D; p = 0.07; t = 0 to 3 s). Combined, these 394 

results indicate that response speed was influenced by the phase alignment of delta-to-theta 395 

oscillations as well as phase-amplitude coupling between slow and fast rhythms.  396 

In sum, faster RT was preceded by (1) an increase in phase alignment and power of slow 397 

oscillations, consistent with a role in regulating input sampling, (2) a prominent occipitoparietal 398 

alpha/beta decrease, consistent with a gating-through-inhibition mechanism, and (3) an 399 

increased phase-amplitude coupling between slow and fast oscillations, consistent with a role of 400 

slow oscillations in temporal control of faster oscillations.  401 

3.4 Disentangling oscillatory dynamics from evoked responses 402 

To ensure that the ITC results (for the cueing and RT contrasts) did not stem from low-frequency 403 

evoked (phase-locked) responses, we ran additional (control) analyses. For the cueing contrasts, 404 

we compared ERFs between cue conditions and found that following the first cue, ERF amplitude 405 

was higher for the pre-cue compared to the retro-cue (Figure 4A; p < 0.001; t = 0.6 to 1.1 s; 406 
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centered on centroparietal sensors). In addition, following the second cue, ERF amplitude was 407 

higher for the retro-cue (Figure 4A; p < 0.001; t = 3.4 to 4.5 s; widespread). Further, we compared 408 

the ERF and ITC differences between conditions at source level and found that ERF differences 409 

were more prominent in right pre- and post-central gyri and prefrontal cortex (Figure 7A). 410 

For the RT contrast, we compared ERFs between RT bins, and found that ERF amplitude was 411 

higher for the fastest compared to the slowest RT bin (Figure 5A; p < 0.001; p < 0.05; t = 3.7 to 412 

5.5 s; centered on occipitoparietal sensors). Further, we compared the ERF and ITC differences 413 

between RT bins at source level and found that ERF differences were more prominent in left and 414 

right pre- and post-central gyri and prefrontal cortex (Figure 7B). The significant differences 415 

between the localization of the ERF and ITC effects suggest that these effects (ERF and ITC) might 416 

reflect two separate phenomena. 417 

Finally, we repeated the ITC analyses after subtraction of the evoked response from single-trial 418 

data. The results were similar to those of our initial analysis: for the cueing contrast, in the retro-419 

cue condition, the presentation of the second cue was accompanied by an increase in ITC (p < 420 

0.001; t = 3.5 to 4.3 s; widespread). For the RT contrast, faster responses were accompanied by 421 

an increase in ITC (p < 0.001; t = 4.7 to 5.4 s; widespread). The persistence of effects after the 422 

subtraction of evoked responses indicates that the low-frequency modulations cannot be fully 423 

explained by evoked activity.  424 

3.5 Impact of oscillatory dynamics on decoding performance 425 

Finally, we investigated how oscillatory dynamics influence the information content of neural 426 

activity patterns. We expected this content, indexed by classification accuracy, to be boosted by 427 

a decrease in alpha power (i.e., release of inhibition) and an increase in beta power (reflecting 428 
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circuit recruitment). We trained neural classifiers to decode two task features: (1) informative 429 

cue instruction (attend orientation or spatial frequency), and (2) grating properties (orientation: 430 

clockwise or counterclockwise; spatial frequency: low or high).  431 

Using a LOOCV procedure, we obtained unbiased single-trial responses of the classifiers. We then 432 

grouped these single-trial estimates into five bins relative to occipital theta, alpha and beta 433 

power, and contrasted the decoding accuracy between bins of the lowest and highest pre-cue 434 

power. In accordance with our alpha predictions, we found significant differences contrasting 435 

decoding accuracy between bins of low and high pre-stimulus occipital alpha power for pre-cue 436 

instruction (Figure 8A; p = 0.024; t = 0.2 to 0.21 and 0.47 to 0.49 s). In other words, decoding 437 

accuracy was higher for cues that were preceded by low alpha power. No significant effects were 438 

found for the decodability of retro-cue instruction by alpha power (p = 0.37).  439 

In accordance with our beta predictions, we found significant differences contrasting decoding 440 

accuracy between bins of low and high beta power for pre-cue instruction (Figure 8B; p = 0.048; 441 

t = 0.26 to 0.27 s). In addition, we found a trend contrasting decoding accuracy between bins of 442 

low and high beta power for retro-cue instruction (p = 0.057; t = 0.37 to 0.39 s). Thus, contrary 443 

to alpha power, decoding accuracy was higher for cues that were preceded by high beta power. 444 

No significant modulations were found for the decodability of pre- or retro-cue instruction by 445 

theta power (p > 0.5 and p = 0.21, respectively), suggesting that this modulation of neural 446 

stimulus information was specific to alpha and beta oscillations. 447 

In order to further test our predictions regarding beta power and (reactivation of) information 448 

content, we focused on decoding the spatial frequency and orientation of the sample stimulus. 449 

To this end, we applied a time-generalization approach in which the classifier was trained at each 450 
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time point and tested on all other time points, thus allowing us to test the temporal stability of 451 

the information content. This approach yields a two-dimensional matrix across training and 452 

testing times. In order to reduce dimensionality, we averaged decoding accuracy across the early 453 

training time points (0 to 0.3 s post sample onset). We then contrasted the averaged decoding 454 

accuracy between the bins of lowest and highest pre-stimulus power.  455 

In line with our predictions, we found significant differences between the averaged time-456 

generalization matrices for decoding spatial frequency of the sample stimulus between bins of 457 

low and high occipital beta power (Figure 8C; p = 0.022). In other words, in trials where the 458 

sample was preceded by high beta power, classifiers trained on early time points more accurately 459 

decoded the sample’s spatial frequency when tested on later time points (0.8 to 2.5 s) in 460 

comparison to trials preceded by low beta power. No significant effects were found for the 461 

decodability of the sample’s orientation (p = 0.47) based on beta binning, though note that 462 

overall decoding performance was much lower for orientation than frequency (compare Figure 463 

3 panels C and D for overall decoding performance along the diagonal). 464 

No significant effects were found for the decodability of the sample’s spatial frequency or 465 

orientation when binning was performed according to theta (p = 0.11 and p = 0.2, respectively) 466 

or alpha power (p = 0.38, p = 0.46), suggesting that the maintenance of neural stimulus 467 

information was specifically supported by beta oscillations.  468 

In summary, alpha and beta oscillations differentially modulated the information content of 469 

neural activity. We found a negative relationship between alpha power and cue representations, 470 

as predicted by the inhibitory gating account, while we found a positive relationship between 471 

beta power and cue and sample representations, as predicted by the circuit recruitment account. 472 

473 
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4 Discussion 474 

In this study, we used a delayed match-to-sample working-memory task with pre- and retro-475 

cueing in order to study a comprehensive framework that integrates the functional roles of 476 

specific neural oscillations, and, critically, the coordination between them. We directly tested our 477 

proposed framework in which slow rhythms sample task-relevant input, while alpha/beta gates 478 

the information flow by suppressing task-irrelevant processing, and beta further serves to recruit 479 

task-relevant circuits. Crucially, via phase-amplitude coupling, the timing of faster oscillations is 480 

controlled by slower rhythms. Indeed, in line with their role as a pace keeper of input sampling, 481 

we found that successful matching of probe and sample stimuli was preceded by an increased 482 

phase alignment that was confined to slow rhythms. As for the gate keeping role of alpha 483 

oscillations, we demonstrated a pattern of alpha decrease that temporally tracked the 484 

presentation of the informative cue, correlated with faster behavioral performance and 485 

increased neural information content (indexed by decoding performance). Importantly, we shed 486 

new light on the dual role of beta oscillations: on the one hand, an alpha-like inhibitory role, 487 

gating the processing of relevant input, and on the other hand, a circuit-activation role, relevant 488 

for (reactivation of) information maintenance. 489 

4.1 Slow oscillations: the pace keeper 490 

The first tenet of our framework is slow oscillations (1–6 Hz): we hypothesized that their phase 491 

regulates the sampling of task-relevant input and controls the timing of faster oscillations via 492 

phase-amplitude coupling. Indeed, we demonstrate that inter-trial coherence (i.e., phase 493 

alignment) of slow oscillations was more prominent after presentation of the informative cues, 494 

and was followed by faster responses. Interestingly, this effect occurred before probe onset and 495 
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was maximal in the pre- and post-central gyri and lateral prefrontal cortex. We also found that 496 

on fast trials, the phase of slow oscillations was more strongly coupled to the amplitude of faster 497 

oscillations (in the high beta range) in parietal areas.  498 

We posit that this behavioral facilitation relies on more optimal temporal coordination reflected 499 

in the phase adjustment of slow oscillations and their coupling to faster oscillations, which in turn 500 

reflects better temporal prediction of probe onset. This is in line with previous reports that 501 

temporal predictions are associated with improved behavioral performance (Coull & Nobre, 502 

1998; Miniussi et al., 1999; Nobre et al., 2007) and increased phase alignment of slow oscillations 503 

(Breska & Deouell, 2017), as well as recent evidence that the phase of slow oscillations predicts 504 

behavioral performance (Herbst & Obleser, 2019). This finding further corroborates previous 505 

reports of cross-frequency interactions during working memory (Bahramisharif et al., 2018; 506 

Bastos et al., 2018; Berger et al., 2019) and adds to a growing number of studies demonstrating 507 

the behavioral relevance of such coupling using intracranial (Axmacher et al., 2010) and scalp 508 

(Puszta et al., 2020) EEG. Thus, temporal coordination by slow oscillations governs the sampling 509 

of incoming stimuli (Busch et al., 2009; Fiebelkorn et al., 2013; Landau & Fries, 2012; VanRullen 510 

et al., 2011) and controls the timing of faster oscillations.  511 

Finally, in addition to these delta-to-theta dynamics, we found that faster behavioral 512 

performance (and presentation of informative cues) cooccurred with stronger ERFs preceding 513 

and following probe onset (i.e., contingent negative variation or CNV, and N1/P2 and P3, 514 

respectively). This ERF enhancement may reflect better temporal prediction of probe onset in 515 

fast trials, resulting in a more prominent anticipatory ramping up of neural activity (Bidet-Caulet 516 

et al., 2015; Breska & Deouell, 2017; Brunia & van Boxtel, 2001). One potential concern is that 517 
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our spectral analysis picked up on this evoked activity (rather than genuine oscillatory dynamics). 518 

However, given that our phase results were not substantially altered by removing evoked activity 519 

and that delta-to-theta and ERF dynamics were not identically localized, we posit that these 520 

changes in evoked activity reflect an additional aspect of anticipatory mechanisms that are 521 

boosted by slow rhythm phase modulations, i.e., enhanced phase alignment leads to a stronger 522 

evoked response.  523 

In summary, we outline how slow oscillations not only coordinate input sampling but also faster 524 

oscillatory dynamics for optimal information processing and subsequent performance. Future 525 

research should investigate how this endogenous rhythmic sampling mechanism is deployed in 526 

contexts of fixed versus varying temporal structure.  527 

4.2 Alpha oscillations: the gate keeper of information processing 528 

We found that decreases in alpha power actively track the presentation of informative cues; i.e., 529 

regardless of its position in time, the informative cue was followed by a more prominent decrease 530 

in occipitoparietal alpha power. Our results are in line with the proposed gating role for alpha 531 

oscillations: once an input has been sampled through slow oscillations, its subsequent processing 532 

depends on its task relevance, i.e., alpha oscillations up- and down-regulate cortical excitability 533 

in task-relevant and irrelevant networks, respectively (Jensen & Mazaheri, 2010; Klimesch et al., 534 

2007). This regulation of cortical excitability has been shown to occur spontaneously (van Dijk et 535 

al., 2008; Iemi et al., 2021; Linkenkaer-Hansen et al., 2004; Samaha et al., 2017) or to track 536 

relevant input in space (ElShafei et al., 2018; Haegens et al., 2012; Mazaheri et al., 2014; Thut et 537 

al., 2006) or, as in the case of the current study, in time (Hanslmayr et al., 2011; Rohenkohl & 538 

Nobre, 2011; van Diepen et al., 2015; van Ede et al., 2017).  539 
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In addition, we found that faster responses were preceded by more prominent occipitoparietal 540 

alpha power decrease. This is in line with previous studies demonstrating that behavioral 541 

performance correlates negatively with alpha activity in task-relevant (Jiang et al., 2015; van Ede 542 

et al., 2017) and positively in task-irrelevant regions (Haegens et al., 2010; Yu et al., 2017). Both 543 

lines of results reflect the same low-level gating mechanism deployed to allocate more resources 544 

to task-relevant networks, either by directly boosting the processing of task-relevant information 545 

or by suppressing that of task-irrelevant information (i.e., distracting or competing stimuli). 546 

Importantly, we demonstrate that pre-stimulus alpha power decrease enhances neural 547 

decodability (i.e., sensory representations) of subsequent task-relevant items. These results are 548 

in line with previous work reporting a negative relationship between decoding performance and 549 

pre-stimulus alpha power (Barne et al., 2020; van Ede et al., 2018), and shows how alpha through 550 

regulating cortical excitability might influence sensory representations.  551 

4.3 Beta oscillations: a dual role in information gating and circuit formation 552 

We hypothesized that multiple beta mechanisms exist, with one beta mechanism playing a local 553 

functionally inhibitory role (“inhibitory beta”), similar to alpha, and another beta mechanism 554 

allowing top-down flexible activation of task-relevant circuits that maintain the information 555 

required to successfully perform the task at hand (“circuit beta”). These two mechanisms 556 

translate to opposite power modulations.  557 

In support for its inhibitory role, we show that similarly to alpha, decreases in prefrontal and 558 

occipitoparietal beta power are contingent upon the occurrence of the informative cue, and 559 

associated with faster responses. This is in line with previous reports on the alpha-like gating role 560 

played by beta oscillations (Bastos et al., 2018; van Ede et al., 2011; Miller et al., 2018). 561 
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Interestingly, while there is overlap in functionality and temporal patterns between alpha and 562 

beta, the localization of the inhibitory beta effects extends more towards frontoparietal regions, 563 

relative to that of the alpha effects.  564 

In support for its circuit role, we demonstrate that increases (rather than decreases) in beta 565 

power index a stronger decoding and maintenance of task-relevant features, i.e., the decodability 566 

of stimuli preceded by high beta power was boosted and generalized for longer durations. This is 567 

in line with previous studies demonstrating that beta power correlates with stimulus information 568 

maintained in working memory as well as subsequent decision outcomes (Haegens et al., 2017; 569 

Proskovec et al., 2019; von Lautz et al., 2017). Here we go one step further, by directly linking the 570 

power of beta oscillations to the quality of information content in neural activity patterns. We 571 

posit that stronger beta synchronization indexes a stronger (longer lasting) setting up of task-572 

relevant circuits (i.e., working-memory nodes). In turn, this enhanced circuit recruitment leads 573 

to more efficient maintenance of stimulus features and thus allows them to be decoded for 574 

longer durations. 575 

Taken together, our results corroborate the proposed dual roles for beta rhythms in our 576 

framework (Miller et al., 2018; Spitzer & Haegens, 2017). Future invasive studies are required to 577 

dissociate the underlying generators (e.g., on the cell circuit/laminar level) of these proposed 578 

dual betas. In addition, the temporal and spatial evolution of alpha and beta rhythms should be 579 

thoroughly compared, in order to highlight potential differences and similarities in their roles in 580 

active inhibition. 581 
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4.4 Conclusion  582 

In summary, we demonstrate how rhythms from the delta to beta range might subserve higher-583 

level cognitive functions by providing low-level mechanistic operations. Combined, these 584 

oscillatory building blocks allow for selective sampling of input, disengaging and engaging task-585 

irrelevant and relevant networks, and temporal organization of these respective dynamics. 586 

Critically, we find that these oscillatory dynamics correlate both with the behavioral performance 587 

of the participant, and with the information content in the recorded brain signal. 588 

589 
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Legends 862 

Figure 1. Paradigm and behavioral results.  863 

[A] Schematic of the four trial types: attend orientation (two solid lines) or attend frequency (two 864 

dotted lines) for pre- and retro-cue conditions (first vs. second cue is informative; uninformative 865 

cues consist of a solid and dotted line). [B] Participants were slower and [C] more accurate 866 

matching the spatial frequency (gray bars) of the visual gratings compared to orientation 867 

(orange). This effect was mainly driven by the pre-cue condition. Within each boxplot, the 868 

horizontal line represents the median, the box delineates the area between the first and third 869 

quartiles (interquartile range). [D] Average accuracy across RT bins. Error bars represent standard 870 

error of the mean.  ** P < 0.01, *** P < 0.001. 871 

Figure 2. Alpha and beta peak detection.  872 

[A] Grand-averaged ERF of sensors (highlighted in sensor space) displaying maximal post-grating 873 

ERFs within 200 ms following the grating onset. Gray shaded area around the curve denotes 874 

between-participants standard error. Light gray shaded box highlights the time period used to 875 

select channels with maximal post-grating ERFs. [B] Power spectra (averaged over same sensors 876 

marked in A; t = -1 to 0 s relative to first cue onset) showing alpha and beta peaks.  877 

Figure 3. Decodability of task features.  878 

[A] Temporal sample-by-sample decoding of cue features (attend frequency vs. attend 879 

orientation) for pre- and [B] retro-cues. [C] Decoding performance for grating spatial frequency 880 

(low vs. high) and [D] grating orientation (clockwise vs. counterclockwise). Gray bars indicate 881 

significance of decoding accuracy (t-test vs. chance). 882 

Figure 4. Cue-related power modulations. 883 
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[A] Grand average ERFs for the pre- (green) and retro-cue conditions (purple). Shaded areas 884 

denote between-participants standard error. Gray bars indicate significant differences between 885 

conditions. Topographies show statistical and power distributions of these significant differences 886 

in sensor and source space, respectively. [B] Inter-trial phase coherence (averaged between 1 887 

and 6 Hz) for the pre- and retro-cue conditions. [C] Time course of oscillatory power averaged 888 

within the alpha band. [D] Same as C but for the beta band. For all time courses, all sensors 889 

displaying significant differences as highlighted by the topographies were included in the plot. 890 

Figure 5. Correlates of behavioral performance: power and phase.  891 

[A] Grand average ERFs (occipital sensors) for the slowest (red) and fastest RT bins (blue). Shaded 892 

areas denote between-participants standard error. Gray bars indicate significant differences 893 

between conditions. Topographies show statistical and power distributions of these significant 894 

differences in sensor and source space, respectively. [B] Time course of inter-trial phase 895 

coherence (averaged between 1 and 6Hz) for the slowest and fastest RT bins. [C] Time course of 896 

oscillatory power averaged within the alpha band. Dashed lines represent mean power (i.e., 897 

normalized power = 1). [D] Same as C but for the beta band. 898 

Figure 6. Correlates of behavioral performance: ITC and PAC.  899 

[A] TFR of statistical differences in PAC between the slowest and fastest RT bins (masked at p < 900 

0.05) in the intraparietal sulcus (as highlighted in green on brain surface). Negative values (blue) 901 

indicate higher PAC for the fastest RT bin. [B] Same as A for the superior parietal lobe. 902 

Figure 7. Correlates of behavioral performance: ERFs. 903 
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[A] Source level topographies of the statistical differences between ERF and ITC for the cueing 904 

contrast (pre- versus retro-cue; t=3.6 to 4.1 s; masked at p < 0.05). [B] Same as A for the RT 905 

contrast (slow versus fast RT bin; t= 4.4 to 5.1 s).  906 

Figure 8. Effects of pre-stimulus oscillatory power on decodability.  907 

[A] Temporal sample-by-sample decoding of pre-cue (left panel) and retro-cue (right panel) 908 

instruction for the bins of lowest and highest occipital alpha power preceding cue onset. [B] Same 909 

as A for the beta band. [C] Averaged time-generalization matrices (over the first 0.3 s of training 910 

time) of decoding the sample’s orientation (left panel) and frequency (right panel) for the bins of 911 

lowest and highest beta power preceding sample onset. Gray bars indicate significant differences 912 

between low and high power bins. 913 
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Figures 915 

 916 

Figure 1 917 

 918 

Figure 2 919 
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Figure 3 921 
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Figure 4 923 
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Figure 5 926 
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