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Abstract

Understanding neural computation on the mechanistic level requires
biophysically realistic neuron models. To analyze such models one typically has to
solve systems of coupled ordinary differential equations (ODEs), which describe
the dynamics of the underlying neural system. These ODEs are solved numerically
with deterministic ODE solvers that yield single solutions with either no or only a
global scalar bound on precision. To overcome this problem, we propose to use
recently developed probabilistic solvers instead, which are able to reveal and
quantify numerical uncertainties, for example as posterior sample paths.
Importantly, these solvers neither require detailed insights into the kinetics of the
models nor are they difficult to implement. Using these probabilistic solvers, we
show that numerical uncertainty strongly affects the outcome of typical
neuroscience simulations, in particular due to the non-linearity associated with the
generation of action potentials. We quantify this uncertainty in individual single
Izhikevich neurons with different dynamics, a large population of coupled
Izhikevich neurons, single Hodgkin-Huxley neuron and a small network of
Hodgkin-Huxley-like neurons. For commonly used ODE solvers, we find that the
numerical uncertainty in these models can be substantial, possibly jittering spikes
by milliseconds or even adding or removing individual spikes from the simulation
altogether.

Author summary

Computational neuroscience is built around computational models of neurons that allow
the simulation and analysis of signal processing in the central nervous system. These
models come typically in the form of ordinary differential equations (ODEs). The
solution of these ODEs is computed using solvers with finite accuracy and, therefore,
the computed solutions deviate from the true solution. If this deviation is too large but
goes unnoticed, this can potentially lead to wrong scientific conclusions.

A field in machine learning called probabilistic numerics has recently developed a set
of probabilistic solvers for ODEs, which not only produce a single solution of unknown
accuracy, but instead yield a distribution over simulations. Therefore, these tools allow
one to address the problem state above and quantitatively analyze the numerical
uncertainty inherent in the simulation process.

In this study, we demonstrate how such solvers can be used to quantify numerical
uncertainty in common neuroscience models. We study both Hodgkin-Huxley and
Izhikevich neuron models and show that the numerical uncertainty in these models can
be substantial, possibly jittering spikes by milliseconds or even adding or removing
individual spikes from the simulation altogether. We discuss the implications of this
finding and discuss how our methods can be used to select simulation parameters to
trade off accuracy and speed.
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Introduction 1

Neural computations can be described on different levels of abstraction. On the 2

statistical level, e.g. generalized linear models have been used to provide a probabilistic 3

model mapping environmental variables to neural activity [1]. For such statistical 4

models, quantifying the uncertainty of the parameters can be achieved using Bayesian 5

approaches [2]. On the mechanistic level, the models typically take the form of systems 6

of coupled ordinary differential equations (ODEs) which describe the dynamics of the 7

membrane potential and give rise to the spike-times [3, 4]. Recently, likelihood-free 8

inference approaches have made it possible to perform uncertainty-aware inference even 9

for such complicated models [5–7]. 10

However, mechanistic models of neurons are subject to an additional source of 11

uncertainty: the numerical error caused by the solution of the model’s ODEs with a 12

concrete algorithm [8]. This arises because all numerical solvers are necessarily run with 13

finite time and limited resources, so their estimate diverges from the true solution of the 14

ODE, even if it is unique and well-posed. 15

For some of the most common mechanistic models in neuroscience like the 16

Hodgkin-Huxley or Izhikevich neuron model, errors in numerical integration have been 17

studied for a range of solvers and different integration step-sizes [9–11]. These studies 18

have shown that standard solvers are often not the best choice in terms of accuracy or 19

the accuracy vs. run time trade-off. Therefore, the authors of these studies proposed to 20

use specific solvers for the analyzed models, e.g. the Parker-Sochacki method for the 21

Hodgkin-Huxley and Izhikevich neuron [9], an exponential midpoint method [10] or 22

second-order Strang splitting [11] for Hodgkin-Huxley-like models. While improving 23

computations for the specific problems, applying these to other scenarios requires a 24

detailed understanding of the kinetics of the neuron model of interest; and while 25

choosing a “good” solver for a given model is important, it is typically not necessary to 26

choose the “best” ODE solver. In many cases it can be sufficient to ensure that the 27

computed solution is within a certain accuracy. As a more general approach to quantify 28

the numerical uncertainty in mechanistic models in neuroscience, we therefore propose 29

to use probabilistic ODE solvers. In contrast to classical ODE solvers, this class of 30

solvers does not only yield a single solution, but instead a distribution over the solution 31

that quantifies the numerical uncertainty. Several frameworks for probabilistic ODE 32

solvers have been proposed, which differ mostly in the trade-off between computational 33

cost and flexibility of the posterior, from basic Gaussian forms [12,13] to 34

sampling-based approaches [14–18]. These solvers have been mostly tested for 35

well-behaved systems with well-behaved solutions, but the ODEs used to simulate 36

neural activity model the non-linear membrane dynamics underlie the all-or-none nature 37

of an action potential. In this study, we explore the potential of probabilistic ODE 38

solvers for neuron models, and demonstrate how they can be used to quantify and 39

reveal numerical uncertainty caused by the numerical ODE integration. 40

Methods or Models 41

Common ODE models in computational neuroscience 42

Here we study the effect of numerical uncertainty in the following common neuroscience 43

models involving the simulation of ODEs: 44

• a single neuron Izhikevich neuron model with a wide range of dynamics, 45

• a large network of Izhikevich neurons, 46

• a single Hodgkin-Huxley neuron, 47

• a small network of Hodgkin-Huxley neurons. 48
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Single Izhikevich neurons 49

The Izhikevich neuron (IN) model is a simplified non-linear single neuron model in 50

complexity between Hodgkin-Huxley and Integrate & Fire neurons. INs have been used 51

e.g. to build large-scale models of the brain [19] and to understand oscillatory 52

phenomena in the cortex [20,21] and the olfactory bulb [22]. Its behavior is described 53

by the following pair of ODEs [20]: 54

v̇(t, v, u) =
(
0.04 · v2 + 5 · v − u+ IStim(t)

)
/ms,

u̇(t, v, u) = (a(b · v − u)) /ms,
(1)

where v(t) is the membrane voltage, u(t) is a recovery variable and IStim(t) is a given 55

input current. Whenever the threshold is reached, i.e. v(t) ≥ 30, a “spike” is triggered 56

and the neuron is reset in the next time step of the simulation: 57

v(t+ ∆tspike) = c

u(t+ ∆tspike) = u(t) + d
(2)

where ∆tspike ≥ 0. Typically ∆tspike is the set to the solver step-size ∆t, which only 58

makes sense for fixed step-size solvers, or to 0. Here we used ∆tspike = 0 to facilitate the 59

comparison between different step-sizes, and between fixed and adaptive step-sizes. An 60

attractive property of the IN is that a whole range of different response dynamics can 61

be simulated (Fig. 2) depending on the setting of the parameters θ = [a, b, c, d] [23]. We 62

simulated different parametrizations, with values taken from 63

https://www.izhikevich.org/publications/figure1.m. 64

A network of Izhikevich neurons 65

INs can also be coupled to simulate the activity in neural networks, based on the same 66

equations used for the single neurons. Here, we study a network of 800 excitatory and 67

200 inhibitory neurons, which has been used to simulate gamma oscillations [20]. In this 68

network, every neuron ni is parametrized randomly: 69

θi =

{
[0.02, 0.2,−65 + ρ2

i , 8− 6ρ2
i ], if ni is excitatory,

[0.02 + 0.08ρi, 0.25− 0.05ρi,−65, 2], otherwise,
(3)

where ρi ∼ U(0, 1), and where U(a, b) denotes a uniform distribution between a and b. 70

Here, the input current IStim(t) in Eq. (1) to a neuron ni is replaced by an input 71

current Ii(t), which depends on all other neurons nj , and the randomly initialized 72

weights wij that do not change over time between them. Weights from inhibitory 73

neurons nj to any other neuron ni are drawn from U(−1, 0) and are therefore negative, 74

whereas weights wij from excitatory neurons nj are drawn from U(0, 0.5) and positive. 75

Input currents are computed as: 76

Ii(t) = IStim
i (t) +

1000∑
j=1

wijsj(t), (4)

where sj(t) is a function that depends on the spikes of neuron nj . I
Stim
i (t) is an 77

additional zero-centered Gaussian noise stimulus that was different for every neuron, 78

with a standard deviation of 5 and 2 for excitatory and inhibitory neurons, respectively. 79

We simulated two versions of these Gaussian noise stimulus currents. In the first, the 80

currents changes every full millisecond and are constant in between, as it was in the 81

original implementation. We refer to this stimulus as the step stimulus. Second, we 82

used a smooth stimulus, for which we fitted a cubic spline to the noise stimulus currents, 83
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such that at full milliseconds the stimuli were identical, but the transitions between 84

those points were smooth. 85

Originally, the network was simulated with a fixed step-size of 1 ms, and every 86

neuron ni received input from all neurons nj that spiked in the previous step of the 87

simulation, i.e. sj(t) = 1 if the input neuron nj spiked 1 ms before, and sj(t) = 0 88

otherwise. To extend this model to smaller step-sizes, we defined sj similar to the 89

probability density function of a log-normal distribution as: 90

sj(t) =
exp

(
−c1 (log (βj(t)− c2)− c3)

2
)

βj(t)− c2
, (5)

where βj is the time that passed since the last spike of neuron nj , and c1, c2 and c3 91

were chosen such that the integral for s over βj between zero and infinity sums up to 92

one and that sj(t = 1) = 1, i.e. c1 = 3.125, c2 = 0.0775 and c3 = 0.08. 93

Single Hodgkin-Huxley neurons 94

Hodgkin-Huxley (HH) models [24] are widely used to simulate single and 95

multi-compartment neurons. We study both the classical HH neuron [24] and single 96

compartment HH-like neuron model [25] prominently used to study the stomatogastric 97

ganglion (STG) [26]. Both models are described by ODEs including the membrane 98

voltage v(t) described by: 99

v̇(t) = (IStim(t)−
∑

iIi(x)) /C, (6)

where C is the membrane capacitance, IStim is the stimulation current and Ii are 100

membrane currents. These membrane currents are described by the following equation: 101

Ii(x) = ḡi ·mi(x)pi · hi(x) · (v − Ei), (7)

where Ei is the channel’s reversal potential, ḡi is the maximum channel conductance, pi 102

are integer exponents, and mi and hi are activation and inactivation functions. mi and 103

hi were modeled by the following differential equations: 104

ṁ(v) = (m∞(v)−m) /τm(v), ḣ(v) = (h∞(v)− h) /τh(v), (8)

where m∞, τm, h∞, and τh are voltage dependent functions defining the channel’s 105

kinetics. In the classical HH model, this amounts to a 4-dimensional ODE [27]. For the 106

STG neuron, which has eight instead of two membrane currents and also implements a 107

model for the intracellular calcium concentration, the ODE is 13-dimensional [25]. 108

The classical HH neuron is parametrized by its three maximum conductances 109

θHH = [ḡNa, ḡK, ḡleak], and the stimulus current IStim. Here we used 110

θHH = A · [120, 36, 0.3] mS/cm2, where the membrane area was A = 0.01 cm2. We 111

simulated four different stimuli IStim: a constant stimulus (“constant”), and step 112

stimulus (“step”), a noisy step stimulus (“noisy”) and a noisy subthreshold stimulus 113

(“subthreshold”). For the constant and step stimulus, the amplitude was set to 0.15 µA. 114

All simulations with the HH neuron were set to t ∈ [0 ms, 100 ms], and the on- and offset 115

of all stimuli, except the constant one, were set to tonset = 10 ms and toffset = 90 ms, 116

respectively. The amplitude of the noisy step stimulus was computed by drawing 51 117

amplitudes from a uniform distribution between 0 µA and 0.4 µA that were placed 118

equidistant in time between stimulus on- and offset, and interpolated using a cubic 119

spline. The noisy subthreshold stimulus was computed analogously, except that the 120

amplitudes were drawn from a zero-centered uniform distribution between −0.01 µA 121

and 0.01 µA, which was too small in amplitude to induce any spiking. 122
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The STG neuron is parametrized by its eight maximum conductances: 123

θSTGN = [ḡNa, ḡCaT, ḡCaS, ḡA, ḡKCa, ḡKd, ḡH, ḡleak]. (9)

For the single STG neuron, we set θ = A · [400, 2.5, 10, 50, 20, 0, 0.04, 0] mS/cm2, where 124

A = 0.628× 10−3 cm2 and IStim(t) was a current step of 6 nA starting at tonset = 0.9 s. 125

STG model 126

The HH-like STG neuron model described above was used by Prinz et al. [26] in a 127

network of three syntactically coupled neurons to study their firing patterns. In the 128

model there are two types of synapses, slow and fast ones, connecting the neurons AB 129

(short for ABPD), LP and PY with a total count of seven synapses. The synaptic input 130

current to a neuron is described by the equation in Eq. (7), except that the activation 131

m and inactivation h variables were replaced by a single function s that is described by: 132

ṡ = (s̄− s) /τs,

s̄ = (1 + exp((Vth − Vpre)/5 mV))
−1
,

τs = (1− s̄)/fs

(10)

where Vpre is the membrane voltage of the presynaptic neuron. The frequencies fs for 133

the fast and slow synapses were 25 Hz and 10 Hz, and the reversal potentials Ei (see 134

Eq. (7)) were −70 mV and −80 mV, respectively. The network is parametrized by both 135

the conductances of the neurons θSTGN and synaptic conductances θSyn.: 136

θSyn. = [ḡfast
AB-LP, ḡ

slow
AB-LP, ḡ

fast
AB-PY, ḡ

slow
AB-PY, ḡ

fast
AB-LP, ḡ

fast
LP-AB, ḡ

fast
LP-PY, ḡ

fast
PY-LP], (11)

where for example ḡfast
AB-LP is the maximum conductance of the fast synapse connecting 137

neuron AB (presynaptic) to neuron LP (postsynaptic). We simulated the network for 138

five different parametrizations taken from the original publication [26]. In the chosen 139

parametrizations the neuron conductances are fixed and set to: 140

θAB = A · [100, 2.5, 6, 50, 5, 100, 0.01, 0.0] mS/cm2,

θLP = A · [100, 0.0, 4, 20, 0, 25, 0.05, 0.03] mS/cm2,

θPY = A · [100, 2.5, 2, 50, 0, 125, 0.05, 0.01] mS/cm2,

(12)

with A = 0.628× 10−3 cm2 for the AB, LP and PY neuron, respectively. The five 141

synaptic parametrizations analyzed are: 142

θa
Syn. = [10, 100, 10, 3, 30, 1, 3] nS,

θb
Syn. = [3, 0, 0, 30, 3, 3, 0] nS,

θc
Syn. = [100, 0, 30, 1, 0, 3, 0] nS,

θd
Syn. = [3, 100, 10, 1, 10, 3, 10] nS,

θe
Syn. = [30, 30, 10, 3, 30, 1, 30] nS.

(13)

Neuron simulations as numerical solutions of initial value 143

problems 144

Simulating the activity of any of these neuron models amounts to solving an initial
value problem based on a set of coupled ODEs. In abstract form, an initial value
problem is given by

ẋ(t) = f(t,x(t)), x(t0) = x0, (14)
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where f , x0 and t0 are known and x(t), t > t0 is the quantity of interest. All the 145

aforementioned neuron models can be cast in that form. The solution to the initial 146

value problem at time t+ ∆t provided the solution at time t, is given by integrating 147

Eq. (14) from t to t+ ∆t: 148

x(t+ ∆t) = x(t) +
∫ t+∆t

t
f(s,x(s)) ds. (15)

Except for special cases, this integral has no analytic form and must be solved 149

numerically. Among the most basic approximations for this purpose is the forward 150

Euler method, which is also frequently used in simulations of neural systems. This 151

method approximates the integral as
∫ t+∆t

t
f(s,x(s)) ds ≈ ∆tf(t,x(t)). Several families 152

of more advanced methods are available in numerical analysis. They include in 153

particular the Runge-Kutta family, which rests on a deep body of theoretical 154

analysis [28, Chapter 2] and has become a popular standard. For example, the 155

Dormand-Prince pair [29] of two embedded explicit Runge-Kutta methods of order 4 156

and 5, respectively, has become an industry standard, available with adaptive step-size 157

selection as Matlab’s ode45 or scipy’s solve ivp. 158

Even with advanced solvers, some equations of type (14) require extremely small 159

step-sizes ∆t in some regions to be numerically stable and the scheme to be successful, 160

while in other regions much larger step-sizes would yield accurate solutions. To alleviate 161

this issue, fast step-size adaptation schemes have been devised. For example, for 162

methods of Runge-Kutta type, one usually runs two different Runge-Kutta methods 163

simultaneously and uses their discrepancy as a local error estimate on the base of which 164

step-sizes are adapted. In the context of simulating the neuron models above, adaptive 165

step-sizes can be especially useful when a neuron alternates between spiking and silence; 166

when the neuron spikes, the solver takes small steps to accurately capture the steep 167

slope of the action potential, when it does not, the steps are larger. 168

Probabilistic solvers for quantifying uncertainty in neural 169

simulations 170

When simulating neurons or neural populations, one would like to know how close the 171

numerically computed solution is to the true solution. Most of the classic theory studies 172

how the well-established solvers behave in the asymptotic regime of infinitesimally small 173

step-sizes. Most widely available numerical solvers do report a global error estimate and 174

a corresponding tolerance that can be set by the user [28, Chapter II.4]. This global 175

scalar error, though, does not capture how the finite error arising from finite step-sizes 176

used in practice affects crucial quantities of interest in the simulation, such as 177

spike-times or number. 178

Addressing this issue, probabilistic numerics provides algorithms to quantify this 179

kind of numerical uncertainty [8, 30,31]. For sufficiently regular ODE solutions, 180

randomized solvers have the same mean-square convergence rates as their deterministic 181

counterparts, provided the perturbation variance is at most of the same order as the 182

local error [14,32]. One example is the state perturbation algorithm of Conrad et 183

al. [14], which uses a stochastically perturbed version of the integration scheme. In each 184

step of the numerical integration, a small i.i.d. noise term ξ∆t
t is added to the solution 185

x̂(t+ ∆t) of a corresponding deterministic integration scheme: 186

x(t+ ∆t) = x̂(t+ ∆t) + ξ∆t
t , ξ∆t

t ∼ N (0,diag(νt)
2). (16)

The perturbation is only efficient if the noise νt is of the right order of magnitude: if 187

chosen too small, the uncertainty will be underestimated; if chosen too large, it will 188

render the solver output useless. Conrad et al. [14] suggested calibrating νt to replicate 189
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t0 t1 = t0 + t
x0

xFE
1

xHN
1 k0

k1

pdf(x1)

A          

t0 t1 a t1 = t0 + t t1 + at *
1

x0

xFE
1x *
1 k0 pdf(teval

1 )

pdf(x1)B          

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (ms)

50
0

50

v(
t)

C          

Fig 1. Illustration of probabilistic ODE solvers. (A) A single integration step
with a probabilistic forward Euler method using the state perturbation method [14] for
the ODE f(t, x(t)) = x(t) · sin(t) and the exact solution x(t) = exp(cos(t)) (black line).
A first order solution is computed using forward Euler: xFE

1 = x0 + ∆tk0 (red dot),
where k0 = f(t0, x0). A second order solution is computed using Heun’s method:
xHN

1 = x0 + 0.5∆t(k0 + k1) (red x), where k1 = f(t0 + ∆t, xFE
1 ). The error estimate

ε = |xFE
1 − xHN

1 | can be used to calibrate ν in Eq. (16) to compute a stochastic solution.
For ν = ε the probability density function of the solver solution for this step is given by
pdf(x1) = N (xFE

1 , ε2) (green). (B) Similar to (A), but for the step-size perturbation
method [18] using a uniform perturbation distribution. Instead of integrating from t0 to
t1 (red dot), the ODE is integrated from t0 to t∗1, where t∗1 is randomly drawn from a
uniform distribution pdf(teval

1 ) (green dashed line). The solution of this perturbed
integration x∗1 (red cross) is then used as the solution x1 at t1 (green dot), making x1 a
random variable with a distribution pdf(x1). Here, pdf(x1) is a also a uniform
distribution (green solid line). (C) Two runs of a probabilistic forward Euler method
(orange/blue) and the solution of a deterministic forward Euler method (black) for an
Izhikevich neuron.

the amount of error introduced by the numerical scheme. We chose νt = σεt using the 190

aforementioned error estimator εt ≈ |xexact(t)− xnumerical(t)| readily available in 191

methods that were developed for step-size adaptation, and a perturbation parameter σ 192

that can be adjusted to calibrate the perturbation. If not stated otherwise, we used 193

σ = 1. An example of this perturbation method is shown in Fig. 1A. 194

A related approach to stochastically perturbing the numerical integration was 195

proposed by Abdulle and Garegnani [18], where noise is added to the integration 196

step-size (i.e. to the “input” of the solver, rather than the “output”, cf. Fig. 1B). The 197

numerical integration is performed using the perturbed step-size ζ∆t
t , but the computed 198

solution is treated as the solution for the original step-size ∆t: 199

x(t+ ∆t) = x̂(t+ ζ∆t
t ), ζ∆t

t ∼ P, (17)

where ζ∆t
t is the i.i.d. perturbed step-size drawn from a distribution P with mean 200

E[ζ∆t
t ] = ∆t and x̂(•) is a deterministic integration scheme that approximates Eq. (15). 201

For example, for the forward Euler method Eq. (17) would be computed as 202

x(t+ ∆t) = x(t) + ζ∆t
t f(t,x(t)). 203
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To neither over- nor underestimate the uncertainty in the numerical integration, the 204

distribution P must be calibrated with respect to the order of the underlying 205

integration scheme and the step-size. Abdulle and Garegnani [18] proposed two 206

examples from which one is a zero-centered uniform-distributions P = U(∆t− a,∆t+ a) 207

with bounds dependent on the step-size a = ∆tp+0.5. The bounds have to be chosen 208

such that a > ∆t holds to avoid negative step-sizes. Using p = O, where O is the order 209

of the method, ensures that the mean-squared convergence order of the method is not 210

changed. We found that using such a distribution is not robust to changes of the 211

step-size unit and—more generally—is prone to poor calibration. Assume for example 212

that for a given model the step-size ∆t is changed from ∆t1 = 0.0001 s to ∆t2 = 0.1 ms, 213

i.e. the step-size is numerically changed from 0.0001 to 0.1. If the model treats this unit 214

change appropriately, this change should not alter the model output as both step-sizes 215

∆t1 and ∆t2 are physically identical. Both, deterministic and probabilistic solvers using 216

state perturbation would indeed be unaffected by such a change (except for potentially 217

different rounding errors). However, a probabilistic solver using step-size perturbation 218

(Eq. (17)) with P = U(∆t− a,∆t+ a) and a = ∆tp+0.5, would yield very different 219

solutions for the two step-sizes. For example setting p = 2, yields either 220

a = 0.00012+0.5 = 1× 10−10 or a = 0.12+0.5 ≈ 0.003 for ∆t1 and ∆t2, respectively. 221

Since a implicitly has the same unit as ∆t, the bounds in the two cases would be 222

a = 1× 10−7 ms and a ≈ 3× 10−3 ms, respectively, resulting in different amplitudes of 223

perturbation and therefore different uncertainty estimates. To be able to account for 224

such unit changes and more generally to be able to calibrate the perturbation method, 225

we defined the bounds of the uniform distribution P = U(∆t− a,∆t+ a) instead as: 226

a = σ ·∆tO+0.5, σ > 0, a > ∆t, (18)

where σ is a perturbation parameter that scales the standard deviation linearly and has 227

to be calibrated dependent on the model. The perturbation is illustrated in Fig. 1B for 228

the first order forward Euler scheme with σ = 0.75. 229

The second step-size perturbation distribution they proposed is a log-normal 230

distribution ζ∆t
t ∼ LN∆t

t (m, s2). Here, we also added a perturbation parameter σ that 231

scales the standard deviation linearly. Setting E[ζ∆t
t ] = ∆t and 232

Var[ζ∆t
t −∆t] = σ2 ·∆t2p+1 (see [18]) gives the following mean m and standard 233

deviation s for the underlying normal distribution: 234

m = ln(∆t2/φ),

s =
√

2 ln(φ/∆t),

φ =
√
E2[ζ∆t

t ] + Var[ζ∆t
t ] =

√
∆t2 + σ2 ·∆t2p+1.

(19)

In contrast to the uniform distribution, using the log-normal distribution can not result 235

in negative step-sizes independent of the step-size and perturbation parameter. 236
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Choice of solvers and step-size adaptation 237

Here we used the perturbation methods presented by Conrad et al. [14] and Abdulle 238

and Garegnani [18] to create probabilistic versions of the solvers listed in Table 1. 239

Table 1. Summary of the ODE solvers used in this paper.

Abbr. O Oe Method & Error estimate

FE 1 2 Forward Euler with HN for error estimation.
HN 2 1 Heun’s method with FE for error estimation.
EE 1 2 Exponential Euler with EEMP for error estimation.
EEMP 2 1 Exponential Euler Midpoint [10] with EE for error estimation.
RKBS 3 2 Bogacki–Shampine, an embedded Runge-Kutta method [33].
RKCK 4 5 Cash–Karp method, an embedded Runge-Kutta method [34].
RKDP 5 4 Dormand–Prince, an embedded Runge-Kutta method [29].

O and Oe are the orders of the solution and the error estimator, respectively.

240

The usage of fixed (f) and adaptive (a) step-sizes is indicated with subscripts, and 241

the perturbation method is indicated using the superscripts—x for the state 242

perturbation [14] and t for the step-size perturbation [18]—meaning that e.g. FEf
x is 243

referring to a forward Euler method using fixed step-sizes and the state perturbation. 244

The probabilistic solvers were implemented in Python. The respective code and the 245

code for the models and figures is available at 246

https://github.com/berenslab/neuroprobnum as python code and jupyter 247

notebooks. The second order exponential integrator EEMP was implemented based on 248

the version by Börgers and Nectow [10], which is a modification of the midpoint method 249

by Oh and French [35]. Computation of Runge-Kutta steps and step-size adaptation 250

were based on the respective scipy implementations [36]. To avoid computational 251

overhead, we only computed the local error estimates when necessary, i.e. for adaptive 252

step-sizes or the state perturbation. 253

For adaptive step-size methods, the error estimator εt = [ε1
t , ..., ε

d
t ]> is used to 254

compute an error norm ||e|| on e = [e1, ..., ed]>, where d is the dimension of the state 255

vector x(t) = [x1(t), ..., xd(t)]>. For every state variable xi, ei is computed as: 256

ei =
εit

κa + κr ·max(|xi(t)|, |xi(t+ ∆t)|)
, (20)

with κa and κr being the absolute and relative tolerance. For simplicity, we used 257

κa = κr in all simulations and therefore refer to these parameters as the tolerance κ. 258

||e|| is computed as the root-mean-square of e, i.e.: 259

||e|| =
√

1

d

∑
i

e2
i . (21)

If ||e|| < 1, the step is accepted, and rejected otherwise. In both cases, the step-size is 260

adapted and the next step-size ∆tnext is computed as: 261

∆tnext = 0.9 ·∆t ·min(max(||e||−1/kexp , kmin), kmax), (22)

where kmin and kmax are the minimum and maximum allowed change factors, that we 262

set to typical values of 0.1 and 5 respectively [28]. kexp was 2 for FE, HN, EE and 263

EEMP, 3 for RKBS, 4 for RKCK, and 5 for RKDP. Furthermore, we limited the 264

step-sizes to be always smaller or equal to a maximum step-size ∆tmax, which we set to 265

∆tmin = 1 ms for all models if not stated otherwise. 266
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Computational overhead of probabilistic methods 267

The methods used in this study differ in their computational costs per integration step. 268

Higher order methods like RKBS and RKDP use multiple stages—i.e. multiple 269

evaluations of the ODE per step—whereas FE requires only a single stage. 270

Another factor that needs to be considered when looking at computational costs is 271

that computing a sample with either of the two probabilistic methods used here comes 272

with a computational overhead compared to their deterministic counterparts. For the 273

state perturbation [14] this overhead is three-fold. First, one needs to compute the local 274

error estimator, which only causes overhead for fixed step-sizes since for adaptive 275

methods the local error estimator needs to be computed anyway. The second potential 276

source of overhead is that the “First Same As Last” property—i.e. that the last stage in 277

one step can be used as the first stage of the next step, which is used in RKBS and 278

RKDP—is not applicable. This is because the last stage is computed before the 279

perturbation, and after the perturbation the evaluation of the ODE is not valid 280

anymore. Lastly, the perturbation itself, which includes sampling form a Gaussian, 281

needs to be computed. 282

In total, this overhead is relatively small for higher order methods optimized for 283

step-size adaptation like RKBS, RKCK and RKDP. For example, the state perturbation 284

for RKDP increases the number of ODE evaluations per step from six to seven (+16%) 285

due to the loss of the First Same As Last property, and for RKCK—which does not 286

make use of this property—no additional ODE evaluation is required. However, for first 287

order methods like FE and EE this overhead severely reduces the computational 288

efficiency because instead of a single ODE evaluation per step, a probabilistic version 289

needs two (+100%). Additionally, as typically more steps are computed compared to 290

higher order method, also the sampling from the Gaussian becomes more expensive in 291

total. For the step-size perturbation, the overhead is reduced to the sampling from the 292

perturbation distribution, and—for adaptive step-size methods—the loss of the First 293

Same As Last property. To estimate the computational overhead empirically, we 294

compare run times of samples from probabilistic and deterministic solvers. 295

Resets in Izhikevich neurons 296

INs are reset when their voltage v(t) reaches the threshold of 30. During a single 297

integration step, this threshold can be exceeded, which can lead to large overshoots 298

that—in the worst case—cause numerical instabilities. We therefore implemented 299

Eq. (1) such that whenever v̇(t, v, u) or u̇(t, v, u) were evaluated for v(t) greater than 300

the threshold 30, we used the threshold value instead, i.e.: 301

v̇(t, v, u) =
(
0.04 ·min(v, 30)2 + 5 ·min(v, 30)− u+ I(t)

)
/ms,

u̇(t, v, u) = (a(b ·min(v, 30)− u)) /ms.
(23)

Despite this modification, for fixed step-sizes these overshoots can cause large errors 302

in the solution which are of order O(∆t) [9]. For adaptive step-sizes, these resets—if not 303

addressed properly—can be even more problematic, as the local errors controlling the 304

step-size can be small during a step exceeding the threshold, leading to a large 305

overshoot and thereby to a large global error. Stewart et al. [9] suggested to use 306

intermediate steps whenever the threshold is exceeded. For this, first the time when the 307

threshold was reached during the step is estimated, then the step is split into a step up 308

to the threshold and a step after the reset. We adapted this strategy for Runge-Kutta 309

methods and more specifically state perturbed Runge-Kutta methods as follows. To 310

determine the spike-times we used the dense output dRK(t, ti, ti+1) of Runge-Kutta 311

methods that interpolate the solution of a single integration step from ti to ti+1 and 312

return the evaluation of this interpolation at time t, where ti ≤ t ≤ ti+1. For FE this 313
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interpolation is linear. For RKBS we used the cubic and for RKDP the quatric 314

interpolation implemented in scipy [36]. For all but the linear interpolation, where this 315

step is trivial, we utilized scipy’s “brentq” root finding algorithm to determine the time 316

point tspike when the threshold is reached. We set the relative tolerance of the algorithm 317

to 1e−12 to ensure that the remaining error in the spike-time estimate is mostly driven 318

by the uncertainty of the integration scheme and the interpolation rather than the root 319

finding algorithm. The overhead introduced by the root finding was still relatively small 320

(≤ 30 µs) compared to the computational costs of a single ODE evaluation of the 321

Izhikevich neural network (≥ 200 µs). The spike-time tspike and the evaluation of the 322

dense output at tspike were then used as the solution of this step. For the state 323

perturbation method [14], this required an additional step to maintain the stochasticity 324

also during steps resulting in a reset. For this, we used a modification d̂RK of the dense 325

outputs dRK by adding the perturbation noise term ξti (see Eq. (16)) linearly weighted 326

with the distance to the time before the step ti: 327

d̂RK(t, ti, ti+1) = dRK(t, ti, ti+1) +
t− ti

ti+1 − ti
ξti , (24)

which is a simplified version of the continuous-time output proposed by Conrad et 328

al. [14]. 329

We implemented the spike time estimation with intermediate steps both for adaptive 330

and fixed step-sizes. We refer to the latter case as “pseudo-fixed” step-sizes, because at 331

spike resets the step-size can vary, but it is otherwise fixed. 332

Neuron metrics and reference solutions 333

We quantify the numerical uncertainty in the neuron models with different metrics. In 334

most cases, we compare the sample distributions from probabilistic solvers to a 335

reference solution. These reference solutions were computed using a deterministic 336

RKDPa solver with a tolerance of κ = 1e−12 and a maximum step-size dependent on 337

the model investigated (0.001 ms for HH, 0.01 ms for IN and the IN network and 0.1 ms 338

for the STG model). Based on the computed samples and the respective reference 339

solution, we evaluated the distributions of inter-sample distances and sample-reference 340

distances. In some cases, we also computed the deterministic-reference distance, which 341

is the distance between the solution from a deterministic solver and the reference 342

solution. As a distance measure, we computed the Mean Absolute Error (MAE) 343

between single traces. If not stated otherwise, MAEs were computed on the simulated 344

membrane voltages, because this is typically the quantity of interest. We refer to the 345

pairwise inter-sample distances as MAESS, the sample-reference distances as MAESR, 346

and the deterministic-reference distance as MAEDR. For N samples from a probabilistic 347

solver, this resulted in N(N − 1)/2 values for MAESS, N values for MAESR, and 1 348

value for MAEDR. 349

To quantify the calibration of the perturbation methods, we computed MAE ratios 350

R defined as R = MAESS/MAESR, where • denotes the distribution mean. If the 351

perturbation is too small, the average inter-sample distance MAESS is much smaller the 352

average sample-reference distance MAESR, and R is typically close to zero. If however, 353

the ODE is evaluated exactly at a discontinuity (e.g. a sharp stimulus onset), arbitrarily 354

small but greater-than-zero step-size perturbations may result in non-zero values for R. 355

This is because the evaluation of the ODE happens just before or directly after the 356

discontinuity even for very small perturbations. In the extreme case, where the 357

perturbation parameter is zero, all samples are equal to the deterministic solution, and 358

R = 0. 359

When the perturbation is increased, the average inter-sample distance MAESS is 360

increased and R > 0. Empirically, we found that R typically converges to
√

2, when the 361
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perturbation parameter is set to large values. We therefore defined the normalized ratio 362

as RN = R/
√

2. The convergence of R to
√

2 is expected, if the perturbation in every 363

step is i.i.d. Gaussian noise and the standard deviation of the noise is much greater 364

than the difference between the sample mean and true solution. 365

To compare the samples to the deterministic solution, we defined the ratio 366

RD = MAEDR/MAESR which is close to 1 if the perturbation is too small to affect the 367

model output (i.e. all samples are approximately equal to the deterministic solution) 368

and converges to zero, if the perturbation is too large (i.e. the perturbation severely 369

reduces the solver accuracy). If the perturbation increases the average solution accuracy, 370

RD can also take values greater than 1 for non-zero perturbation parameters. 371

We also looked at spike times and spike numbers. For INs, spike times were simply 372

the time of the reset. For the other models, we utilized the dense outputs of the solvers 373

to estimate spike times by estimating the times when the threshold, which we set to 374

v(t) = 0 mV, was reached. The exponential integrators EE and EEMP were linearly 375

interpolated for this purpose. 376

For the simulations of neuron networks, we also estimated the firing rates for either 377

single neurons or—in the case of the IN network—for the network as a whole. Firing 378

rates were estimated using a Gaussian kernel density estimate with a bandwidth of 379

20 ms and 0.1 ms for the STG neurons and the IN network, respectively. 380

We quantified the computational costs of a solution by counting the number of ODE 381

evaluations n(ODE). To separate the computational overhead of the perturbation from 382

the comparison of different solver schemes, we subtracted the evaluations only necessary 383

for the perturbation npert.(ODE) to obtain the number of evaluations a corresponding 384

deterministic method ndet.(ODE) = n(ODE)− npert.(ODE) would require. To 385

normalize this, we divided by the simulated time T , which gives the number of 386

evaluations per simulated millisecond Ndet.(ODE) = ndet.(ODE)/T . For example, for a 387

step-size ∆t = 0.1 ms this would be Ndet.(ODE) = 10 for FEf, while for EEMPf—which 388

requires two ODE evaluations per step—it would be Ndet.(ODE) = 20. It should be 389

noted that n(ODE) can be different for individual samples if the step-size is not fixed, 390

and therefore we report Ndet.(ODE) as empirical distributions in the following. The 391

computational costs caused by the perturbation itself is discussed theoretically above, 392

and was empirically quantified by measuring run times of probabilistic solvers and 393

comparing them to the run times of the respective deterministic solvers. 394

Results 395

Numerical uncertainty in Izhikevich neurons with different 396

dynamics 397

To demonstrate the effect of numerical uncertainty on simulations of mechanistic neuron 398

models, we first simulated single INs with 18 different parametrizations θi and Ii, 399

covering a wide range of response dynamics [23], using the original step-sizes ∆t (Fig. 2). 400

We computed the solution with the original solver, which is similar to a FEf solver, and 401

generated 40 samples with a probabilistic (state perturbation) FEf
x solver. We found 402

that for some parametrizations, the model solution was highly uncertain (e.g. 403

Figs. 2P–2R) while it was relatively stable for others (e.g. Figs. 2A and 2K). 404

For a more quantitative analysis, we studied two IN models (Figs. 2N and 2P) in 405

more detail and quantified the solution uncertainty for different solver settings. For the 406

“rebound burst” IN (Figs. 3A–3F), we found that not only the precise spike times but 407

also the number of spikes was uncertain when using a FEf
x solver with a step-size equal 408

to the original step-size ∆t = 0.2 ms (Fig. 3A) and even more so for a step-size of 409

∆t = 0.5 ms (Figs. 3D and 3E). Also the higher order solvers RKBSx (3rd order) and 410
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Fig 2. Neuron simulations can be subject to substantial numerical
uncertainty. (A-R) Simulations of the IN for different parametrizations θi and IStim.
Solutions were computed using the original solver (black dashed) and by drawing 40
samples from a probabilistic FEf

x method, summarized as a mean (blue) and 10th-90th
percentiles (red). The original solver was similar to a FE solver, expect that v(t) and
u(t) where updated sequentially, i.e. first v(t+ ∆t) was computed, and then u(t+ ∆t)
was computed using the already updated value v(t+ ∆t). For both solvers, the step-size
∆t, which differs between parametrizations, was taken from the original implementation.
Normalized stimuli IStim are shown in the bottom of every panel (gray lines). Solutions
for v(t) are clipped at 40. Solutions for u(t) are not shown.
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Fig 3. Numerical uncertainty in the spike number of Izhikevich neurons. (A,B) Three sample solutions
computed with FEf

x for v(t) (clipped at 40) of the ”rebound burst” IN (see also Fig. 2N) for a step-size of ∆t = 0.2 ms and
∆t = 0.02 ms, respectively. (C) A reference solution. (D-F) Number of spikes dependent on the step-size / tolerance (x-axis)
for different solver methods (legend) for fixed, pseudo-fixed and adaptive step-sizes, respectively. Number of spikes are shown
for 40 samples each as means, 10th-90th percentiles (vertical lines) and outliers (stars). The dashed horizontal line refers to
the reference solution. (G-L) As in (A-F), but for the ”DAP” neuron.

RKDPx (5th order) (see Table 1) showed some—yet much weaker—variation in the 411

numbers of spikes for larger step-sizes or tolerances (Figs. 3D–3F). 412

For the “DAP” IN, the number of spikes varied even more for different step-sizes 413

(Figs. 3G–3L). While the original solver produced a single spike with a short 414

depolarization afterwards, this behavior is at least partially an artifact of the solver, 415

with 8 spikes likely corresponding to the true solution (Figs. 3I–3L). In most cases, the 416

probabilistic solvers revealed this uncertainty indicated by a variation in simulated spike 417

numbers (Figs. 3H–3J). However, for relatively large fixed step-sizes neither RKBSx nor 418

RKDPx indicated any numerical uncertainty (Fig. 3J) even though the number of spikes 419

was much smaller than in the reference solution. Since this effect was not observed for 420

pseudo-fixed step-sizes (Fig. 3K), it is very likely that the discrepancy in the number of 421

spikes for fixed step-sizes is an artifact of the resets—which are restricted to take place 422

during multiples of the step-size—rather than the numerical integration itself. 423

Numerical uncertainty in a network of Izhikevich neurons 424

Next we turned to an IN neural network with an excitatory and an inhibitory 425

population, which has been solved with a FE-like solver in the original publication with 426

step-sizes of ∆t = 0.5 ms and ∆t = 1 ms for v(t) and u(t), respectively [20]. Simulating 427

the network with a probabilistic FEf solver with a step-size of ∆t = 0.5 ms revealed 428

large numerical uncertainty in the number and timing of spikes of single neurons 429

(Figs. 4A–4C) and in the firing rate of the network as a whole (Fig. 4D). 430

To better understand the reasons of the large uncertainty within the network, we 431

generated solutions with different solvers and step-sizes (Fig. 5). We simulated the 432

network with two stimuli that represent input to the network from a different brain 433

area [20]: a step stimulus that sharply changes its amplitude every millisecond for every 434

neuron and therefore introduces frequent discontinuities in the ODE, and a smooth 435

version of the same stimulus computed by fitting a cubic spline. Comparing both 436
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Fig 4. IN network model. (A-C) Simulation with a probabilistic FEf
x with

∆t = 0.5 ms, which is comparable to the solver originally used. Top: v(t) of four
example neurons (clipped at 40). Bottom: Spike raster plots of all 1000 neurons (left
y-axis) and the estimated (see Methods) total firing rates (black-lines, right y-axis).
Colored crosses highlight the spikes of the example neurons. (D) Top: The total firing
rate estimates for 40 samples of the network. Bottom: Mean (blue) and 10th-90th
percentiles (red) of the 40 samples and a reference solution (black dashed).

stimuli allowed us to analyze the influence of the discontinuities on the numerical 437

uncertainty. To quantify the numerical uncertainty, we generated samples using 438

probabilistic solvers and compared them to a reference solution. For every solution, we 439

estimated the total firing rate (using a kernel density estimate) and computed the Mean 440

Absolute Error (MAE) between the firing rates of samples and the reference to obtain 441

an empirical distribution of the sample-reference distance MAESR. 442

For the step stimulus and fixed step-sizes, using smaller step-sizes decreased the 443

uncertainty, but the step-size had to be drastically decreased to consistently obtain 444

firing rates matching the reference solution (examples in Figs. 5A–5C and summary in 445

Fig. 5G). Interestingly, the benefit from higher order methods was relatively small in 446

this case, likely because of the errors during resets which are of order O(∆t). Also 447

pseudo-fixed step-sizes, i.e. allowing intermediate steps during spike resets, yielded only 448

small improvements in the numerical uncertainty (examples in Figs. 5D–5F and 449

summary in Fig. 5G). 450

Simulating the network with the smooth stimulus changed very little in the numerical 451

uncertainty for fixed-step sizes (Fig. 5H). In contrast, for this stimulus higher-order 452

solvers such as RKBSx and RKDPx in combination with small pseudo-fixed step-sizes 453

were able to reduce the numerical uncertainty in the network to almost zero (Fig. 5H). 454

While higher order methods in combination with pseudo-fixed step-sizes can thus 455

decrease numerical uncertainty, it is not clear a priori from the point of computational 456

complexity, whether one should resort to these approaches or rather use a method like 457

FE with small computational costs per step in combination with small step-sizes to 458

reduce numerical uncertainty. We therefore also measured the computational costs of 459

individual samples and compared them across solver setting for both the step (Fig. 6A) 460

and smooth stimulus (Fig. 6B) with respect to the numerical uncertainty. We estimated 461

the numerical uncertainty with probabilistic solvers as the sample-reference distances 462

MAESR and quantified the computational costs as the number of ODE evaluations 463

corresponding deterministic solvers would require per millisecond of simulated time 464

Ndet.(ODE) (see Methods). 465

For the step stimulus and fixed step-sizes (Fig. 6A), we found only relatively small 466

differences across the tested Runge-Kutta-type methods regarding the trade-off between 467

numerical uncertainty and computational costs, with the higher order methods RKBS 468
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Fig 5. Numerical uncertainty in the Izhikevich neuron network with fixed
and pseudo-fixed step-sizes. (A-C) Simulations of the IN network model computed
by drawing 20 samples (gray) from a RKBSf

x solver for different step-sizes (titles) and
with a reference solver (black dashed). Traces represent kernel density estimates of the
total firing rate. Samples are summarized as means (blue) and 10th-90th percentiles
(red). (D-F) As in (A-C), but for pseudo-fixed step-sizes that allow for intermediate
steps when spike resets occur. (G,H) Sample-reference distances MAESR between
firing rates of the reference solution and the samples of different solver schemes (left
legend) as a function of the step-size ∆t for both fixed and pseudo-fixed step-sizes (right
legend), for the step and smooth stimulus, respectively.

and RKDP, being slightly more efficient. Using pseudo-fixed step-sizes instead of fixed 469

step-sizes, increased the computational costs substantially for larger step-sizes without 470

reducing the numerical uncertainty (Fig. 6A). This increase in computational costs for 471

pseudo-fixed step-sizes resulted from an increased number of steps in the solutions. 472

Every spike reset required an additional integration step, which is substantial for larger 473

step-size. For example, for ∆t = 0.5 ms and the total simulated time T = 70 ms, more 474

than 800 evaluations caused by spikes are added to only 140 evaluations of a 475

corresponding fixed step-size method. Adaptive step-sizes showed the same large offset 476

in computational costs for small tolerances—due to the same reason—and were only 477

efficient in reducing the numerical uncertainty for relatively small tolerances and 478

therefore computationally expensive solutions. 479

For the smooth stimulus (Fig. 6B), we again found fixed-step sizes to be most 480

efficient if relatively large numerical uncertainties were allowed. Interestingly, for 481

RKBSf
x and RKDPf

x the accuracy of the solutions decreased when the step-size was 482

decreased from ∆t = 0.5 ms to ∆t = 0.05 ms. Similar to the case of the single “DAP” 483

IN (see Fig. 3J) this was likely an artifact of the fixed step-sizes, constraining the spikes 484

to take place on a fixed time grid rather than the inaccurate integration between spikes, 485
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because for pseudo-fixed step-sizes the solutions with ∆t0.05 ms showed substantially 486

lower numerical uncertainty. To obtain small numerical uncertainties, both RKBS and 487

RKDP in combination with either adaptive or especially pseudo-fixed were much more 488

efficient than fixed step-sizes (Fig. 6B). 489
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Fig 6. Uncertainty in the IN network model as function of the
computational costs. (A) Sample-reference distances MAESR between firing rates of
a reference solution and samples of probabilistic solvers for the IN network simulated
with the step stimulus. MAESR distributions are shown for different solver schemes (left
legend) with fixed, adaptive and pseudo-fixed step-sizes (right legend) as a function of
the computational costs per samples. Computational costs are shown as the number of
ODE evaluations a respective deterministic solver would require per millisecond of
simulated time Ndet.(ODE) (see Methods). MAESR and Ndet.(ODE) distributions are
shown as medians and 10th-90th percentiles. MAESR values smaller than 1e−3 (gray
background) are shown on a linear scale to highlight the interesting parts. Step-sizes ∆t
ranged from 0.5 ms for FE and 1 ms for RKBS and RKDP to 0.005 ms; tolerances κ
from 1e−2 to 1e−8. (B) As in (A), but for the smooth stimulus.

Numerical uncertainty in single Hodgkin-Huxley neurons 490

We simulated the classical HH neuron with different probabilistic solvers for two stimuli 491

and quantified the numerical uncertainty as a function of the computational costs. We 492

quantified the numerical uncertainty again as MAESR, but also as the absolute 493

spike-time error of the 7th spike, which was the last spike in the reference solution, for 494

both stimuli. The first stimulus was a current step, with a sharp on- and offset 495

(Fig. 7A), which is a typically used stimulus type. As a second stimulus, we chose a 496

noisy current step with a smooth on- and offset, to emulate noisy input from e.g. 497

another neuron (Fig. 7B). 498

For both, the step and the noisy stimulus, we found that the exponential integrators 499

EEf
x and EEMPf

x could terminate with relatively large step-size (up to ∆t = 0.5 ms) 500

and the fewest number of ODE evaluations (as low as Ndet.(ODE) = 4 ms−1) without 501

becoming numerically unstable (Figs. 7C–7F, respectively). However, when using such 502

large step-sizes the numerical uncertainty was substantial and the discrepancy in the 503

number of spikes between samples and the reference did not allow us to quantify the 504

spike-time error of the 7th spike (Figs. 7E–7F, respectively). For more ODE evaluations, 505

the exponential integrators scaled relatively poorly, with EEMPf
x (2nd order) clearly 506

outperforming EEf
x (1st order) (Figs. 7C–7F). 507
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For the step stimulus, even the most basic method FEf
x outperformed both 508

exponential integrators, if a sufficient number of steps per millisecond was chosen 509

(Ndet.(ODE) ≥ 25 ms−1) to not result in numerical instabilities (Figs. 7C and 7D). For 510

the noisy stimulus, FEf
x (1st order) was still much more efficient than EEf

x and 511

comparable to EEMPf
x, despite the method’s lower order. 512

The fixed step-size higher order Runge-Kutta methods RKBSf
x and RKDPf

x required 513

even more steps per millisecond to terminate (Ndet.(ODE) ≥ 50 ms−1). However, if the 514

step-size was chosen sufficiently small the solutions had low numerical uncertainties for 515

the step stimulus (Figs. 7C and 7E), which were even lower for the noisy stimulus 516

(Figs. 7D and 7F). 517

When using adaptive step-sizes, the Runge-Kutta methods were able to terminate 518

for substantially fewer ODE evaluations, with RKBSf
x needing the fewest 519

(Ndet.(ODE) ≈ 12 ms−1), and RKCKf
x being slightly cheaper (Ndet.(ODE) ≈ 17 ms−1) 520

than RKDPf
x (Ndet.(ODE) ≈ 22 ms−1). For smaller tolerances and therefore more ODE 521

evaluations, all adaptive Runge-Kutta were highly efficient in reducing the numerical 522

uncertainty. In this regime they were clearly superior to all lower order methods. For 523

example, for a typical number of Ndet.(ODE) ≈ 100 ms−1 (i.e. ∆t = 0.01 ms for a 524

single-stage method like EEf
x), RKBSf

x was more than an order of magnitude more 525

accurate than EEf
x (MAESS < 0.02 mV vs. MAESS > 0.1 mV) for both stimuli 526

(Figs. 7C and 7D). For the step stimulus, where the sharp stimulus onset induced some 527

numerical uncertainty for fixed step-size Runge-Kutta methods, the adaptive stepping 528

also proved beneficial because the step-sizes during the discontinuities were very small 529

(Figs. 7C and 7E). For the smooth noisy stimulus on the other hand, adaptive and fixed 530

step-size Runge-Kutta methods performed approximately equally well. 531

Next we turned to the STG model and stimulated the response of a single neuron to 532

a current step stimulus (Fig. 8) based on the original publication [25]. Here, we 533

compared the numerical uncertainty in different state variables, namely the voltage v(t) 534

(Fig. 8A), the intracelluar calcium Ca(t) (Fig. 8B) and a subunit of the sustained 535

calcium channel hS(t) (Fig. 8C), respectively. We found that the numerical uncertainty 536

differed strongly between these state variables, and was highest for v(t) (Fig. 8D). 537

While this is expected because of the transient and brief nature of spikes in contrast to 538

the slower changing calcium, it highlights the power of probabilistic ODE solvers, as 539

they can guide the choice of the solver and step-size parameter dependent on the 540

quantity of interest and the desired accuracy without requiring detailed knowledge 541

about the model and its kinetics. 542

Numerical uncertainty in the STG neuron network 543

To also provide an example of numerical uncertainty quantification for a network 544

consisting of connected Hodgkin-Huxley-like neurons, we simulated the STG network 545

using five different parametrizations (Fig. 9) from the original publication [26]. Overall, 546

we found that the spiking patterns were qualitatively similar between different samples 547

when using a EEf
x solver with a step-size of ∆t = 0.1 (Figs. 9A–9E). However, when 548

looking at exact spike-times we found relatively large inconsistencies between samples 549

shifting single spikes and bursts by hundreds of milliseconds (Figs. 9F–9J). Reducing 550

the step-size from ∆t = 0.1 ms to ∆t = 0.01 ms strongly reduced the numerical 551

uncertainty in the firing rate of the neurons (Figs. 9K–9O vs. Figs. 9P–9T) and 552

consistently yielded firing rates close to the reference solution. 553

Again, we compared the numerical uncertainty for different solvers (Figs. 9U–9Y). 554

Similar to the single HH neuron, the exponential integrators EEf
x and EEMPf

x were able 555

to solve the ODE with the fewest number of ODE evaluations (as low as 556

Ndet.(ODE) = 4 ms−1 and consistently for Ndet.(ODE) ≥ 10 ms−1) without becoming 557

numerically unstable. The adaptive Runge-Kutta methods (especially RKBSa
x), again 558
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Fig 7. Numerical uncertainty vs. computational costs for the
Hodgkin-Huxley neuron. (A,B) Simulations of the classical HH neuron for the step
and noisy stimulus, respectively. Solutions were computed using a reference solver
(black dashed) and by drawing 20 samples from a probabilistic EEf

x method with
∆t = 0.25 ms, summarized as a mean (blue) and 10th-90th percentiles (red) and two
samples (gray). Normalized stimuli IStim are shown in the bottom of the panels. (C,D)
MAESR between voltage traces of samples generated with probabilistic solvers (see
legend) and a reference solution. MAESR values are shown as a function of the number
of ODE evaluations corresponding deterministic solvers would require per millisecond of
simulated time. Data is shown as medians (symbols) and 10th-90th percentiles (lines).
y-values smaller than 1e−3 (gray background) are shown on a linear scale to highlight
the interesting parts. Step-sizes ∆t ranged from 0.5 ms to 0.005 ms; tolerances κ from
1e−2 to 1e−10. Step parameters that caused that simulations to become numerically
unstable were removed. Combinations of methods and step parameters that would be
computationally more expensive than the shown range (e.g. RKDP with ∆t = 0.005 ms
or RKBS with κ = 1e−10) were either not simulated or removed. (E,F) Similar as
(C,D), but for the absolute errors of the spike-times of the 7th spike relative to the
reference solutions (STE). Solvers yielding samples with different number of spikes are
not shown.

performed well in achieving very low numerical uncertainty with respect to their 559

computational costs. This might be surprising considering that in the network there was 560

always at least one neuron (close to) spiking and the periods between spikes were all 561

relatively brief, making the step-size adaptation less efficient compared to a single 562

neuron with longer periods of silence. 563

Calibration of probabilistic solvers 564

To meaningfully apply the probabilistic solvers used in this study in practice, the 565

perturbation parameter of these methods has to be sufficiently calibrated. If the 566

perturbation is too small, the numerical uncertainty is underestimated. If it is too large, 567

the solution accuracy suffers. Only if the probabilistic solver is calibrated does the 568
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Fig 8. Numerical uncertainty of different state variables for a
Hodgkin-Huxley-like STG neuron as a function of the step-size. (A-C)
Simulations of the single STG neuron computed using a reference solver (black dashed)
and by drawing 40 samples from a probabilistic EEf

x method with a step-size of 0.1 ms.
Samples are summarized as means (blue) and 10th-90th percentiles (red) for the
membrane voltage v(t), the intracellular calcium Ca(t) and a subunit of the sustained
calcium channel hS(t). The normalized step stimulus IStim is shown at the top. (D)
Sample-reference distances MAESR between normalized reference and sample traces for
the state variables (legend) in (A-C) as a function of the step-size, shown as medians
(symbols) and 10th-90th percentiles (vertical lines). MAESR were computed on
normalized traces to facilitate the comparison. For this, first all reference traces were
linearly transformed to be between zero and one and then the same linear
transformations were applied to the respective samples traces.

sample distribution provide useful information about the numerical uncertainty of the 569

solution. In this case, the inter-sample distance can be used as an approximate measure 570

for the distance between samples and the true solution. 571

To analyze how the magnitude of the perturbation affects the distributions of 572

inter-sample distances MAESS and sample-reference distances MAESR, we simulated 573

the classical HH neuron with a probabilistic EEMPf solver for the three perturbation 574

strategies and different perturbation parameters σ (Fig. 10). For the state perturbation, 575

we found that for σ = 0.1 the inter-sample distance was on average much smaller than 576

the sample-reference distance with all sample-reference distances being tightly 577

distributed around the deterministic-reference distance (Fig. 10A). In this case, the 578

perturbation was too small and all samples were approximately equal to the 579

deterministic solution. 580

For the default perturbation parameter σ = 1 on the other hand, the two 581

distributions MAESS and MAESR were largely identical and more broadly distributed 582

around the deterministic-reference distance MAEDR (Fig. 10B). This shows, that for 583

σ = 1 the perturbation was well calibrated with no significant loss of solver accuracy 584

due to the perturbation. 585

For a further increase of the perturbation parameter to σ = 10, we observed that, 586

while the two distributions MAESS and MAESR were still largely overlapping, the 587

sample-reference distances were on average much larger than the deterministic-reference 588

distance, showing a loss of accuracy caused by the too large perturbation. 589

We summarized these findings and additional results for other perturbation 590

parameters as RN , RD and their product RNRD (see Figs. 10D–10F, respectively). RN 591

was defined as the normalized ratio between the mean inter-sample distance and the 592

mean sample-reference distance, which should be RN � 0 for a calibrated solution. RD 593

was defined as the ratio between the deterministic-reference distance and the mean 594
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Fig 9. Numerical uncertainty of the PY neuron in the STG network for different synaptic parametrizations.
(A-E) Membrane voltage traces v(t) of the PY neuron generated by simulating the three neuron STG network for different
synaptic parametrizations. Solutions were computed using a reference solver (black dashed) and by drawing 40 samples from
a probabilistic EEf

x method with a step-size of 0.1 ms. Samples are summarized as means (blue) and 10th-90th percentiles
(red). (F-L) As in (A,E), but zoomed in and instead of the sample summary three samples are shown (colored solid lines).
(K-O) As in (A,E), but instead of the voltage v(t), the estimated firing rate is shown. (P-T) As in (K-O), but for a step-size
of ∆t = 0.01 ms. (U-Y) Sample-reference distances MAESR between estimated firing rates of the reference and samples from
different solvers (legend). MAESR are shown as a function of the number of ODE evaluations per millisecond of simulated
time for a corresponding deterministic solverNdet.(ODE). Data is shown as medians (symbols) and 10th-90th percentiles
(black lines). Step-sizes ∆t ranged from 0.5 ms to 0.01 ms; tolerances κ from 1e−3 to 1e−7. Step-sizes that caused that
simulations to become numerically unstable were removed.

sample-reference distance, which for RD � 1 indicates a loss of accuracy caused by the 595

perturbation. Since neither of the two ratios RN and RD is sufficient to judge the 596

calibration of the perturbation, we also computed the product RNRD, which can be 597

used as an approximate measure of calibration that should be maximized. 598

For the state perturbation and σ = 1, we found that all conditions for a well 599

calibrated perturbation—RN � 0 (Fig. 10D), RD 6� 1 (Fig. 10E), and maximized 600

RNRD (Fig. 10F)—were full-filled. 601

We did the same analysis for the step-size perturbation for both the uniform 602

(Figs. 10G–10L) and log-normal distribution (Figs. 10M–10R). For both distributions, 603
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we found that the default parameter σ = 1 was too small (Figs. 10G and 10N, 604

respectively), whereas σ = 10 yielded calibrated solutions (Figs. 10I and 10O, 605

respectively). Compared to the state perturbation, the ratios RN and RD, and the 606

product RNRD showed similar dependencies on log(σ), but were shifted to the right 607

(Figs. 10J–10L and Figs. 10P–10R, respectively). 608
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Fig 10. MAE distributions for different perturbation parameters. (A-C)
Empirical distributions of MAESS and MAESR for the voltage traces of the classical HH
neuron with the noisy stimulus current IStim. Solutions were computed with a EEMPf

x

solver (∆t = 0.01 ms, 100 samples), a deterministic version of this solver, and a
reference solver. Normalized MAESS (red) and MAESR (blue) distributions are shown
with highlighted means (triangles) for different perturbation parameters σ (see titles,
shown as log10(σ)). For reference, MAEDR is shown as well (gray dashed line). (D)
Normalized MAE ratios RN = MAESS/MAESR/

√
2 as a function of the perturbation

parameter, where the default perturbation parameter σ = 1 is highlighted (red vertical
line). (E) As in (D), but for the sample-reference vs. deterministic-reference distance
ratio RD = MAESS/MAEDR. (F) As in (D), but for the ratio product RNRD. (G-L)
As in (A-F), but for the state perturbation using a uniform perturbation distribution,
i.e. using the solver EEMPf

t. (M-R) As in (A-F), but for the state perturbation using a
log-normal perturbation distribution, i.e. using the solver EEMPf

t.

To quantify the calibration of the three perturbation strategies more generally, we 609

did the same analysis shown in Fig. 10 for different solvers and four different stimuli, 610

and summarized the results as the MAE ratio products RNRD (Fig. 11). We chose to 611

simulate a constant stimulus (as a simple baseline), a step stimulus (which are often 612

used in practice), a noisy step stimulus (a quickly changing input without any 613

discontinuities to represent the input from e.g. another neuron) and a subthreshold 614

stimulus (to analyze the uncertainty in the absence of spiking). 615

For EEf, we found that the state perturbation could not be easily calibrated. For the 616

larger step-size ∆t = 0.25 ms (Fig. 11A, first row) the perturbation was either too small, 617

or the perturbation was so large it resulted in highly distorted solutions and/or 618

numerical instabilities. Only for the subthreshold stimulus, which was less prone to 619

numerical instabilities due to the absence of spiking, the perturbation for σ = 100.5 was 620

relatively well calibrated (RNRD = 0.52). For the smaller step-size ∆t = 0.025 ms 621
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Fig 11. Calibration of the perturbation methods for a Hodgkin-Huxley
neuron. (A,B) MAE ratio product RNRD as an approximate measure for calibration
for 100 samples of different probabilistic solvers (rows, see titles on the left) using the
state perturbation method. Samples were computed for the classical HH neuron for four
stimuli (legend), different step parameters dependent on the method (panel titles; ∆t in
milliseconds), and different perturbation parameters σ (x-axis, as log10(σ)). The default
perturbation parameter σ = 1 (red vertical line) and RNRD = 1 (gray horizontal line)
are highlighted. The minimum and maximum perturbation parameters tested are shown
as x-ticks. Data for parameters resulting in numerical instabilities is not shown.
RNRD > 1.1 are clipped at 1.1 and highlighted (black circles around symbols). (C,D)
As in (A,B), but for the step-size perturbation method using a uniform perturbation
distribution. For all methods, the maximum perturbation parameter σ was limited by
the (maximum) step-size and the method order to ensure only positive step-sizes.
Therefore, for adaptive step-sizes, where we set the maximum step-size to 1 ms, only
perturbation parameters σ < 1 were simulated. (E,F) As in (A,B), but for the step-size
perturbation method using a log-normal perturbation distribution.
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(Fig. 11B, first row), the solutions looked generally less distorted and a perturbation 622

parameter of σ = 1 resulted in acceptable calibration for all stimuli. For the noisy 623

stimulus, the perturbation even increased the solution accuracy on average substantially 624

(MAESR = 7.7 vs. MAEDR = 13.6). We found quantitative similar calibration results 625

for the uniform step-size perturbation for both the larger (Fig. 11C, first row) and 626

smaller step-size (Fig. 11D, first row) with generally less distorted solutions compared 627

to the state-perturbation. For the log-normal step-size perturbation, which in contrast 628

to the uniform allows for larger perturbation parameters while ensuring only positive 629

step sizes, the method was best calibrated for σ ≈ 1, with σ = 100.5 being slightly 630

better for the spiking inducing stimuli. For much larger perturbation parameters, the 631

solutions looked highly distorted again. 632

For EEMPf, the most striking difference was observed between the spike inducing 633

stimuli and the subthreshold stimulus (Fig. 11, second row), with only small differences 634

between the spike inducing stimuli. For all perturbation strategies and both tested 635

step-sizes, the best calibration for the subthreshold stimulus was achieved with 636

perturbation parameters approximately an order of magnitude smaller, ranging from 0.1 637

to 1, compared to the best parameter for the other stimuli, which ranged between 1 for 638

the state perturbation (Figs. 11A and 11B, second row) and 10 for the step-size 639

perturbation (Figs. 11C and 11F, second row). 640

For FEf, the state perturbation could not be calibrated for the spiking inducing 641

stimuli when using a larger step-size (∆t = 0.05 ms) because of arising numerical 642

instabilities (Fig. 11A, third row). For the smaller step-size (∆t = 0.025 ms) the 643

calibration was acceptable for the default σ = 1 for spike inducing stimuli, but could be 644

improved with slightly larger (σ = 100.5) values (Fig. 11B, third row). For the 645

subthreshold stimulus, an even larger value could be used to further improve the 646

calibration (σ = 10). For the step-size perturbation, we found that for both the uniform 647

and log-normal distribution the calibration was ideal for perturbation parameters close 648

to the default (ranging from σ = 10−0.5 to σ = 1). 649

For HNf, the calibration was strongly dependent on the stimulus, but expect for the 650

step stimulus the differences between the different perturbation strategies were small 651

(Fig. 11, fourth row). For the subthreshold stimulus, the best perturbation parameter 652

(ranging from σ = 10−1.5 to σ = 0.1) was—similar to EEMPf—again much lower than 653

for the spike-inducing stimuli. For the constant and noisy step stimulus, the best 654

perturbation parameter were all close to the default (ranging from σ = 10−0.5 to 655

σ = 100.5), which was also the case for the step stimulus when using state perturbation. 656

However, for the step stimulus in combination with the step-size perturbation the 657

perturbation was well calibrated for all tested perturbation parameters larger than zero 658

and smaller or equal to one (Figs. 11C–11F, fourth row). This was an effect of the sharp 659

stimulus onset at tonset = 10 ms. The last stage of the HN method evaluates the ODE 660

at the endpoint (ti+1 = ti + ∆t) of the current step. Therefore, even tiny perturbations 661

in the step-size during the step from ti = tonset −∆t to ti+1 = tonset result in a ≈ 50% 662

chance of the stimulus being or not being active when the ODE was evaluated at the 663

last stage of this step. In this special case, this was sufficient to improve the average 664

sample accuracy while also having a non-zero mean inter-sample distance. 665

For the adaptive step-size Runge-Kutta methods RKBSa (Fig. 11, next-to-last row) 666

and RKDPa (Fig. 11, last row), the relationship between σ and the MAE ratios RN and 667

RD was not clearly structured. 668

For the state perturbation and the larger tolerance (κ = 1e−2), the solutions were 669

well calibrated for a wide range of perturbation parameters, including the default 670

parameter σ = 1 (Fig. 11A, last two rows). This wide range was likely a result of the 671

influence of the perturbation—even when very small—on the step-size adaptation. 672

Different step-sizes and therefore different points of ODE evaluation resulted in an 673
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appropriate inter-sample distances without reducing the average sample accuracy, which 674

is—as we define it—a well calibrated probabilistic solution. For the smaller tolerance 675

(κ = 1e−4), the range of good perturbation parameters narrowed, with the best 676

parameters being dependent on both the stimulus and the Runge-Kutta method. For 677

RKBSa
x, the best calibration was acceptable for the default (σ = 1), but could be 678

improved with either smaller (for the subthreshold stimulus) or larger perturbation 679

parameters (for the spike inducing stimuli) (Fig. 11B, next-to-last row). For RKDPa
x, 680

the default perturbation also resulted in an at least acceptable calibration, with smaller 681

perturbation parameters (σ = 0.1) improving the calibration for some stimuli (Fig. 11B, 682

last row). 683

For the uniform step-size perturbation, the calibration of the adaptive Runge-Kutta 684

methods showed almost no dependence on the perturbation parameters within the 685

tested range for the larger tolerance (κ = 1e−2) (Fig. 11C, last two rows). For the 686

smaller tolerance (κ = 1e−4), we observed that only relatively small perturbation 687

parameters resulted in a good calibration (Fig. 11D, last two rows). Here we could not 688

simulate the default perturbation parameter, since it did not fulfill the requirement of 689

positive step-sizes only, as we used a maximum step-size of ∆t = 1 ms. 690

For the log-normal step-size perturbation, the results were similar to the uniform 691

perturbation, except that here larger perturbation parameters (σ ≥ 1) could be used. 692

However, these larger values did not result in a good calibration, and the best 693

parameters were much smaller for both RKBSa
t (ranging from σ = 1e−2 to σ = 1e−1; 694

Fig. 11E, next-to-last row) and RKDPa
t (ranging from σ = 1e−4 to σ = 1e−2; Fig. 11E, 695

last row). 696

Interestingly, we also observed large differences in calibration for the stimuli in 697

dependence on the Runge-Kutta method. For example, for the state-perturbation and 698

κ = 1e−2 RKBSa
x achieved the best calibration for the constant stimulus 699

(RNRD ≈ 0.9), while for RKDPa
x this was the stimulus resulting in the poorest 700

calibration (RNRD ≈ 0.6). 701

Computational overhead 702

The probabilistic methods used in this study are sampling based and therefore require 703

multiple evaluations of the same ODE system to yield an uncertainty estimate. While 704

this process can be parallelized, it nevertheless comes with a computational overhead, 705

especially if it conflicts with other computations using parallelized model evaluation, e.g. 706

in simulation based inference where the same model is evaluated for different model 707

parameters [37,38]. To empirically determine the number of samples necessary to obtain 708

a reliable measure of numerical uncertainty, we generated probabilistic solutions for the 709

classical HH neuron for the step and noisy stimuli. To this end, we sampled mean 710

inter-sample distances MAE
n

SS for small numbers of samples n, and divided them by the 711

mean inter-sample distances for a much larger number of samples (300) to obtain 712

normalized inter-sample distances RSS (Fig. 12). For the step stimulus, we found that in 713

most cases already two samples were sufficient to get a good estimate of the inter-sample 714

distance (for n = 2, > 70% of RSS were in [0.5, 2.0]), with little difference between the 715

methods (Figs. 12C and 12F). For the noisy stimulus, the distributions of inter-sample 716

distances were wider, but still only three samples were sufficient to get a good 717

inter-sample distance estimate in most cases (for n = 3, > 70% of RSS were in [0.5, 2.0]). 718

Here, the distributions for EEMPf had relatively long tails at the lower end of RSS 719

(Figs. 12A and 12B) while RKBSa was more evenly distributed (Figs. 12D and 12E). 720

The probabilistic methods used in this study do not only require to simulate 721

multiple solutions, but also come with a computational overhead per solution, which we 722

already discussed theoretically above (see Methods). To quantify this overhead 723

empirically, we simulated the HH neuron with different probabilistic solvers and their 724
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Fig 12. Number of samples necessary to estimate the inter-sample distance.
(A) Bootstrapped distributions of normalized inter-sample distances RSS for an EEMPf

x

solver with ∆t = 0.1 ms and σ = 1 for the classical HH neuron as a function of the
numbers of samples n. Distributions were bootstrapped based on 300 samples. For every
n, we drew 1000 times n samples without replacement from the 300 samples; and for

every draw, we computed the MAE ratio RSS = MAE
n

SS/MAE
300

SS , where MAE
n

SS is the

mean inter-sample distance of the drawn samples and MAE
300

SS is the mean inter-sample
distance of all 300 samples. RSS are shown for the step and the noisy stimulus (legend).
Vertical lines highlight values of 0.5, 1 and 2. (B) As (A), but for the uniform step-size
perturbation and σ = 0.1 instead of state perturbation. (C) Percentages of the
distributions of RSS that were between 0.5 and 2 as a function of n for the data shown
in (A,B). RSS is shown for the step and noisy stimuli (color as in (A)) and the state and
step-size perturbation (legend). (D-F) As in (A-C), but for RKBSa with κ = 1e−3.

deterministic counterparts and compared the run times relative to each other. As 725

expected, for the state perturbation, the computational overhead was largest for the 726

lower order methods (Fig. 13). For FEf
x and EEf

x run times were approximately doubled, 727

for EEMPf
x and RKBSf

x they increased by ≈ 50%− 60%, and for RKCKf
x and RKDPf

x
728

by ≈ 40%. The adaptive methods—where the local error estimates were computed not 729

only for the probabilistic, but also for the deterministic methods—showed the smallest 730

increase in run times (25% on average across all adaptive methods and stimuli), with 731

RKCKa
x, not using the First Same As Last property, being the cheapest with only a 732

≈ 13% increase. For the step-size perturbation, the increase in run times was on average 733

smaller (11% and 17% on average across all methods and stimuli for the uniform and 734

log-normal state perturbation, respectively) and without large differences between the 735

solver schemes and the usage of adaptive or fixed step-sizes. The step-size perturbation 736

using a log-normal distribution was on average slightly more expensive than uniform 737

step-size perturbation, likely due to the more expensive sampling distribution. 738

Discussion 739

Here we studied the effect of numerical uncertainty on the simulation of neurons or 740

neural populations as revealed by probabilistic solvers. We showed that numerical 741

uncertainty can affect the precise timing and sometimes even the number of the spikes 742

in simulations of neuron models commonly used in neuroscience. We also found that 743
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Fig 13. Computational overhead of perturbation methods. Relative run times
for different solver schemes (x-axis) and perturbation methods (legend) measured for
the classical HH neuron with the step stimulus. For every solver, 100 samples were
simulated for both a probabilistic and a respective deterministic solver version. Relative
run times were computed by dividing the run times of the probabilistic samples by the
run times of the respective deterministic samples. The step-size of fixed step-size
methods was ∆t = 0.01 ms, and the tolerance of adaptive methods was κ = 1e−4. The
perturbation parameter was σ = 1 for the state perturbation, and σ = 0.1 for the
step-size perturbation (for both distributions).

some models and parametrizations are more susceptible to numerical uncertainty than 744

others, and that solvers commonly employed in the neuroscience literature typically 745

yield rather large uncertainties. These findings highlight the need for a thorough 746

quantification of numerical uncertainty in neuroscience simulations to strike an informed 747

balance between simulation time and tolerated uncertainty. In particular, our results 748

from the neural network simulations show that it is crucial to systematically assess the 749

effect of the numerical uncertainty on the outcome of neuroscience simulation studies. 750

The idea to quantify the accuracy/numerical errors of different solvers for 751

mechanistic models in neuroscience is not new. For example, Butera and McCarthy [39] 752

showed that for small step-sizes the forward Euler method produces more accurate 753

solutions than the exponential Euler method, which is in agreement with our findings. 754

Börgers and Nectow [10] on the other hand argued that for Hodgkin-Huxley-like 755

systems exponential integrators—such as exponential Euler and the exponential 756

midpoint Euler—are often the best choice, as they allow for much larger step-sizes 757

especially when high accuracy is not necessary, which is again what we observed. 758

Stewart and Bair [9] argued in favor of the Parker-Sochacki integration method and 759

showed that it can be used to generate highly accurate solutions for both the Izhikevich 760

and Hodgkin-Huxley model. However, this method has the disadvantage that the ODE 761

system at hand has to put into the proper form and therefore requires specific 762

knowledge about the model and solver. In a more recent study, Chen et al. [11] 763

recommended to use splitting methods, such as second-order Strang splitting, instead of 764

exponential integrators. The diversity in attempts to achieve the best accuracy vs. 765

computational cost trade-off shows that the scientific debate regarding this topic is far 766

from settled and the ideal solver choice is problem specific. 767

However, usually it is not necessary to pick the “best” solver and it can be sufficient 768

to pick any among the potentially many “good” solvers for a given neuron model. For 769

this purpose, probabilistic solvers may prove very useful as they produce an 770

easy-to-interpret uncertainty measure that can be analyzed without specific knowledge 771

about the solver or solved neuron model. This can facilitate both the choice of the 772

solver and choice of solver settings such as the step-size. 773

In this study, we used two simple but powerful probabilistic solvers, that perturb the 774

step-wise integration to quantify the numerical uncertainty inherent in simulating the 775

mechanistic neuron models. For both, the state [14] and the step-size perturbation [18], 776
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we showed that this perturbation can be calibrated for mechanistic neuroscience models, 777

and if it is, the numerical uncertainty can be quantified independent of a reference 778

solution. This is crucial, because in many applications it would not make sense to 779

compute both a reference and an uncertainty estimate for a less accurate solution. 780

Moreover, if the reference solution is computed numerically, it may be inaccurate itself 781

(for an example with an analytical derived reference solution see [40]). 782

Both, the state and step-size perturbation have their advantages and disadvantages. 783

We found that the state perturbation was typically well—even though often not 784

perfectly—calibrated when using the default perturbation parameter, with the first 785

order methods exponential Euler and forward Euler being exceptions that required 786

larger perturbations which then often resulted in highly perturbed solution and 787

numerical instabilities. But since the computational overhead of the state perturbation 788

for these first order methods is relatively large, we recommend to use only higher order 789

methods in combination with the state-perturbation anyway. 790

For the step-size perturbation, we found the calibration to be slightly more 791

challenging for two reasons. First, the perturbation is influenced by linear scaling of the 792

simulated time, which happens for example if the time unit of the model is changed. 793

And second, for adaptive Runge-Kutta methods the calibration was dependent on the 794

tolerance with the default resulting in relatively poorly calibrated results for the models 795

we analyzed. For the step-size perturbation using a uniform distribution, the 796

perturbation parameter was additionally limited by the (maximum) step-size of the 797

solver, to ensure only positive step-sizes. Despite these constraints on the calibration, 798

the step-size perturbation can be of great use. First, because it comes with comparably 799

little computational overhead especially for first order methods where the default 800

calibration was also relatively good. Second, it can be combined with any explicit solver 801

without the need for an error estimator. And third, it preserves desirable properties of 802

the underlying solver schemes [18]. For example, when Hodgkin-Huxley-like models are 803

solved with exponential integrators like exponential Euler, the state variables of the 804

activation and inactivation can not leave their domain [0, 1] by design of the solvers, a 805

property preserved by the step-size but not the state perturbation. 806

In a different line of work, probabilistic ODE solvers are constructed using 807

techniques from (nonlinear) Gaussian filtering and smoothing [12,13,41–45]. These 808

methods have the advantage that instead of repeatedly integrating the initial value 809

problem, they only require a single forward integration and return local uncertainty 810

estimates that are proportional to the local truncation error. The disadvantage of 811

Gaussian ODE filters and smoothers is that the uncertainty estimates are Gaussian. 812

This restriction can be lifted by replacing Gaussian filters and smoothers with particle 813

filters and smoothers [13]. In particular for large neural network simulations, such 814

efficient methods will be key in quantifying uncertainty. 815

In addition to playing a diagnostic role to assess the reliability of simulations, 816

probabilistic numerical methods could be useful for identifying a set of parameters such 817

that simulations from the mechanistic neuron model are aligned with a set of 818

measurements. For this task, recently a variety of methods based on likelihood-free 819

inference techniques have been proposed [5, 7]. However, also the uncertainty estimates 820

of probabilistic numerical methods for ODEs have been shown to be useful for 821

parameter inference. For instance, Kersting et al. [46] show how filtering-based ODE 822

solvers give rise to efficient gradient-based sampling and optimization schemes in the 823

parameter space. It will be interesting to investigate how such probabilistic numerical 824

methods can be applied for efficient parameter inference in neuron modeling. 825

What we have not addressed in this study are implicit solvers. For stiff problems, 826

e.g. multi-compartment neuron models [47], explicit solvers may not be a good choice 827

and implicit solvers like implicit Euler or higher order methods should be used instead. 828
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A priori, it is often not easy to judge whether a ODE system is stiff or not. A 829

noteworthy attempt to tackle this problem is the algorithm by Blundell et al. [48] that 830

automatically determines whether an implicit or an explicit solver should be used. In a 831

future study it would be interesting to test implicit probabilistic solvers and compare 832

them to the explicit probabilistic solvers used in this study. 833

Taken together, in this study we showed that the numerical uncertainty in common 834

mechanistic neuroscience models can be substantial. Further, we demonstrated how 835

probabilistic perturbation methods can be used to reveal and quantify this uncertainty 836

and how it can guide the choice of a solver and its settings. 837
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