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Abstract 

Neural oscillations are thought to reflect low-level operations that can be employed for higher-
level cognitive functions. Here, we investigated the role of brain rhythms in the 1–30 Hz range 
by recording MEG in participants performing a visual delayed match-to-sample paradigm in 
which orientation or spatial frequency of sample and probe gratings had to be matched. A cue 
occurring before or after sample presentation indicated the to-be-matched feature. We 
demonstrate that alpha/beta power decrease tracks the presentation of the informative cue 
and indexes faster responses. Moreover, these faster responses coincided with an augmented 
phase alignment of slow oscillations, as well as phase-amplitude coupling between slow and 
fast oscillations. Importantly, stimulus decodability was boosted by both low alpha power and 
high beta power. In summary, we provide support for a comprehensive framework in which 
different rhythms play specific roles: slow rhythms control input sampling, while alpha (and 
beta) gates the information flow, beta recruits task-relevant circuits, and the timing of faster 
oscillations is controlled by slower ones.  
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Highlights 

- We test a comprehensive framework of rhythms as building blocks for information 

processing 

- Participants performed a visual delayed match-to-sample task with pre- & retro-cues 

- Phase alignment of slow rhythms, governing input sampling, indexes faster responses 

- Alpha/beta power, gating information flow, boost behavior & track informative cues 

- Low alpha (gating) & high beta (circuit-setup) power boost signal information content 
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1 Introduction 

Brain oscillations reflect rhythmic fluctuations of neuronal ensembles between states of low 
and high excitability (Bishop, 1932). Earlier research primarily focused on investigating different 
oscillations independently and linking them to various high-level cognitive processes (e.g., theta 
to memory, alpha to attention). However, this approach might ultimately have limited 
explanatory power as the list of cognitive processes associated with particular oscillations is 
seemingly endless and, at this point, largely overlapping. Rather, the exact functional role of 
each rhythm likely depends on a dynamic interplay between brain region, underlying neuronal 
substrate, and task context (Buzsaki, 2006; Wang, 2010). Our working hypothesis is that brain 
oscillations reflect low-level mechanisms, rather than high-level cognitive functions, that can be 
flexibly employed to change the dynamics of neuronal populations, thereby providing the 
scaffolding for information processing. In this view, oscillations set the state of the system, 
either enhancing or attenuating activity (Klimesch et al., 2007), and inhibiting or facilitating 
network formation (Singer, 1999; Varela et al., 2001). Here we focus on oscillations in the 
delta/theta (1–7 Hz), alpha (8–14 Hz), and beta bands (15–30 Hz) in the context of a working-
memory task. 

Slow rhythms in the delta-to-theta bands have been proposed to govern the sampling of our 
surroundings by providing alternating phases of high and low neural excitability and thereby 
phases of high and low perceptual sensitivity (Fiebelkorn & Kastner, 2018; Helfrich et al., 2019; 
Herbst & Landau, 2016; VanRullen, 2016). In this view, sensory processing (and subsequent 
behavior) depends on the temporal coincidence of task�relevant targets with the phase of 
ongoing oscillations; i.e., when the oscillatory phase with high excitability coincides with the 
occurrence of a target stimulus, neural and behavioral responses are enhanced (Busch et al., 
2009; Dugué et al., 2015; Fiebelkorn et al., 2013; Henry et al., 2016; Landau & Fries, 2012; 
VanRullen et al., 2011; Zion Golumbic et al., 2013). It has been shown that slow oscillations not 
only govern the sampling of external input, but also control the timing of faster oscillations 
through phase-amplitude coupling  (Canolty et al., 2010; van der Meij et al., 2012; Sauseng et 
al., 2019). However, it remains largely unclear how these cross-frequency interactions shape 
sensory processing and subsequent behavior. Here, we will investigate how the phase of slow 
rhythms, as well as coupling between slow and faster rhythms, correlates with behavior.   

One prominent view on the alpha rhythm is that it reflects a mechanism of functional inhibition 
(Klimesch et al., 2007), such that increased alpha power suppresses processing in task-
irrelevant regions and networks (i.e., increased alpha reflects reduced neural excitability), while 
decreased alpha facilitates processing in task-relevant ones (i.e., decreased alpha reflects 
enhanced neural excitability), effectively gating the information flow (Jensen and Mazaheri, 
2010). In line with this view, it has been demonstrated that working-memory performance 
correlates positively with alpha activity in task-irrelevant (Haegens et al., 2010; Yu et al., 2017) 
and negatively in task-relevant regions (Jiang et al., 2015; van Ede et al., 2017), respectively. 
However, it remains unclear how this proposed alpha gating mechanism modulates the internal 
sensory representations (as indexed by decoding performance), with different studies reporting 
positive (i.e., decoding performance increases as alpha power increases; Kayser et al., 2016), 
negative (Barne et al., 2020), and null relationships (Griffiths et al., 2019). Here we will examine 
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how alpha power correlates with working-memory performance as well as the decodability of 
task features.  

While the beta rhythm was traditionally regarded as a somatomotor rhythm (Pfurtscheller and 
Silva, 1999), recent evidence suggests that beta is more widely involved in top-down processing 
(Buschman and Miller, 2007) and long-range communication (Engel and Fries, 2010). However, 
the mapping between beta oscillations and low-level mechanisms is less clear-cut. One 
proposal is that beta oscillations play an alpha-like role, i.e., gating information processing 
through inhibition (Lundqvist et al., 2016; Miller et al., 2018). A more recent proposal is that 
beta oscillations play a facilitating role in the endogenous (re)activation of cortical content 
representations, e.g., during working memory and decision-making (Spitzer & Haegens, 2017). 
In this framework, beta-band synchronization supports the endogenous transition from latent 
to active cortical representations during working memory, thereby providing a readout of the 
information held in working memory. This proposal builds primarily upon evidence from non-
human primate research (Bahmani et al., 2018; Haegens et al., 2017; Salazar et al., 2012) and is 
yet to be explicitly tested in the human brain (Herding et al., 2016). Here we will test the 
involvement of beta oscillations in circuit (re)activation, the possibility of the existence of 
multiple beta(s), and how these tentative different betas correlate with behavior.  

Combined, we propose a comprehensive framework of oscillatory building blocks, in which slow 
(delta to theta) rhythms sample task-relevant input, while the alpha rhythm suppresses 
irrelevant input. Crucially, the beta rhythm recruits task-relevant circuits that maintain 
information in working memory. Finally, the timing of faster oscillations is controlled by slower 
rhythms via phase-amplitude coupling. Critically, we propose that oscillations (separately and 
combined) orchestrate the functional architecture of information processing and thereby shape 
behavior. In order to study this comprehensive framework, we recorded MEG in healthy 
participants preforming a visual delayed match-to-sample working-memory paradigm with pre- 
and retro-cueing.  
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2 Materials & Methods 

2.1 Participants 

Participants were 33 healthy right-handed adults (21 female, 12 male; mean age 24.6 years; 
range 20–33) without neurological or psychiatric disorders, who reported normal hearing and 
normal or corrected-to-normal vision. The study was approved by the local ethics committee 
(CMO 2014/288 “Imaging Human Cognition”) and in accordance with the Declaration of 
Helsinki. Participants gave written informed consent and were remunerated for their 
participation. 

2.2 Visual working-memory task 

We used a single-item delayed match-to-sample working-memory task where participants were 
instructed to compare sample and probe stimuli and indicate whether the cued feature was the 
same or different between them (Figure 1). Each trial contained four main events: a visual cue 
followed by a visual sample, a second visual cue, and a probe. All events were presented at a 
fixed stimulus onset asynchrony (SOA) of 1.5 s. The inter-trial interval (ITI) duration was jittered 
between 2 and 2.4 s. 

We used a two (relevant feature: orientation vs. frequency) by two (informative cue: pre- vs. 
retro-cue) factorial design. Participants were cued to compare sample and probe orientation in 
half of the trials, and spatial frequency in the other half. They were informed about the relevant 
feature by an informative cue, which occurred either before (pre; 50%) or after (retro; 50%) the 
sample presentation. These four trial types were randomly interleaved such that within each 
block participants performed all task conditions. Participants gave their response (“same” or 
“different”) by pressing a button with their right index or middle finger. The response-button 
mapping changed on a block-by-block basis in order to avoid motor preparation confounds in 
our decision-related analyses. 

Participants first performed a few short practice sequences of the task (20 trials each) in which 
feedback was provided on a trial-by-trial basis, with green and red fixation dots for correct and 
incorrect responses, respectively. During the main experiment, we recorded MEG while 
participants performed 8 blocks of 64 trials each, in which feedback was provided on a block-
by-block basis. The full recording session lasted around 90 minutes.  
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Figure 1. Paradigm and behavioral results.  
[A] Schematic of the four trial types: attend orientation (two solid lines) or attend frequency (two dotted
lines) for pre- and retro-cue conditions (first vs. second cue is informative; uninformative cues consist of
a solid and dotted line). [B] Participants were slower and [C] more accurate matching the spatial
frequency (gray bars) of the visual gratings compared to orientation (orange). This effect was mainly
driven by the pre-cue condition. Within each boxplot, the horizontal line represents the median, the box
delineates the area between the first and third quartiles (interquartile range). [D] Average accuracy across
RT bins. Error bars represent standard error of the mean.  ** P < 0.01, *** P < 0.001. 

2.3 Stimuli 

A bull’s eye (outer black ring = 0.5° × 0.5° degree of visual angle (dva), innermost black dot =

0.25° × 0.25° dva) was presented at the center of the screen as the fixation point. Participants

were instructed to always maintain fixation, and not to blink during the presentation of the

stimuli. Each trial started with a cue presented for 300 ms. Next, a sample consisting of an

oriented grating (Michelson contrast: 40%, spatial frequency: 1 cycle per °, orientation: 45°

clockwise or counterclockwise relative to vertical, randomized spatial phase) and a backward

mask (a bandpass-filtered noise patch with matched contrast and spatial frequency as the

grating) were presented sequentially for 230 ms. Both the grating and the mask were shown in

an annulus (inner radius = 1.5°, outer radius = 7.5°, contrast of the stimuli decreased linearly to

0 over the outer and inner 0.5° radius of the annulus) around the central fixation (Figure 1A)

After an SOA of 1.5 s, a second cue was presented for 300 ms. The trial presentation finished

with the probe presentation, which, similar to the sample, consisted of an oriented grating and

a backward mask. The probe’s cued feature matched with that of the sample grating in 50% of

the trials. The experiment was programmed with PsychtoolBox (Brainard, 1997) in Matlab

(Mathworks, Inc.). 
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2.4 Data acquisition 

Stimuli were displayed on a semitranslucent screen (1920 × 1080-pixel resolution, 120-Hz 
refresh rate) back-projected by a PROpixx projector (VPixx Technologies) during MEG 
recordings. Whole-head MEG data were acquired at a sampling frequency of 1200 Hz with a 
275-channel MEG system with axial gradiometers (CTF MEG Systems, VSM MedTech Ltd.) in a 
magnetically shielded room. Six permanently faulty channels were disabled during the 
recordings, leaving 269 recorded MEG channels. Three fiducial coils were placed at the 
participant’s nasion and both ear canals, to provide online monitoring of participant’s head 
position (Stolk et al., 2012) and offline anatomical landmarks for co-registration. Eye position 
was recorded using an eye tracker (EyeLink, SR Research Ltd.). Upon completion of the MEG 
session, participant’s head shape and the location of the three fiducial coils were digitized using 
a Polhemus 3D tracking device (Polhemus, Colchester, Vermont, United States). Anatomical T1-
weighted MRIs were obtained during a separate session. To improve co-registration of the MRIs 
and MEG data, earplugs with a drop of Vitamin E were placed at participant’s ear canals during 
MRI acquisition. These anatomical scans were used for source reconstruction of the MEG 
signals.  

2.5 Behavioral analysis 

The influence of cue condition (two levels: pre- and retro-cue) and feature (two levels: 
orientation and spatial frequency) on median reaction time (RT; including correct responses 
only) and accuracy (percentage of correct responses) was tested using a linear mixed-effects 
model using the lme4 package (Bates et al., 2015) for R (Team, 2013). For post-hoc analysis we 
used the Lsmean package (Searle et al., 1980) where p-values were considered as significant at 
p<0.05 and adjusted for the number of comparisons performed (Tukey method). 

2.6 MEG pre-processing 

MEG data were preprocessed offline and analyzed using the FieldTrip toolbox (Oostenveld et 
al., 2010) and custom-built MATLAB scripts. The MEG signal was epoched based on the onset of 
the first cue (t= -1 to 7s). The data were downsampled to a sampling frequency of 300 Hz, after 
applying a notch filter to remove line noise and harmonics (50, 100, and 150 Hz). Bad channels 
and trials were rejected via visual inspection before independent component analysis (Jung et 
al., 2001) was applied. Subsequently, components representing eye-related and heart-related 
artefacts were projected out of the data (on average, four components were removed per 
participant). Finally, outlier trials of extreme variance were removed. This resulted in an 
average of 393 (± 9 SEM) trials and 268 channels per participant for the reported analyses.  

2.7 Event-related fields 

Single-trial data were baseline corrected (t = −0.1 to 0 s) before calculation of first-cue and 
grating locked event-related fields (ERFs). In addition, a planar representation of the MEG field 
distribution was calculated from the averaged data (ERFs) using the nearest-neighbor method. 
This transformation makes interpretation of the sensor level data easier as the signal amplitude 
is typically maximal above a source.  
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2.8 Spectral analysis 

Our analysis aimed to highlight the (1) differential impacts of pre- and retro-cueing on the

oscillatory dynamics of interest, and (2) the behavioral relevance of these dynamics. For the

cueing contrast, spectral measures were compared between pre- and retro-cue trials (including

correct response trials only). For the behavioral contrast, trials from all conditions (including

both correct and incorrect response trials) were pooled together and divided into five quantile

bins (approx. 80 trials per bin) according to RT. Spectral measures were contrasted between the

slowest and fastest RT bins, to maximize statistical power.  

For the 20 MEG channels displaying the maximal post-grating ERFs (channels selected

individually per participant), we extracted 1-s pre-stimulus windows (t = −1 to 0 s), multiplied

these with a Hanning taper, and computed power spectra (1–30 Hz; 1-Hz resolution) using a

fast Fourier transform (FFT) approach. In order to determine the individual alpha peak

frequency, we detected the highest local maximum within the 7–14 Hz band. In order to detect

the beta peak frequency, linear regression (least-squares fit) was used to fit a linear model to

the log-transformed spectrum in the beta range in order to compensate for the 1/f effect. The

fitted linear trend was then subtracted from the spectrum, allowing for a more reliable beta

peak frequency estimate within the 15–30 Hz band (Haegens et al., 2014).  

Figure 2. Alpha and beta peak detection.  
[A] Grand-averaged ERF of sensors (highlighted in sensor space) displaying maximal post-grating ERFs
within 200 ms following the grating onset. Gray shaded area around the curve denotes between-
participants standard error. Light gray shaded box highlights the time period used to select channels with
maximal post-grating ERFs. [B] Power spectra (averaged over same sensors marked in A; t = -1 to 0 s
relative to first cue onset) showing alpha and beta peaks.  

We identified distinct alpha peak frequencies for all participants (mean = 9.9 Hz ± 0.21 SEM;

Figure 2), while for beta we identified peaks for 18 participants (mean = 20.8 Hz ± 0.37 SEM)

and assigned the mean beta peak for the remainder of the participants (N=15). In order to

create peak-centered signals, we computed TFRs of the power spectra for the full trials per

experimental condition. To this end, we used an adaptive sliding time window of five cycles
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length per frequency (Δt = 5/f; 20-ms step size), and estimated power after applying a Hanning 
taper. We created theta-peak (4 Hz), alpha-peak (individualized) and beta-peak (individualized) 
centered time-resolved signals with spectral bandwidths of 2 Hz, 2 Hz and 4 Hz, respectively. 
Power normalization was performed relative to a baseline (t = -0.4 to -0.2 s) for the cueing 
contrast and relative to the average of all RT bins for the RT contrast. 

We estimated intertrial phase coherence (Tallon-Baudry et al., 1996) across trials, for each time 
point, frequency and sensor, for each RT bin separately. This measure reflects the degree to 
which the phase of each frequency is aligned across trials. In addition, we used the Tensorpac 
toolbox (Combrisson et al., 2020) to compute a time-resolved measure of phase-amplitude 
coupling (PAC) on source level. This algorithm measures PAC across trials (rather than across 
time). 

2.9 Statistical analysis 

In order to investigate whether differences between conditions of interest (cueing contrast: 
pre- vs. retro-cue; RT contrast: slowest vs. fastest RT bin) were statistically significant, we used 
nonparametric cluster-based permutation analysis (Maris and Oostenveld, 2007). In brief, this 
test first calculates paired t-tests for each sensor at each time and/or frequency point, which 
are then thresholded at p < 0.05 and clustered on the basis of temporal, spatial and/or spectral 
adjacency. The sum of t-values within each cluster is retained, and the procedure is repeated 
1000 times on permuted data in which the condition assignment within each individual is 
randomized. On each permutation, the maximum sum is retained. Across all permutations, this 
yields a distribution of 1000 maximum cluster values. From this distribution, the probability of 
each empirically observed cluster statistic can be derived (evaluated at alpha = 0.05).  

2.10 Source reconstruction 

For each participant, an anatomically realistic single-shell headmodel based on individual T1-
weighted anatomical images was generated (Nolte, 2003). A grid with 0.5-cm resolution was 
created using an MNI template onto which the brain volume of each participant was morphed 
using non-linear transformation. For each grid point, leadfields were computed with a reduced 
rank, which removes the sensitivity to the direction perpendicular to the surface of the volume 
conduction model. This procedure ensures that each grid point represents the same anatomical 
location across all participants.  

In order to visualize the sources of our sensor-level spectrotemporal (power and ITC) and 
temporal effects (ERFs), we utilized the frequency-domain adaptive spatial technique of 
dynamical imaging of coherent sources (DICS; Gross et al., 2001) and the linearly constrained 
minimum variance beamformer (LCMV; Van Veen et al., 1997), respectively. Data from all 
conditions of interest were concatenated in order to compute the cross-spectral density (CSD) 
matrices (t= -1 to 2 s; multitaper method (Mitra & Pesaran, 1999)) and the covariance matrices 
of the averaged single trials (t= -0.6 to 5.5 s; lambda 5%) for the DICS and LCMV beamformer, 
respectively. Leadfields for all grid points along with the CSD/covariance matrices were used to 
compute a common spatial filter (i.e., common for all trials and conditions) that was used to 
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estimate the spatial distribution of power/amplitude for our windows of interest. The source 
orientation was fixed to the dipole orientation with the highest strength. 

Finally, the PAC analysis was performed on source level (i.e., virtual channels), for which the 
source space was subdivided into 22 anatomically defined brain parcels (Wallis et al., 2015). 
Sensor-level time-series data were multiplied by spatial filters (constructed using LCMV 
beamformer) in order to obtain the time-resolved activity in each virtual channel. 

2.11 Multivariate pattern analysis 

To investigate how oscillatory dynamics influence the information content of neural activity, we 
were interested in decoding two task features: (1) informative cue instruction (attend 
orientation or spatial frequency), and (2) sample (i.e., the first grating) properties (orientation: 
clockwise or counterclockwise; spatial frequency: low or high). For all multivariate pattern 
analysis (MVPA), we used MNE Python (Gramfort et al., 2013) and Scikit-learn (Pedregosa et al., 
2012). We implemented a 4-fold cross-validation procedure within each participant. For each 
timepoint, we trained a logistic regression classifier (L2-regularized) on three folds and tested 
on the left-out fold. The analysis was shifted over time on a sample-by-sample basis. The input 
signal was the broadband signal lowpass filtered at 35 Hz (Gwilliams & King, 2020; King et al., 
2016). We operationalized the decoding accuracy as area under the curve (AUC) by evaluating 
the similarity between the true label categories of the test set and the probabilistic class labels 
(normalized distance from the fit hyperplane: “predict_proba” in scikit-learn) of the same trials. 
We computed the AUC under the null hypothesis by randomly shuffling the label categories and 
obtained a p-value as the proportion of the null AUC estimates that exceeded the true AUC 
(evaluated at alpha = 0.05).  

We aimed to first demonstrate the decodability of the aforementioned features from the 
broadband time-domain signal. We used trials from all conditions and tested decoding accuracy 
against chance level (i.e., AUC = 0.5 for binary classification) using nonparametric cluster-based 
permutation analysis (as described above). All task features could be decoded from the MEG 
signal: informative cue instruction (attend to frequency or orientation), grating orientation 
(clockwise or counterclockwise) and spatial frequency (low or high). For cue identity, group-
level decoding performance peaked around 150 ms after the onset of the first/second cue for 
the pre-/retro-cue conditions, respectively (Figure 3AB), while for grating properties, group-
level decoding performance (for orientation and spatial frequency) peaked around 100 ms 
(Figure 3CD).  
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Figure 3. Decodability of task features.  
[A] Temporal sample-by-sample decoding of cue features (attend frequency vs. attend orientation) for
pre- and [B] retro-cues. [C] Decoding performance for grating spatial frequency (low vs. high) and [D]
grating orientation (clockwise vs. counterclockwise). Gray bars indicate significance of decoding
accuracy (t-test vs. chance). 

Next, we asked whether oscillatory state shapes neural stimulus representations as reflected by

decoding performance. To test this, we evaluated how decoder accuracy was related to trial-by-

trial fluctuations of prestimulus power. We used the classification procedure explained above,

replacing the k-fold cross validation with a leave-one-out cross-validation (LOOCV) procedure

In LOOCV, the classifier is fit to all trials but one, evaluating model performance on the

remaining “left-out” trial as a single-item test set. This is advantageous because: (1) it allows a

maximal amount of data to be used for training, thus reducing noise in the model fit; (2) it

provides an unbiased single-trial decoding estimate, which can be analyzed by a binning

approach. For each timepoint and test trial, we computed the probabilistic estimates of the

logistic regression for our feature of interest (cue information) and then grouped these results

into five bins relative to occipital sensor theta, alpha and beta power. Afterwards, for each

frequency band separately, the time-resolved AUC signal was contrasted between the bins of

lowest and highest power using nonparametric cluster-based permutation analysis.  

Finally, to investigate the evolution of sample representations, we utilized the tempora

generalization method (King & Dehaene, 2014). For this analysis, each classifier was trained on

time T and tested on its ability to predict a given trial at time T'. This method estimates the

similarity of the coding pattern at T and T', and thus the stability of the neural representation

In order to facilitate the interpretation of our results, we averaged the AUC for training times

within the first 0.3 s following the sample onset. This was done separately for each bin and each
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band, followed by contrasting the averaged temporal generalization matrices between the bins 
of lowest and highest power using nonparametric cluster-based permutation analysis. 

2.12 Data and code availability 

All data and code used for stimulus presentation and analysis are available online at the 
Donders Repository at https://doi.org/10.34973/tqy5-mh37. 
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3 Results  

3.1 Behavioral results 

In order to test our framework, we recorded MEG data from 33 healthy participants who 
performed a delayed match-to-sample working-memory paradigm where they evaluated 
orientation or spatial frequency of two visual gratings. The to-be-matched feature was 
indicated by a visual cue occurring either before (pre-cue) or after (retro-cue) sample 
presentation. 

Overall, participants were faster matching the orientation than the spatial frequency of the 
gratings (F(1,32) = 11.2, p = 0.001; Figure 1B). There was no significant difference in RT between 
cue conditions (F(1,32) = 2.7, p = 0.07), nor a significant interaction between feature and cue 
conditions (F(1,128) = 12.7, p = 0.66). In terms of accuracy, participants were better at matching 
spatial frequency than orientation (F(1,128) = 13.4, p < 0.001; Figure 1C). There was no 
significant difference in accuracy between cue conditions (F(1,128) = 2.7, p = 0.10), though 
there was a significant interaction between the cue and feature conditions (F(1,128) = 12.7, p < 
0.001): when matching the orientation of gratings, participants were better in the pre-cue than 
the retro-cue condition (t(32) = -3.7, p < 0.001), whereas when matching the spatial frequency 
of gratings, participants performed similarly in both cue conditions (t(32) = 1.35, p = 0.17).   

Note that the absence of main cue effects demonstrates that task difficulty (performance) was 
comparable across our conditions of interest (i.e., pre- and retro-cue) and therefore does not 
constitute a confound in our subsequent analyses. Furthermore, accuracy linearly decreased 
with increasing RT (R2 = 0.21, p < 0.001; Figure 1D), suggesting no speed-accuracy tradeoff.  

3.2 Impact of cueing on oscillatory dynamics 

In order to establish the proposed low-level mechanisms, we first investigated the differential 
impacts of pre- and retro-cueing on oscillatory power for the respective bands of interest. The 
critical difference between the pre- and retro-cue conditions is the time when participants are 
informed about the task-(ir)relevant feature. If alpha/beta decrease is critical for the inhibition 
of task-irrelevant features, we expect alpha/beta power decrease to be contingent upon the 
informative cues, after which selection (i.e., inhibition of the task-irrelevant feature and/or 
enhancement of the relevant one) is possible. 

Indeed, we found significant differences between pre- and retro-cue conditions for all our 
frequency bands of interest (Figure 4A). Following the first cue, alpha and beta power decrease 
was stronger for the pre-cue condition (in which the first cue was informative) in comparison to 
the retro-cue condition (Figure 4CD; cluster-based permutation test, p = 0.002 and 0.003; t = 
0.35 to 1 s and 0.34 to 0.77 s; centered on occipitoparietal and temporal sensors). Differences 
between pre- and retro-cue conditions were mainly localized to left and right occipital cortices, 
and right middle and superior temporal gyri. 

This pattern was reversed following the second cue, with alpha and beta power decrease being 
stronger for the retro-cue condition (in which the second cue was informative) in comparison to 
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the pre-cue condition (Figure 4CD; p = 0.001; t = 3 to 4 s and 2.6 to 3.6 s; centered on 
occipitoparietal sensors). In addition, beta power decrease was stronger for the pre-cue vs. 
retro-cue condition just prior to the probe presentation (Figure 4D; p = 0.004; t = 3.8 to 4.4 s; 
centered on occipital sensors). Differences between pre- and retro-cue conditions were mainly 
localized to left and right occipital cortices and the precentral gyrus, with beta effects extending 
more towards the dorsolateral prefrontal cortex. 

Furthermore, following the second cue, theta power decrease was stronger for the pre-cue 
condition in comparison to the retro-cue condition (Figure 4B; p = 0.02; t = 3.7 to 4.7 s; 
centered on occipital sensors). Differences between pre- and retro-cue conditions were mainly 
localized to right occipital cortices and right temporoparietal junction.  

To summarize, the informative cue (i.e., the first cue on pre-cue trials and the second cue on 
retro-cue trials) was followed by a stronger decrease in alpha and beta power, consistent with 
the functional inhibition account. In addition, the informative cue on retro-cue trials was 
followed by a weaker decrease in theta power. While we did not expect this theta effect, we 
posit that it reflects enhanced processing of the informative cue as it has been proposed that 
theta power provides optimal neural “ambiance” for information processing (Colgin, 2012; 
Klimesch, 1999; Sauseng et al., 2010), which is in line with theta’s role in our framework: 
regulating input sampling. 
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Figure 4. Cue-related power modulations. 
[A] Time frequency representations (TFRs) highlighting the relative change in power between the pre-
and retro-cue conditions. [B] Time course of oscillatory activity averaged within the theta band for the
pre- (green) and retro-cue conditions (purple). Shaded areas denote between-participants standard error.
Gray bars on the x-axis indicate significant differences between conditions. Topographies show statistical
and power distributions of these significant differences in sensor and source space, respectively. [C] Same
as B for alpha and [D] beta bands. 
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3.3 Impact of oscillatory dynamics on behavioral performance 

Next, we asked whether any of the observed oscillatory dynamics impacted behaviora

performance. We expected that faster responses would coincide with (1) an increase in the

phase alignment of slow rhythms, reflecting their role in input sampling and tempora

prediction, (2) a decrease in occipital alpha/beta power, reflecting their gating role, and (3)

increased phase-amplitude coupling between slow and fast rhythms, reflecting the tempora

coordination of fast rhythms by slower ones. We binned trials into five bins based on RT and

contrasted oscillatory dynamics between bins of the slowest and fastest RT to test these

predictions.  

In line with our predictions, faster responses were associated with weaker alpha and beta

power before and during probe presentation (Figure 5BC; p = 0.002 and 0.001; t = 4.1 to 5.1 s;

centered on occipitoparietal sensors). These effects were localized to occipital cortices and the

left inferior and parietal cortices. Furthermore, faster responses were associated with stronger

theta power before probe presentation (Figure 5A; p = 0.001; t = 2.3 to 4.1 s; centered on

temporal and frontal sensors). These effects localized to prefrontal and frontal cortices.  

 

Figure 5. Correlates of behavioral performance: Power.  
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[A] Time courses of the normalized oscillatory activity averaged within the theta band for the slowest
(red) and fastest RT bin (blue). Shaded areas denote between-participants standard error. Gray bars
indicate significant differences between conditions. Dashed lines represent mean power (i.e., normalized
power = 1). Topographies show statistical and power distributions of these significant differences in
sensor and source space, respectively. [B] Same as A for alpha and [C] beta bands. 

In addition to these power effects, faster responses were accompanied by an increase in ITC in

lower frequencies (Figure 6AB; p < 0.001; t = 4.4 to 5.5 s; f = 1 to 5 Hz; widespread sensors)

Differences were maximal in left and right post- and precentral gyri and lateral prefronta

cortices. We found that the coupling between the phase of 1–3 Hz oscillations and the

amplitude of 30–35 Hz oscillations was stronger for fast vs. slow RT in the intraparietal sulcus

(Figure 6C; p = 0.02; t = 0 to 5.5 s) and the superior parietal lobe (Figure 6D; p = 0.07; t = 0 to 3

s). Combined, these results indicate that response speed was influenced by the phase

alignment of delta-to-theta oscillations as well as phase-amplitude coupling between slow and

fast rhythms.  

 

Figure 6. Correlates of behavioral performance: ITC and PAC.  
[A] TFR of statistical differences in ITC between the slowest and fastest RT bins (masked at p < 0.05).
[B] Averaged ITC time course (1–5 Hz) for slowest (red) and fastest RT bins (blue). Shaded areas denote
between-participants standard error. Gray bars indicate significant differences between conditions.
Topographies show statistical and power distributions of these significant differences in sensor and source
space, respectively. [C] TFR of statistical differences in PAC between the slowest and fastest RT bins
(masked at p < 0.05) in the intraparietal sulcus (as highlighted in green on brain surface). Negative values
(blue) indicate higher PAC for the fastest RT bin. [D] Same as C for the superior parietal lobe. 
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To ensure that the ITC results did not stem from low-frequency evoked (phase-locked)

responses, we ran two additional (control) analyses. First, we performed the abovementioned

ITC analyses after subtraction of the evoked response from single-trial data. The results were

similar to those of our previous analysis, i.e., faster responses were accompanied by an increase

in ITC (p < 0.001; t = 4.7 to 5.4 s; f = 1 to 4 Hz; widespread), indicating that the low-frequency

modulations cannot be fully explained by evoked activity. In addition, we compared ERFs

between RT bins, and found that ERF amplitude was higher for the fastest compared to the

slowest RT bin (Figure 7; p < 0.05; t = 3.7 to 5.5 s; centered on occipitoparietal sensors)

Differences were widespread but maximal in the right occipital cortex, right inferior parieta

and supramarginal gyri. It is important to note that the localization of the ERF effects is not

identical to that of the ITC effects, which were maximal in more anterior regions, suggesting

that these effects (ERF and ITC) might reflect two separate phenomena.  

 

Figure 7. Correlates of behavioral performance: ERFs. 
Grand average ERFs (occipital sensors) for the slowest (red) and fastest bins (blue). Shaded areas denote
between-participants standard error. Gray bars indicate significant differences between conditions.
Topographies show statistical and power distributions of these significant differences in sensor and source
space, respectively. 

In sum, faster RT was preceded by (1) an increase in phase alignment and power of slow

oscillations, consistent with a role in regulating input sampling, (2) a prominent occipitoparieta

alpha/beta decrease, consistent with a gating-through-inhibition mechanism, and (3) an

increased phase-amplitude coupling between slow and fast oscillations, consistent with a role

of slow oscillations in temporal control of faster oscillations.  
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3.4 Impact of oscillatory dynamics on decoding performance 

Finally, we investigated how oscillatory dynamics influence the information content of neural 
activity patterns. We expected this content, indexed by classification accuracy, to be boosted by 
a decrease in alpha power (i.e., release of inhibition) and an increase in beta power (reflecting 
circuit recruitment). We trained neural classifiers to decode two task features: (1) informative 
cue instruction (attend orientation or spatial frequency), and (2) grating properties (orientation: 
clockwise or counterclockwise; spatial frequency: low or high).  

Using a LOOCV procedure, we obtained unbiased single-trial responses of the classifiers. We 
then grouped these single-trial estimates into five bins relative to occipital theta, alpha and 
beta power, and contrasted the decoding accuracy between bins of the lowest and highest pre-
cue power. In accordance with our alpha predictions, we found significant differences 
contrasting decoding accuracy between bins of low and high pre-stimulus occipital alpha power 
for pre-cue instruction (Figure 8A; p = 0.024; t = 0.2 to 0.21 and 0.47 to 0.49 s). In other words, 
decoding accuracy was higher for cues that were preceded by low alpha power. No significant 
effects were found for the decodability of retro-cue instruction by alpha power (p = 0.37).  

In accordance with our beta predictions, we found significant differences contrasting decoding 
accuracy between bins of low and high beta power for pre-cue instruction (Figure 8B; p = 0.048; 
t = 0.26 to 0.27 s). In addition, we found a trend contrasting decoding accuracy between bins of 
low and high beta power for retro-cue instruction (p = 0.057; t = 0.37 to 0.39 s). Thus, contrary 
to alpha power, decoding accuracy was higher for cues that were preceded by high beta power. 
No significant modulations were found for the decodability of pre- or retro-cue instruction by 
theta power (p > 0.5 and p = 0.21, respectively), suggesting that this modulation of neural 
stimulus information was specific to alpha and beta oscillations. 
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Figure 8. Effects of pre-stimulus oscillatory power on decodability.  
[A] Temporal sample-by-sample decoding of pre-cue (left panel) and retro-cue (right panel) instruction
for the bins of lowest and highest occipital alpha power preceding cue onset. [B] Same as A for the beta
band. [C] Averaged time-generalization matrices (over the first 0.3 s of training time) of decoding the
sample’s orientation (left panel) and frequency (right panel) for the bins of lowest and highest beta power
preceding sample onset. Gray bars indicate significant differences between low and high power bins. 
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In order to further test our predictions regarding beta power and (reactivation of) information 
content, we focused on decoding the spatial frequency and orientation of the sample stimulus. 
To this end, we applied a time-generalization approach in which the classifier was trained at 
each time point and tested on all other time points, thus allowing us to test the temporal 
stability of the information content. This approach yields a two-dimensional matrix across 
training and testing times. In order to reduce dimensionality, we averaged decoding accuracy 
across the early training time points (0 to 0.3 s post sample onset). We then contrasted the 
averaged decoding accuracy between the bins of lowest and highest pre-stimulus power.  

In line with our predictions, we found significant differences between the averaged time-
generalization matrices for decoding spatial frequency of the sample stimulus between bins of 
low and high occipital beta power (Figure 8C; p = 0.022). In other words, in trials where the 
sample was preceded by high beta power, classifiers trained on early time points more 
accurately decoded the sample’s spatial frequency when tested on later time points (0.8 to 2.5 
s) in comparison to trials preceded by low beta power. No significant effects were found for the 
decodability of the sample’s orientation (p = 0.47) based on beta binning, though note that 
overall decoding performance was much lower for orientation than frequency (compare Figure 
3 panels C and D for overall decoding performance along the diagonal). 

No significant effects were found for the decodability of the sample’s spatial frequency or 
orientation when binning was performed according to theta (p = 0.11 and p = 0.2, respectively) 
or alpha power (p = 0.38, p = 0.46), suggesting that the maintenance of neural stimulus 
information was specifically supported by beta oscillations.  

In summary, alpha and beta oscillations differentially modulated the information content of 
neural activity. We found a negative relationship between alpha power and cue 
representations, as predicted by the inhibitory gating account, while we found a positive 
relationship between beta power and cue and sample representations, as predicted by the 
circuit recruitment account. 
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4 Discussion 

In this study, we used a delayed match-to-sample working-memory task with pre- and retro-
cueing in order to study a comprehensive framework that integrates the functional roles of 
specific neural oscillations, and, critically, the coordination between them. We directly tested 
our proposed framework in which slow rhythms sample task-relevant input, while alpha/beta 
gates the information flow by suppressing task-irrelevant processing, and beta further serves to 
recruit task-relevant circuits. Crucially, via phase-amplitude coupling, the timing of faster 
oscillations is controlled by slower rhythms. Indeed, in line with their role as a pace keeper of 
input sampling, we found that successful matching of probe and sample stimuli was preceded 
by an increased phase alignment that was confined to slow rhythms. As for the gate keeping 
role of alpha oscillations, we demonstrated a pattern of alpha decrease that temporally tracked 
the presentation of the informative cue, correlated with faster behavioral performance and 
increased neural information content (indexed by decoding performance). Importantly, we 
shed new light on the dual role of beta oscillations: on the one hand, an alpha-like inhibitory 
role, gating the processing of relevant input, and on the other hand, a circuit-activation role, 
relevant for (reactivation of) information maintenance. 

4.1 Slow oscillations: the pace keeper 

The first tenet of our framework is slow oscillations (1–7 Hz): we hypothesized that their phase 
regulates the sampling of task-relevant input and controls the timing of faster oscillations via 
phase-amplitude coupling. Indeed, we demonstrate that intertrial coherence (i.e., phase 
alignment) of slow oscillations was more prominent for trials with the fastest responses. 
Interestingly, this effect occurred before probe onset and was maximal in the pre- and post-
central gyri and lateral prefrontal cortex. We also found that on fast trials, the phase of slow 
oscillations was more strongly coupled to the amplitude of faster oscillations (in the high beta 
range) in parietal areas.  

We posit that this behavioral facilitation relies on more optimal temporal coordination 
reflected in the phase adjustment of slow oscillations and their coupling to faster oscillations, 
which in turn reflects better temporal prediction of probe onset. This is in line with previous 
reports that temporal predictions are associated with improved behavioral performance (Coull 
& Nobre, 1998; Miniussi et al., 1999; Nobre et al., 2007) and increased phase alignment of slow 
oscillations (Breska & Deouell, 2017), as well as recent evidence that the phase of slow 
oscillations predicts behavioral performance (Herbst & Obleser, 2019). This finding further 
corroborates previous reports of cross-frequency interactions during working memory 
(Bahramisharif et al., 2018; Bastos et al., 2018; Berger et al., 2019) and adds to a growing 
number of studies demonstrating the behavioral relevance of such coupling (Axmacher et al., 
2010; Puszta et al., 2020). Thus, temporal coordination by slow oscillations governs the 
sampling of incoming stimuli (Busch et al., 2009; Fiebelkorn et al., 2013; Landau and Fries, 2012; 
VanRullen et al., 2011) and controls the timing of faster oscillations.  

In addition, we found that increased theta power prior to probe onset in (pre-) frontal areas 
was followed by faster responses. This is consistent with previous reports showing frontal theta 
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enhancement during working-memory maintenance (Costers et al., 2020; Gudi-Mindermann et 
al., 2020; Hsieh et al., 2011; Jensen & Tesche, 2002). While we did not predict a theta power 
modulation, this effect is consistent with the temporal coordination role in our framework as it 
is proposed that theta power organizes neural assemblies into a sequential code. Thus, theta 
power maintains the temporal relationships between items held in working memory (Colgin, 
2012; Klimesch et al., 2005; Roux & Uhlhaas, 2014). 

Finally, in addition to these delta/theta dynamics, we found that faster behavioral performance 
cooccurred with stronger ERFs preceding and following probe onset (i.e., contingent negative 
variation or CNV, and N1/P2 and P3, respectively). This ERF enhancement may reflect better 
temporal prediction of probe onset in fast trials, resulting in a more prominent anticipatory 
ramping up of neural activity (Bidet-Caulet et al., 2015; Breska & Deouell, 2017; Brunia & 
Boxtel, 2001). One potential concern is that our spectral analysis picked up on this evoked 
activity (rather than genuine oscillatory dynamics). However, given that our phase results were 
not substantially altered by removing evoked activity and that delta/theta and ERF dynamics 
were not identically localized, we posit that these changes in evoked activity reflect an 
additional aspect of anticipatory mechanisms that are boosted by slow rhythm phase 
modulations, i.e., enhanced phase alignment leads to a stronger evoked response.  

In summary, we provide novel insights on how slow oscillations not only coordinate input 
sampling but also faster oscillatory dynamics for optimal information processing and behavioral 
performance. Future research should investigate how this endogenous rhythmic sampling 
mechanism is deployed in contexts of fixed versus varying temporal structure.  

4.2 Alpha oscillations: the gate keeper of information processing 

We found that decreases in alpha power actively track the presentation of informative cues; 
i.e., regardless of its position in time, the informative cue was followed by a more prominent 
decrease in occipitoparietal alpha power. Our results are in line with the proposed gating role 
for alpha oscillations: once an input has been sampled through slow oscillations, its subsequent 
processing depends on its task relevance, i.e., alpha oscillations up- and down-regulate cortical 
excitability in task-relevant and irrelevant networks, respectively (Jensen & Mazaheri, 2010; 
Klimesch et al., 2007). This regulation of cortical excitability has been shown to occur 
spontaneously (Iemi et al., 2019; Linkenkaer-Hansen et al., 2004; Samaha et al., 2017; van Dijk 
et al., 2008) or to track relevant input in space (Mazaheri et al., 2014; ElShafei et al., 2018; 
Haegens et al., 2012,Thut et al., 2006) or, as in the case of the current study, in time (Hanslmayr 
et al., 2011; Rohenkohl & Nobre, 2011; van Diepen et al., 2015; van Ede et al., 2017).  

In addition, we found that faster responses were preceded by more prominent occipitoparietal 
alpha power decrease. This is in line with previous studies demonstrating that behavioral 
performance correlates negatively with alpha activity in task-relevant (Jiang et al., 2015; van 
Ede et al., 2017) and positively in task-irrelevant regions (Haegens et al., 2010; Yu et al., 2017). 
Both lines of results reflect the same low-level gating mechanism deployed to allocate more 
resources to task-relevant networks, either by directly boosting the processing of task-relevant 
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information or by suppressing that of task-irrelevant information (i.e., distracting or competing 
stimuli). 

Importantly, we demonstrate that pre-stimulus alpha power decrease enhances neural 
decodability (i.e., sensory representations) of subsequent task-relevant items. These results are 
in line with previous work reporting a negative relationship between decoding performance 
and pre-stimulus alpha power (Barne et al., 2020; van Ede et al., 2018), and shows how alpha 
through regulating cortical excitability might influence sensory representations.  

4.3 Beta oscillations: a dual role in information gating and circuit formation 

We hypothesized that multiple beta mechanisms exist, with one beta mechanism playing a local 
functionally inhibitory role (“inhibitory beta”), similar to alpha, and another beta mechanism 
allowing top-down flexible activation of task-relevant circuits that maintain the information 
required to successfully perform the task at hand (“circuit beta”). These two mechanisms 
translate to opposite power modulations.  

In support for its inhibitory role, we show that similarly to alpha, decreases in prefrontal and 
occipitoparietal beta power are contingent upon the occurrence of the informative cue, and 
associated with faster responses. This is in line with previous reports on the alpha-like gating 
role played by beta oscillations (Bastos et al., 2018; Miller et al., 2018; van Ede et al., 2011). 
Interestingly, while there is overlap in functionality and temporal patterns between alpha and 
beta, the localization of the inhibitory beta effects extends more towards frontoparietal 
regions, relative to that of the alpha effects.  

In support for its circuit role, we demonstrate that increases (rather than decreases) in beta 
power index a stronger decoding and maintenance of task-relevant features, i.e., the 
decodability of stimuli preceded by high beta power was boosted and generalized for longer 
durations. This is in line with previous studies demonstrating that beta power correlates with 
stimulus information maintained in working memory as well as subsequent decision outcomes 
(Haegens et al., 2017; Lautz et al., 2017; Proskovec et al., 2019). Here we go one step further, 
by directly linking the power of beta oscillations to the quality of information content in neural 
activity patterns. We posit that stronger beta synchronization indexes a stronger (longer 
lasting) setting up of task-relevant circuits (i.e., working-memory nodes). In turn, this enhanced 
circuit recruitment leads to more efficient maintenance of stimulus features and thus allows 
them to be decoded for longer durations. 

Taken together, our results corroborate the proposed dual roles for beta rhythms in our 
framework (Miller et al., 2018; Spitzer & Haegens, 2017). Future invasive studies are required to 
dissociate the underlying generators (e.g., on the cell circuit/laminar level) of these proposed 
dual betas. In addition, the temporal and spatial evolution of alpha and beta rhythms should be 
thoroughly compared, in order to highlight potential differences and similarities in their roles in 
active inhibition. 
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4.4 Conclusion  

In summary, we demonstrate how rhythms from the delta to beta range might subserve higher-
level cognitive functions by providing low-level mechanistic operations. Combined, these 
oscillatory building blocks allow for selective sampling of input, disengaging and engaging task-
irrelevant and relevant networks, and temporal organization of these respective dynamics. 
Critically, we find that these oscillatory dynamics correlate both with the behavioral 
performance of the participant, and with the information content in the recorded brain signal.  
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