1 Multiple generations of antibiotic exposure and isolation influence host fitness and the

2 microbiome in a model zooplankton species

3 Reilly O. Cooper¹, Sarah Tjards^{1*}, Jessica Rischling^{*}, David T. Nguyen¹, Clayton E. Cressler¹

4

- 5 1: School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
- 6 * These authors contributed equally to this work.

7

- 8 Corresponding Author Information:
- 9 Reilly O. Cooper
- 10 1661 Burr St.
- 11 Lincoln, NE 68502
- 12 (845) 475-2770
- 13 <u>reilly.cooper@huskers.unl.edu</u>
- 14
- 15

16 Abstract

17 Background

18 Chronic antibiotic exposure impacts host health through changes to the microbiome, increasing

- 19 disease risk and reducing the functional repertoire of community members. The detrimental
- 20 effects of antibiotic perturbation on microbiome structure and function after one host
- 21 generation of exposure have been well-studied. However, much less is understood about the
- 22 multigenerational effects of antibiotic exposure and how the microbiome may recover across
- 23 host generations.
- 24 Results

25 In this study, we examined microbiome composition and host fitness across five generations of 26 exposure to a suite of three antibiotics in the model zooplankton host *Daphnia magna*. By 27 utilizing a split-brood design where half of the offspring from antibiotic-exposed parents were 28 allowed to recover and half were maintained in antibiotics, we aimed to examine recovery and 29 resilience of the microbiome. Unexpectedly, we discovered that experimental isolation of single 30 host individuals across generations also exerted a strong effect on microbiome composition, 31 with composition becoming less diverse over generations regardless of treatment. 32 Simultaneously, Daphnia magna body size and cumulative reproduction increased across 33 generations while survival decreased. Though antibiotics did cause substantial changes to microbiome composition, the microbiome generally became similar to the no antibiotic control 34 35 treatment within one generation of recovery no matter how many prior generations were 36 spent in antibiotics.

37 Conclusions

Contrary to results found in vertebrate systems, *Daphnia magna* microbiome composition 38 39 recovers quickly after antibiotic exposure. However, our results suggest that the isolation of 40 individual hosts leads to the stochastic extinction of rare taxa in the microbiome, indicating that 41 these taxa are likely maintained via transmission in host populations rather than intrinsic 42 mechanisms. This may explain the intriguing result that microbiome diversity loss increased 43 host fitness. 44 45 Keywords: Antibiotics, Recovery, Invertebrate microbiome, *Daphnia*-microbiota interactions, 46 Transmission 47 Background 48 49 Antibiotic exposure can impact host health by changing microbiome abundance and 50 composition[1–4]. Acute exposure causes rapid[5.6] and sometimes permanent [7] shifts in 51 microbiome composition, both of which have been associated with increased pathogen 52 susceptibility[8,9], dramatic changes in host life history [10], and prevalent disease states like 53 obesity and selection for antibiotic-resistant bacteria during infection[11–13]. In addition to 54 altering composition, antibiotic exposure reduces the absolute abundance of taxa in the 55 microbiota, which coincides with increased host mortality or changes in immunity[14,15]. 56 Metabolic functions of the microbiota are lost or altered [16,17]; for example, the microbiota of 57 mice exposed to antibiotics shifted to produce more carbohydrates and bile acids[18]. In turn,

58 changes to the microbiota caused by antibiotic exposure may affect the fitness of antibiotic-

59 exposed hosts' offspring, primarily through affecting transmission of functionally important

60	taxa in the microbiota. While antibiotic effects on microbiome composition and host fitness
61	after a single generation of exposure are well-documented, far less is understood about the
62	multigenerational impacts of antibiotic exposure. Because chronic antibiotic exposure across
63	multiple host generations is becoming increasingly common due to antibiotic use in agriculture
64	and subsequent environmental contamination[19,20], it is essential to investigate the potential
65	impacts of antibiotics across generations of exposure.
66	
67	Members of the microbiota are acquired either directly from parents[21] (i.e., vertical
68	transmission) or from environmental microbes primarily shed by conspecifics[22] (i.e.,
69	horizontal transmission). For environmentally transmitted microbes, acquisition by naïve hosts
70	is dependent on the abundance of microbes in the local environment, which is affected both by
71	the number of hosts and the rate of microbial shedding from these hosts [23,24]. Because
72	microbial abundance is reduced in antibiotic-exposed hosts, shedding rate can be reduced[25],
73	potentially lowering naive hosts' probability of encountering functionally important taxa.
74	Moreover, shed microbes may encounter environmental antibiotics, which can further reduce
75	transmission rates. Finally, microbes may struggle to successfully colonize naive hosts that have
76	been exposed to antibiotics[26]. Together, these findings suggest that antibiotic exposure may
77	disrupt the conservation of functionally important taxa in host species [8], potentially having
78	long-lasting effects on the evolutionary trajectory of the microbiota. However, understanding

78

these long-term impacts can be difficult when studying complex microbiota comprised of 79

hundreds or thousands of taxa[27] due to the complexity of community responses to antibiotics 80

81 and other stressors.

82

83	We investigated the impacts of antibiotics on host fitness and microbiome composition across
84	multiple generations in the freshwater zooplankton Daphnia magna. Daphnia magna has
85	served as a bioindicator species for aquatic ecosystems[28] and is commonly used as a model
86	system for ecotoxicology research[29]. Recently, <i>D. magna</i> has emerged as a system for
87	microbiome research due to its fast, clonal reproduction and its relatively simple
88	microbiota[30]. Multiple studies have found that taxa in the <i>D. magna</i> microbiota influence
89	host fitness, primarily through supporting reproduction and growth[30–32], tolerance to
90	toxins[33], and nutrient provisioning[34]. Environmental factors, including bacterioplankton
91	composition[35], influence the <i>Daphnia magna</i> microbiota[30,36–41]. As antibiotics are
92	considered major environmental contaminants[20], aquatic organisms are chronically exposed
93	to antibiotics. Across multiple generations of exposure, it may become impossible to recover
94	lost microbiome functions and taxa, potentially leading to permanent loss of fitness.
95	
96	Here we used a split-brood experimental design where offspring of antibiotic-treated D. magna
97	were either maintained with antibiotics or moved to antibiotic-free conditions and allowed to
98	recover. This design allowed us to ask several key questions. We asked what the effects were of
99	multiple generations of antibiotic exposure on host fitness and the microbiota, hypothesizing
100	that Daphnia magna continuously exposed to antibiotics for multiple generations would
101	experience continuous reductions in all measured life history metrics (growth, survival, and
102	reproduction) and that the microbiota of these hosts would become significantly less diverse
103	across generations of exposure. We also asked whether the offspring of antibiotic-treated hosts

104	could recover, both in terms of microbiome diversity and host life-history metrics, and how that
105	recovery was affected by the number of previous generations spent in antibiotics. Here, we
106	hypothesized that progressive loss of horizontally transmitted taxa would make recovery more
107	difficult with more generations of previous exposure.
108	
109	Our findings show that Daphnia magna are able to recover a microbiome composition similar
110	to the controls within one generation of recovery regardless of the number of generations
111	spent in antibiotics, contrary to our hypothesis that detrimental fitness effects would
112	compound across generations of exposure. Because of our experimental design, we were also
113	able to investigate the effects of isolation on fitness and microbiome composition: juvenile
114	Daphnia magna were only exposed to microbes shed into the environment by their parents for
115	a short time period, and then were raised individually in isolation. This corresponded with a
116	continuous loss of microbiome diversity across generations and increases in Daphnia magna
117	body size and cumulative reproduction, indicating a surprising potential link between the loss of
118	rare taxa in the microbiome and increased host fitness.
119	
120	Methods

121 Daphnia magna culturing

122 We maintained cultures of *Daphnia magna* (genotype 8A, isolated at Kaimes Farm, Leitholm,

123 Scottish Borders[42]) for >5 years in 400mL glass jars at a concentration of 10-30 individuals per

124 jar, filled with COMBO medium[43] and supplemented with 0.25 mg C/mL/day of

125 Chlamydomonas reinhardtii (CPCC 243) as a nutrient source. We maintained these cultures in a

126	16h:8h light: dark cycle at 19°C. Prior to the experiment, we transferred 48 juvenile Daphnia
127	magna to individual 35 mL glass vials, where they matured. From those individuals, we pooled
128	offspring from the second brood and randomly assigned 48 to the initial experimental
129	treatments.
130	
131	Experimental design
132	We raised experimental <i>Daphnia magna</i> individually in 35 mL glass vials for five generations. In
133	the initial generation (Generation 1), D. magna were exposed to one of two treatments: an
134	antibiotic cocktail of 500 ug/L aztreonam, 400 ug/L erythromycin, and 250 ug/L
135	sulfamethoxazole shown previously to suppress the <i>Daphnia</i> microbiome[32] in 25 mL of
136	COMBO medium, or a no-antibiotic control treatment of 25 mL COMBO medium. We replaced
137	the medium for each treatment every two days and all individuals were fed with 0.25 mg
138	C/mL/day of Chlamydomonas reinhardtii. We measured survival and reproduction within
139	treatments every day, and every four days we measured body size (measured from the top of
140	the eyespot to the beginning of the apical tail spine). Individuals were monitored for 21 days or
141	until death, then final body size was measured and animals were pooled for DNA extraction and
142	microbiome characterization.
143	
111	To initiate each new generation of treatments, we pooled second brood offspring of individuals

To initiate each new generation of treatments, we pooled second brood offspring of individuals within a treatment and randomly chose 24 individuals to move into the next generation of treatment, following a split-brood design (Fig. 1). We placed 24 offspring from control individuals in the next generation of the control treatment, and 48 offspring from individuals in

148	the antibiotic treatment were randomly assigned to either remain in the antibiotic treatment or
149	to be allowed to recover in the control treatment (hereafter, all combinations of antibiotic
150	exposure followed by control are referred to as recovery treatments). For each subsequent
151	generation, we applied the same transfer method for offspring in the antibiotic and control
152	treatments, and offspring from the recovery treatment continued to be placed in the no-
153	antibiotic control (Figure 1).
154	
155	DNA extraction and sequencing
156	We pooled sets of five individuals for DNA extraction and microbiome sequencing (n=4 per
157	treatment per generation). We amplified the 16S rRNA V4 hypervariable region from DNA
158	extracted using the Qiagen DNEasy Blood & Tissue Kit with the 515f/806r primer pair[44], with
159	PCR steps as follows: 95°C for 3 min; 35 cycles of 95°C for 45 sec, 58°C for 30 sec, 72°C for 45
160	sec; and 72°C for 5 minutes. We generated and normalized sample libraries with the
161	SequalPrep Normalization Plate Kit and quality controlled with the Agilent High Sensitivity DNA
162	Kit and the Agilent TapeStation, and the KAPA Library Quantification Kit. We pooled all quality-
163	checked samples and spiked with PhiX, then sequenced the samples using a MiSeq Reagent Kit
164	v2 (300-cycles) on the Illumina MiSeq at the Nebraska Food for Health Center (Lincoln, NE,
165	USA).
166	
167	Data processing and statistical analysis
168	For both the analyses of both microbiome composition and life history traits, we compared

169 antibiotic-treated and control composition in the same generations (for example, A1 to C1),

170	recovery treatments to the control in the same generational time point (for example, R1->1 to
171	C2, R1->2 to C3, and R2->1 to C3, all columns in Figure 1), antibiotic-treated and control
172	composition in the final generation as compared to the first generation (C5 to C1 and A5 to A1),
173	and recovery treatments in the first generation out of antibiotics to each other (for example,
174	R1->1 to R2->1 or R2->1 to R4->1).

175

176 For the life history analyses, we measured *Daphnia magna* fitness using three key host life history metrics: growth, reproduction, and survival. Growth was quantified for each individual 177 178 as the length (mm) of the carapace after 21 days. Reproduction was quantified as the 179 cumulative number of offspring produced by each individual over 21 days. The analysis of final 180 size used only data from *D. magna* that survived through the end of each generation, whereas 181 the analysis of cumulative reproduction includes individuals that did not survive until the 182 experimental end point. For the growth analysis, we fit a normal linear model with the 183 interaction of generation and treatment sequence as explanatory variables. To analyze the 184 cumulative reproduction data, we used a hurdle model fit with the pscl package (v1.5.5[45]) 185 with negative binomial random component based on the model's ability to properly account for 186 excess zeros and overdispersion. The negative binomial hurdle model included the same 187 explanatory variables as the model for the growth analysis, but the hurdle component of the 188 model involved only the main effects of treatment sequence and generation because the model 189 including interactions could not be estimated due to complete separation of the data. For both 190 growth and reproduction analyses we computed linear contrasts to test for differences in the 191 response variable between pertinent combinations of treatment sequence and generation

192	number. Comparisons were made using Wald tests adjusted for family-wise error to control for
193	related tests using the emmeans package (v1.5.4[46]). We used a Cox proportional hazards
194	model from the survival package (v3.2-10[47]) to examine the effects of both generation and
195	treatment on survival.
196	
197	For microbiome analysis, we used dada2 (v3.11[48]) and phyloseq (v1.32[49]) to identify
198	amplicon sequence variants (ASVs) and visualize microbiome diversity and composition. To
199	identify taxa, we used the GTDB taxonomy database formatted for dada2[50]. Differences
200	among microbial communities across treatments were identified using PERMANOVAs. We
201	calculated Pearson correlation coefficients to identify the relationship between microbial taxa
202	of interest and host life history metrics (body size, cumulative reproduction). DESeq2
203	(v1.30.1[51]) was used to identify differentially abundant ASVs across treatment subsets.
204	
204 205	Results
	Results [Figure 1 goes here]
205	
205 206	[Figure 1 goes here]
205 206 207	[Figure 1 goes here] Figure 1: A schematic of experimental design, with 24 <i>Daphnia magna</i> per treatment. In generation 1, <i>D. magna</i>
205 206 207 208	[Figure 1 goes here] Figure 1: A schematic of experimental design, with 24 <i>Daphnia magna</i> per treatment. In generation 1, <i>D. magna</i> were placed into antibiotics or no antibiotics (control). In subsequent generations, control <i>D. magna</i> offspring
205 206 207 208 209	[Figure 1 goes here] Figure 1: A schematic of experimental design, with 24 <i>Daphnia magna</i> per treatment. In generation 1, <i>D. magna</i> were placed into antibiotics or no antibiotics (control). In subsequent generations, control <i>D. magna</i> offspring were placed in control, and antibiotic-treated <i>D. magna</i> offspring were split between a no antibiotic recovery
205 206 207 208 209 210	[Figure 1 goes here] Figure 1: A schematic of experimental design, with 24 <i>Daphnia magna</i> per treatment. In generation 1, <i>D. magna</i> were placed into antibiotics or no antibiotics (control). In subsequent generations, control <i>D. magna</i> offspring were placed in control, and antibiotic-treated <i>D. magna</i> offspring were split between a no antibiotic recovery treatment and a continued antibiotic treatment. Throughout the paper, we will use the notation R# to refer to the
205 206 207 208 209 210 211	[Figure 1 goes here] Figure 1: A schematic of experimental design, with 24 <i>Daphnia magna</i> per treatment. In generation 1, <i>D. magna</i> were placed into antibiotics or no antibiotics (control). In subsequent generations, control <i>D. magna</i> offspring were placed in control, and antibiotic-treated <i>D. magna</i> offspring were split between a no antibiotic recovery treatment and a continued antibiotic treatment. Throughout the paper, we will use the notation R# to refer to the

215	diverged across both generations and across treatments (PERMANOVA, generation pseudo- $F_{4,70}$
216	= 7.192, R^2 = 0.214, P = 0.001, treatment pseudo- $F_{15,70}$ = 3.64, R^2 = 0.406, P = 0.001,
217	Supplementary Table S1A). The Daphnia magna microbiota in first-generation control
218	individuals primarily consisted of Bacteroidia, Gammaproteobacteria, and Alphaproteobacteria
219	(Figure 2a, treatment C1). Within these bacterial classes, the most abundant ASVs belonged to
220	the genera Limnohabitans (6%, ASV5), Hydromonas (13%, ASV1), a Chitinophagaceae with
221	unidentifiable genus-level taxonomic identity (10%, ASV9), <i>Daejeonella</i> (7%, ASV7), UBA4466 (a
222	Crocinitomicaceae genus, 7%, ASV8), and <i>Flavobacterium</i> (7%, ASV3). Antibiotic treatment
223	immediately shifted microbiota composition, substantially increasing the relative abundance of
224	Bacteroidia and decreasing Gammaproteobacteria (Figure 2a, treatment A1).
225	
225 226	[Figure 2 goes here]
	[Figure 2 goes here] Figure 2: Microbiome composition and differences across treatments. (a) Microbiome community composition at
226	
226 227	Figure 2: Microbiome composition and differences across treatments. (a) Microbiome community composition at
226 227 228	Figure 2: Microbiome composition and differences across treatments. (a) Microbiome community composition at the class taxonomic rank across all treatments, with samples pooled by treatment. Classes with less than 5%
226 227 228 229	Figure 2: Microbiome composition and differences across treatments. (a) Microbiome community composition at the class taxonomic rank across all treatments, with samples pooled by treatment. Classes with less than 5% abundance in a treatment are denoted as "<5% Abundant/Unidentified". The sum of numbers in the "R" treatment
226 227 228 229 230	Figure 2: Microbiome composition and differences across treatments. (a) Microbiome community composition at the class taxonomic rank across all treatments, with samples pooled by treatment. Classes with less than 5% abundance in a treatment are denoted as " \leq 5% Abundant/Unidentified". The sum of numbers in the "R" treatment labels denote the experimental generation (for example, R1 \rightarrow 4 is the fifth generation of animals in antibiotics for 1
226 227 228 229 230 231	Figure 2: Microbiome composition and differences across treatments. (a) Microbiome community composition at the class taxonomic rank across all treatments, with samples pooled by treatment. Classes with less than 5% abundance in a treatment are denoted as " \leq 5% Abundant/Unidentified". The sum of numbers in the "R" treatment labels denote the experimental generation (for example, R1 \rightarrow 4 is the fifth generation of animals in antibiotics for 1 generation and removed from antibiotics for 4 subsequent generations). (b) Differentially abundant ASVs in the
226 227 228 229 230 231 232	Figure 2: Microbiome composition and differences across treatments. (a) Microbiome community composition at the class taxonomic rank across all treatments, with samples pooled by treatment. Classes with less than 5% abundance in a treatment are denoted as " \leq 5% Abundant/Unidentified". The sum of numbers in the "R" treatment labels denote the experimental generation (for example, R1 \rightarrow 4 is the fifth generation of animals in antibiotics for 1 generation and removed from antibiotics for 4 subsequent generations). (b) Differentially abundant ASVs in the fifth generation of the control treatment as compared to the first generation of control (\square < 0.01). ASVs are named
226 227 228 229 230 231 232 233	Figure 2: Microbiome composition and differences across treatments. (a) Microbiome community composition at the class taxonomic rank across all treatments, with samples pooled by treatment. Classes with less than 5% abundance in a treatment are denoted as " \leq 5% Abundant/Unidentified". The sum of numbers in the "R" treatment labels denote the experimental generation (for example, R1 \rightarrow 4 is the fifth generation of animals in antibiotics for 1 generation and removed from antibiotics for 4 subsequent generations). (b) Differentially abundant ASVs in the fifth generation of the control treatment as compared to the first generation of control (\square < 0.01). ASVs are named by their genus or at higher taxonomic ranks if unidentifiable at the genus rank and colored according to bacterial

236

The microbiota also shifted across generations, although the nature of the shifts depended on
treatment. In the control treatment, Gammaproteobacteria became increasingly dominant

239	through generations until a single <i>Hydromonas</i> ASV (ASV1) comprised over 60% of microbiome
240	composition, and Gammaproteobacteria in total over 65%; correspondingly, alpha diversity
241	decreased significantly across generations (Figure 3b , <i>F</i> _{4,7} = 9.555, <i>p</i> < 0.0001, Supplementary
242	Table S1C, Supplementary Figure 4), though the number of unique ASVs identified did not
243	(Figure 3c, $F_{4,7}$ = 4.208, p = 0.005, Supplementary Table S1D, Supplementary Figure 5). In
244	antibiotics, microbiota composition varied considerably across generations but
245	Chitinophagaceae remained dominant no matter what generation. Microbiota composition also
246	recovered after generations spent in antibiotics (Figure 2a, all treatments beginning with R),
247	with Gammaproteobacteria returning to higher abundance within a generation or two, and
248	other members that appeared in the control treatment reappearing, maintaining, or increasing
249	in abundance as generations of recovery progressed. Detrended correspondence analysis
250	indicates that samples in the control treatment cluster more closely with each other than those
251	in the antibiotic or recovery treatments, and that recovery communities are more similar to
252	control communities than antibiotic communities (Figure 3a).
253	
254	[Figure 3 goes here]

Figure 3: Microbiome diversity across generations and treatments. (a) Detrended correspondence analysis of all samples, with point color corresponding to treatment type and point shape corresponding to generations spent in a treatment (CTRL = control, REC = recovery, AB = antibiotic). (b) Inverse Simpson Index in each sample across generations, with point color corresponding to treatment type. (c) The number of unique ASVs identified in each sample across generations, with point color corresponding to treatment type.

260

261 Because we observed significant differences in composition across generations, we broke these 262 down further by just examining the impacts of generation on beta diversity in just control and 263 just antibiotic samples, finding that there were strong effects of generation on both (control pseudo- $F_{4,17}$ = 3.457, R^2 = 0.515, P = 0.001; antibiotic pseudo- $F_{4,13}$ = 3.119, R^2 = 0.581, P = 0.001; 264 Supplementary Figures 6 & 7; Supplementary Table S1A). To find what taxa might be driving 265 266 these differences, we analyzed the communities with DESeq2, finding taxa with 2 < 0.01 in both 267 the control and antibiotic treatments (Figure 2b & 2c). In the fifth generation, individuals in the control treatment had 20 ASVs that were differentially abundant compared to the first 268 269 generation; individuals in the fifth generation of antibiotic treatment had 32 ASVs that were 270 differentially abundant compared to the first generation. The majority of differentially 271 abundant ASVs in both analyzed treatments belonged to Alphaproteobacteria and Bacteroidia, 272 with Chitinophagaceae ASVs in the control experiencing the largest changes in relative abundance (2⁻¹² reduction in ASV16, 2¹² increase in ASV4; complete results in **Supplementary** 273 274 Tables S1E & S1F). More rare taxa were increased in abundance in the antibiotic treatment, with several Gammaproteobacteria taxa experiencing between 2⁸ and 2¹⁵ increases in relative 275 276 abundance.

277

We also conducted pairwise PERMANOVAs to understand whether the microbiomes of *Daphnia magna* in each treatment type were distinct from each other (**Supplementary Table S1B**).
Recovery from antibiotics caused beta diversity to be more similar to the control (**Figure 3A**).
Beta diversity changed in the fifth generation of control as compared to the first (*P* = 0.033) but
not in the fifth generation of antibiotics as compared to the first (*P* = 0.33). Comparisons of

283	control beta diversity to all other treatments at each generational time point (columns in Figure
284	1) did not show any clear trend in differences (Supplementary Table S1B). For the first
285	generation out of antibiotics in each recovery sequence, only one recovery treatment was
286	significantly different from the control (R3->1 to C4, p = 0.033) but most were not (R1->1 to C2,
287	R2->1 to C3, R4->1 to C5, p > 0.05). Comparisons across recovery treatments after their first
288	generation removed from antibiotics showed that the beta diversity of most treatments were
289	significantly different from each other (R1->1 to R2->1, R1->1 to R3->1, R1->1 to R4->1, R3->1 to
290	R4->1, <i>P</i> < 0.05), though two were similar (R2->1 to R3->1 <i>P</i> = 0.05, R2->1 to R4->1 <i>P</i> = 0.08).
291	Treatment with antibiotics changed composition in the 3^{nd} and 4^{rd} generations (P = 0.026,
292	0.029, respectively), but not in the 1^{st} , 2^{nd} , and 5^{th} (<i>P</i> = 0.067, 0.1, and 0.067, respectively).
292 293	0.029, respectively), but not in the 1^{st} , 2^{nd} , and 5^{th} (<i>P</i> = 0.067, 0.1, and 0.067, respectively).
	0.029, respectively), but not in the 1^{st} , 2^{nd} , and 5^{th} (<i>P</i> = 0.067, 0.1, and 0.067, respectively). [Figure 4 goes here]
293	
293 294	[Figure 4 goes here]
293 294 295	[Figure 4 goes here] Figure 4: <i>Daphnia magna</i> life history and ASV correlations. (a) <i>Daphnia magna</i> body size at the experimental
293 294 295 296	[Figure 4 goes here] Figure 4: <i>Daphnia magna</i> life history and ASV correlations. (a) <i>Daphnia magna</i> body size at the experimental endpoint (mm at 21 days) across generations. Color denotes treatment type (CTRL = control, REC = recovery, AB =
293 294 295 296 297	[Figure 4 goes here] Figure 4: <i>Daphnia magna</i> life history and ASV correlations. (a) <i>Daphnia magna</i> body size at the experimental endpoint (mm at 21 days) across generations. Color denotes treatment type (CTRL = control, REC = recovery, AB = antibiotic). (b) Cumulative reproduction of <i>Daphnia magna</i> in the 21-day experiment across generations. Color
293 294 295 296 297 298	[Figure 4 goes here] Figure 4: <i>Daphnia magna</i> life history and ASV correlations. (a) <i>Daphnia magna</i> body size at the experimental endpoint (mm at 21 days) across generations. Color denotes treatment type (CTRL = control, REC = recovery, AB = antibiotic). (b) Cumulative reproduction of <i>Daphnia magna</i> in the 21-day experiment across generations. Color denotes treatment type. (c) ASVs with significant Pearson correlations to <i>Daphnia magna</i> body size in the CTRL

302 to *Daphnia magna* cumulative reproduction in the CTRL treatment, with the same methods as in (d) applied.

303

304 Some Daphnia magna life history metrics changed across generations and treatments. We

305 found that *D. magna* body size significantly increased over the four generations spent in

306	isolation (Figure 4A). Mean body length increased by 0.20 mm [95% CI: 0.09, 0.30; p < .001] in
307	the control sequence and 0.32 mm [95% CI: 0.21, 0.43; p < .001] in the antibiotic sequence from
308	generation 1 to generation 5. Comparisons between the control treatment and all other
309	treatments within each generational time point (e.g., columns in Figure 1) yielded no
310	discernable pattern of significance (Supplementary Table S1G, Supplementary Figure 1). For
311	instance, in generation 3 the mean body size of individuals in C3 was larger than the mean body
312	size of individuals in either R1->2 (0.18 [0.05, 0.31 mm]; p < 0.001) or R2->1 (0.18 [0.04, 0.31]; p
313	= 0.002), but in generation 5 the mean body size of individuals in C5 was smaller than the mean
314	body size of individuals in R1->4 and no different than R2->3 (C5 to R1->4: -0.15 [-0.29, -0.02];
315	p = 0.013; C5 - R2->3: -0.03 [-0.16, 0.10]; p > 0.999). Finally, we tested the differences in mean
316	body size between all of the recovery treatment sequences at the first generation the antibiotic
317	exposure was ceased to see with recovery in growth was impacted by the number of successive
318	generations of exposure. Again, some contrasts were statistically significant (R1->1 to R3->1: -
319	0.15 [-0.2734423, -0.0399243] mm; p = 0.003; R1->1 to R4->1: -0.17 [-0.29, -0.06]; p < 0.001),
320	but an overall pattern was not observable (Supplementary Table S1G).
004	

321

Expected cumulative reproduction was larger in generation 5 than in generation 1 in both the antibiotic (**Figure 4b**, +10.03 offspring [95% CI: 7.10, 12.96]; p < .001) and control treatments (+2.74 offspring [95% CI: 0.30, 5.20]; p = 0.024). Comparisons between the control treatment and other treatments within the same generational time point showed no clear pattern of significance (**Supplementary Table S1H**, **Supplementary Figure 2**). For instance, in generation 3 the mean reproduction by individuals in control sequences in was larger than the mean

328	reproduction of R1->2 and R2->1 (C3 – R1->2: 6.25 [2.82, 9.67]; p < 0.001; C3 - R2->1: 5.51
329	[1.98, 9.04]; p < 0.001) , but in generation 5 the mean reproduction of individuals in the control
330	sequences was smaller than the mean reproduction of individuals in R1->4 and in R2->3 (C5 to
331	R1->4: -7.63 [-11.85, -3.40]; p < 0.001; C5 to R2->3: -6.10 [-10.10, -2.11]; p < 0.001). Finally, the
332	mean reproduction of individuals after their first generation of recovery showed no overall
333	pattern across the recovery treatments, with some significant differences (R1->1 to R2->1: 3.93
334	[0.97, 6.9]; p = 0.004; R1->1 to R3->1: 4.83 [1.95, 7.72]; p < 0.001; R3->1 - R4->1: -3.45 [-6.28,
335	-0.63]; p = 0.009), but other differences were not significant (Supplementary Table S1H).
336	
337	Though both growth and cumulative reproduction increased over time, survival did not.
338	Individuals in later generations had significantly lower survival, with those in generations 3-5
339	more likely to die than those in the initial generation (all $p < 0.05$, generation 3 hazard ratio
340	(HR) = 11.3, generation 4 HR = 12.9, generation 5 HR = 10.2, Supplementary Figure 3,
341	Supplementary Table S1I) and those in antibiotics less likely to survive than those in recovery
342	or control (<i>p</i> = 0.004, HR = 2.8, Supplementary Figure 3, Supplementary Table S1I).
343	
344	To help connect the microbiome and life history results, we examined the relationship between
345	each ASV's relative abundance and host life-history metrics through Pearson correlation of
346	average final size for the individuals pooled for each sequencing sample, and the same for
347	average cumulative reproduction. ASVs correlated with <i>Daphnia magna</i> body size primarily
348	belonged to Alphaproteobacteria and Gammaproteobacteria (Figure 4c, Supplementary Table
349	S1J), as did the ASVs correlated with cumulative reproduction (Figure 4d, Supplementary Table

350	S1K). Of these, most were found at relatively low abundances with the exceptions of
351	Limnohabitans ASV 5 and UBA4466 ASV 8, which were positively associated with Daphnia
352	magna reproduction ($R = 0.5$, $p = 0.035$) and negatively associated with reproduction ($R = -0.67$,
353	p = 0.002), respectively. ASVs from the Alphaproteobacteria were generally correlated with
354	reduced cumulative reproduction and reduced final size as relative abundance increased (e.g.,
355	Sphingopyxis ASV20, Sphingorhabdus_B ASV30, Lewinella_A ASV 35, and UBA4466 ASV 8),
356	while cumulative reproduction increased with increased relative abundance of
357	Gammaprotebacteria (e.g., Limnohabitans ASV 5, Moraxellaceae ASV 22).
358	
359	Discussion
360	Investigating how the microbiome shifts across generations of hosts, both through normal
361	processes of microbiome transmission and in response to external stressors, is important for
362	increasing our understanding of microbe-host interactions across time. In this study, we
363	examined life history outcomes and microbiome composition across five generations of
364	antibiotic treatment and recovery in the zooplankton Daphnia magna. We found significant
365	impacts of antibiotic treatment on life history, impacting survival and composition across
366	multiple generations of continuous antibiotic exposure. We also found an effect of generational
367	isolation on host fitness and microbiome composition. Offspring of individually raised Daphnia
368	<i>magna</i> were only exposed to parental microbes for 24 hours before transfer to their individual
369	vials, and microbiome diversity decreased across generations of this imposed isolation. At the
370	same time, Daphnia magna body size increased, as did cumulative reproduction, and survival
371	decreased.

372

373	The pairing of increased host fitness (with the exception of survival) and reduced microbiome
374	diversity presents an intriguing case of microbial loss positively impacting hosts. This pattern
375	has been observed in <i>Daphnia magna</i> before, where it was attributed to a direct positive effect
376	of antibiotics on the host[37]. However, the same pattern emerging here even in the control
377	treatment indicates that reduced diversity might directly and positively impact host fitness. In
378	the control treatment, the most abundant members of the microbiome became more
379	abundant, comprising nearly 90% of relative abundance by the fifth generation. Across other
380	treatments, microbiome diversity also decreases, though perturbation with antibiotics makes
381	that effect less apparent until later generations. While it is possible that external, unmeasurable
382	factors were changing in this experiment (e.g., food quality or season-dependent life history
383	changes), observing the same pattern of reduced diversity increasing fitness as in another
384	Daphnia magna study and across multiple treatments indicates that this is unlikely.
385	
386	Our results suggest several non-exclusive possibilities. Rare taxa may always be pathogenic and
387	be maintained through horizontal transmission among hosts. Over generations, these
388	detrimental rare taxa could be lost stochastically as transmission events would happen rarely in
389	the restricted transmission setup. Alternatively, this pathogenicity may be context dependent,
390	with the taxa providing benefits for the host in specific environmental conditions, but harming
391	the host in other conditions[52]. In this case, host mechanisms may force these taxa from the
392	microbiome if they are detrimental in the laboratory conditions maintained during our
393	experiment (isolated individuals in an environment with abundant resources and constant

394 temperature). Alternatively, rare taxa could have no direct impact on host fitness but may be 395 occupying niche space that would otherwise be occupied by beneficial taxa. Here, host 396 mechanisms may lead to the deterministic loss of these niche-occupying rare taxa[53]. It is also 397 possible that these taxa are lost stochastically as they are sustained at high enough population 398 densities to ensure consistent transmission to naïve hosts across generations. It is likely that 399 many of these factors are at play in the *Daphnia* microbiome: for example, a low abundance 400 Chitinophagaceae genome in the *Daphnia* microbiota encodes for the degradation of chitin (a 401 key component of *Daphnia magna*'s carapace) while other low abundance genomes from 402 Polaromonas and Burkholderiaceae encode for amino acid biosynthesis and export, important 403 dietary components for Daphnia[34]. Our differential abundance analysis also indicates that several Chitinophagaceae ASVs are significantly less abundant in the final generations of both 404 405 the antibiotic and control treatments.

406

407 Though correlation of a taxon's relative abundance with host traits does not directly imply 408 causation nor the underlying mechanisms of potential associations, several of the taxa 409 highlighted in this study have been previously associated with host fitness. In particular, species 410 in the highly abundant genus *Limnohabitans* have been beneficially linked to host reproduction 411 across studies[30,31,54]. Potential mechanisms underlying *Daphnia*-associated *Limnohabitans* 412 benefits to the host include tolerance to toxins, breakdown of complex carbohydrates from 413 algal food sources, and provision of essential amino acids to the host[34,55,56]. Moraxellaceae, 414 identified in other work as a family significantly affected by changes in environmental 415 temperature[38], is positively associated with host fitness in this study. A UBA4466 ASV (ASV 8,

416	in the Crocinitomicaceae family), is negatively associated with both <i>Daphnia magna</i> body size
417	and cumulative reproduction, warranting further investigation into whether this species has
418	specific negative effects on host fitness or if interactions with other taxa are at play.
419	
420	We also found that the <i>Daphnia magna</i> microbiome is surprisingly resilient to
421	multigenerational antibiotic exposure, often recovering quickly in individuals that were
422	removed from antibiotic exposure. As can be seen in the treatments where Daphnia were
423	exposed to antibiotics for 3 and 4 generations and then allowed to recover, microbiome
424	composition in the final generation of recovery after was similar to that of the final generation
425	of control. This effect was diminished in the recovery treatments where <i>Daphnia</i> were exposed
426	for only 1 or 2 generations, presumably due to more generations in isolation with a microbiome
427	freed from antibiotic suppression, yet these communities were still more similar to the control
428	communities than the antibiotic-treated communities.
429	
430	The Daphnia magna microbiome's resilience to antibiotic exposure is intriguing, as the
431	microbiome of individuals allowed to recover for just one generation is able to return to a
432	similar composition as the control individuals. This quick recovery may partially be attributed to
433	the relative simplicity of its microbiome and potential microbe-microbe interactions
434	maintaining microbiome stability. Antibiotics can permanently alter microbe-microbe
435	interactions in host-associated microbiomes, shifting the dynamics of microbiome structure and
436	assembly[57]. We do not observe a significant, consistent change in structure across recovering
437	Daphnia in this study, suggesting that interactions among microbiome members are preserved.

438	The simplicity of <i>Daphnia magna</i> 's microbiome may enforce strict microbe-microbe
439	interactions, as functional relationships in this system are limited to the present microbes while
440	in more complex microbiomes functional redundancy allows for multiple species to share
441	interactions, changing microbiome structure depending on which interactions are
442	occurring[58,59]. Resistance to antibiotics may also play a role, as antibiotic resistance has been
443	identified in the <i>Daphnia</i> microbiome[60,61]. While this may explain why specific community
444	members increased in relative abundance after antibiotic exposure, the return to more control-
445	like microbiome composition in recovery strongly supports the strengths of microbe-microbe
446	interactions in assembly and stability of the Daphnia microbiome. Although microbiome
447	composition appears to mostly be resilient in <i>Daphnia</i> allowed to recover, hosts in the
448	antibiotic treatment and those in antibiotics for more generations prior to recovery were still
449	more likely to die than those in the control treatment, indicating that there still are some
450	impacts of antibiotics to the microbiome that are not necessarily observable through examining
451	relative abundances.
452	

The environmental pool of microbes available to *Daphnia magna* clearly shapes its microbiome[33,35,40], but the impact of isolation on microbial diversity shown in this study underscored how important host shedding of microbes into the environment (e.g., horizontal transmission) is for maintaining microbial diversity. Isolation reduces microbial diversity, indicating that environmental transmission of microbes from populations of adult *Daphnia magna* to juveniles allows rare taxa to persist while isolation reduces the chances of rare taxa to colonize subsequent generations. However, it remains unclear *why* these rare taxa are

460	maintained in host populations. Further genomic and transcriptomic work is needed to identify
461	the roles these microbes play the <i>Daphnia</i> ecosystem, and isolating juveniles to only receive
462	microbes from their parents provides an interesting method for testing how loss of rare taxa in
463	the microbiome impacts host fitness across a range of environmental stressors.
464	
465	Conclusions
466	Antibiotics impact host fitness by perturbing the microbiome, but our understanding of how
467	these perturbations affect host fitness across multiple generations of exposure and recovery is
468	limited. We utilized a novel split-brood design in Daphnia magna to understand the
469	multigenerational effects of antibiotic exposure on host fitness. We found that the Daphnia
470	magna microbiome is able to recover quickly after release from antibiotics, with offspring of
471	exposed parents able to return to a microbiome composition similar to that of individuals in no
472	antibiotics. Due to our experimental design, we also find an intriguing link between reduced
473	microbiome diversity and increased host fitness across generations. Our results suggest that
474	rare taxa in the microbiome may not play a beneficial role, but instead may be detrimental for
475	the host in some environmental contexts. Moreover, our results demonstrate that Daphnia
476	magna can play an important role as a model organism in exploring the links between
477	microbiome resilience, function, and diversity.
478	
479	Declarations
480	Ethical Approval and Consent to Participate
481	Does not apply.

- 482 **Consent for Publication**
- 483 Does not apply.
- 484 Availability of Supporting Data
- 485 16S rRNA read data is available under BioProject PRJNA703930. All code and other data are
- 486 available on Github
- 487 (https://github.com/reillyowencooper/daphnia multigenerational antibiotics), including an
- 488 .rds file containing the processed 16S data in a phyloseq object and R Markdown files
- 489 documenting all analyses.
- 490 **Competing Interests**
- 491 The authors declare that there are no competing interests.
- 492 Funding
- 493 This work was supported by a Faculty Seed Grant from the Office of Research and Economic
- 494 Development at the University of Nebraska-Lincoln to CEC, a UCARE grant to ST, and an INBRE
- 495 fellowship to JR.
- 496 Author Contributions
- 497 ST, JR, ROC, and CEC designed the study. Animal husbandry and data collection was performed
- 498 by ST and JR. Data analysis was conducted by ROC and DTN. ROC wrote the first manuscript
- 499 draft and ST, JR, DTN, and CEC contributed to manuscript revisions. All authors approved the
- 500 final manuscript version.
- 501 Acknowledgements

- 502 We thank Mallory Van Haute, Qinnan Yang, and Dr. Andrew K. Benson for assistance with 16S
- 503 rRNA library preparation and sequencing. We also thank Chloé Miglierina for her illustration of
- 504 Daphnia magna used in Figure 1.
- 505

506 **References**

507 1. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, et al. Antibiotics, birth mode, 508 and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8:343ra82.

- Schulfer A, Blaser MJ. Risks of Antibiotic Exposures Early in Life on the Developing
 Microbiome. PLOS Pathog. Public Library of Science; 2015;11:e1004903.
- 511 3. Looft T, Allen HK. Collateral effects of antibiotics on mammalian gut microbiomes. Gut
 512 Microbes. 2012;3:463–7.
- 4. Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout
 development and alternative approaches for therapeutic modulation. Genome Med. 2016;8:39.

515 5. Holman DB, Yang W, Alexander TW. Antibiotic treatment in feedlot cattle: a longitudinal study
516 of the effect of oxytetracycline and tulathromycin on the fecal and nasopharyngeal microbiota.
517 Microbiome. 2019;7:86.

- 6. Willmann M, Vehreschild MJGT, Biehl LM, Vogel W, Dörfel D, Hamprecht A, et al. Distinct
 impact of antibiotics on the gut microbiome and resistome: a longitudinal multicenter cohort
 study. BMC Biol. 2019;17:76.
- 521 7. Jakobsson HE, Jernberg C, Andersson AF, Sjölund-Karlsson M, Jansson JK, Engstrand L.
 522 Short-Term Antibiotic Treatment Has Differing Long-Term Impacts on the Human Throat and
 523 Gut Microbiome. PLOS ONE. Public Library of Science; 2010;5:e9836.
- 8. Daisley BA, Chmiel JA, Pitek AP, Thompson GJ, Reid G. Missing Microbes in Bees: How
 Systematic Depletion of Key Symbionts Erodes Immunity. Trends Microbiol.
 2020;S0966842X20301852.
- 527 9. Lewis JD, Chen EZ, Baldassano RN, Otley AR, Griffiths AM, Lee D, et al. Inflammation,
 528 Antibiotics, and Diet as Environmental Stressors of the Gut Microbiome in Pediatric Crohn's
 529 Disease. Cell Host Microbe. 2015;18:489–500.
- 530 10. Gould AL, Zhang V, Lamberti L, Jones EW, Obadia B, Korasidis N, et al. Microbiome
 531 interactions shape host fitness. Proc Natl Acad Sci. 2018;115:10.

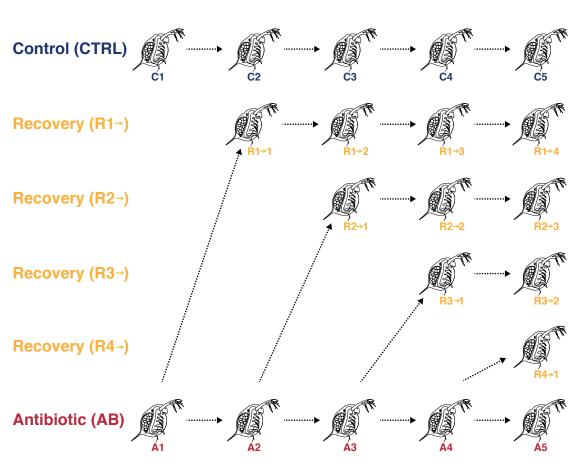
532 11. Leong KSW, Derraik JGB, Hofman PL, Cutfield WS. Antibiotics, gut microbiome and
 533 obesity. Clin Endocrinol (Oxf). 2018;88:185–200.

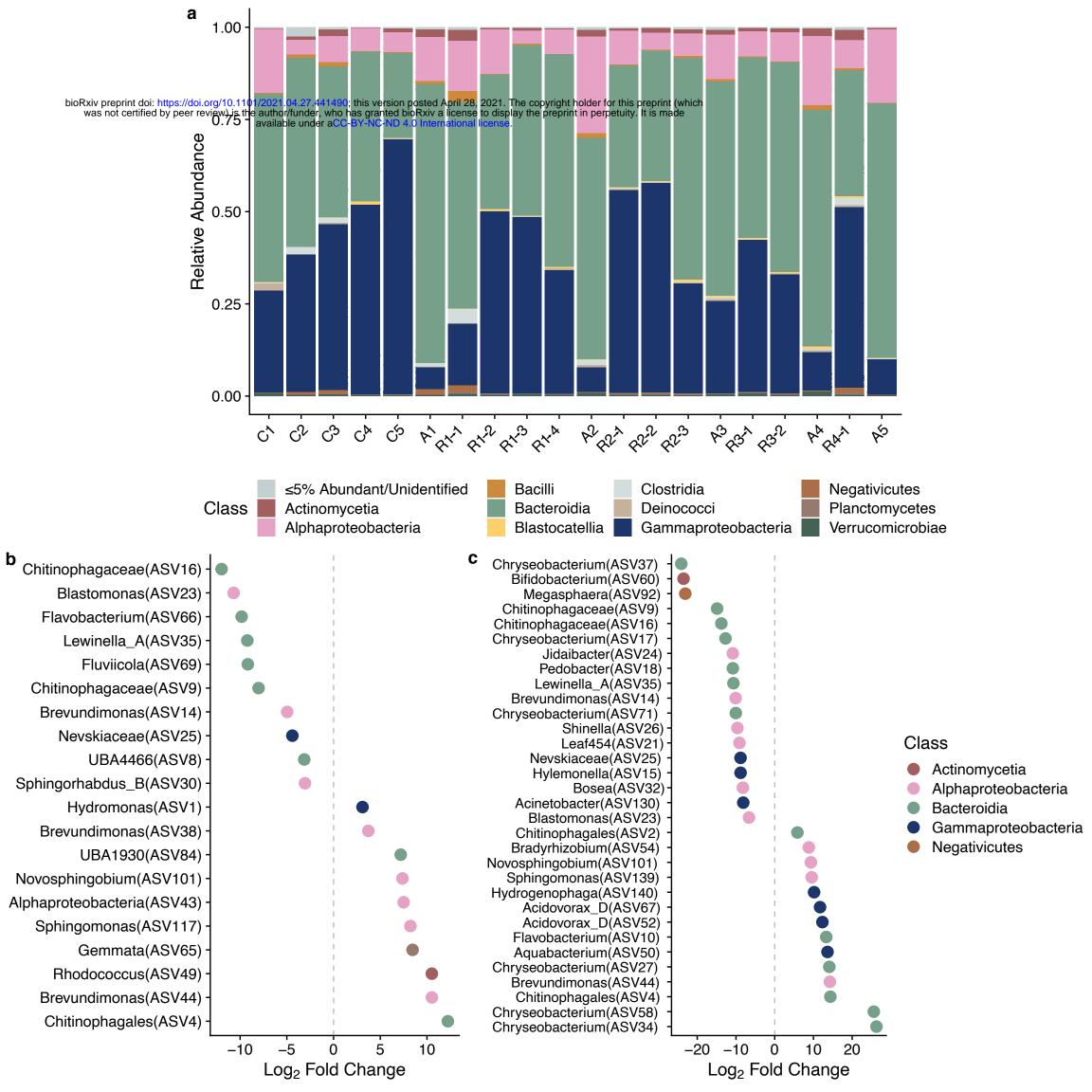
- 534 12. Blaser MJ. Antibiotic use and its consequences for the normal microbiome. Science.535 2016;352:544–5.
- 536 13. Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term impacts of antibiotic exposure on 537 the human intestinal microbiota. Microbiology. 2010;156:3216–23.
- 538 14. Raymann K, Shaffer Z, Moran NA. Antibiotic exposure perturbs the gut microbiota and 539 elevates mortality in honeybees. PLOS Biol. Public Library of Science; 2017;15:e2001861.
- 540 15. Hagan T, Cortese M, Rouphael N, Boudreau C, Linde C, Maddur MS, et al. Antibiotics541 Driven Gut Microbiome Perturbation Alters Immunity to Vaccines in Humans. Cell.
 542 2019;178:1313-1328.e13.
- 543 16. Miller EA, Beasley DE, Dunn RR, Archie EA. Lactobacilli Dominance and Vaginal pH: Why
 544 is the Human Vaginal Microbiome Unique? Front Microbiol [Internet]. 2016 [cited 2019 Aug
 545 26];7. Available from: https://www.frontiersin.org/articles/10.3389/fmicb.2016.01936/full
- 546 17. Ferrer M, Méndez-García C, Rojo D, Barbas C, Moya A. Antibiotic use and microbiome 547 function. Biochem Pharmacol. 2017;134:114–26.
- 548 18. Theriot CM, Koenigsknecht MJ, Carlson PE, Hatton GE, Nelson AM, Li B, et al. Antibiotic549 induced shifts in the mouse gut microbiome and metabolome increase susceptibility to
 550 Clostridium difficile infection. Nat Commun. 2014;5:3114.
- 551 19. Szymańska U, Wiergowski M, Sołtyszewski I, Kuzemko J, Wiergowska G, Woźniak MK.
 552 Presence of antibiotics in the aquatic environment in Europe and their analytical monitoring:
 553 Recent trends and perspectives. Microchem J. 2019;147:729–40.
- 20. Martinez JL. Environmental pollution by antibiotics and by antibiotic resistance determinants.
 Environ Pollut. 2009;157:2893–902.
- 21. Asnicar F, Manara S, Zolfo M, Truong DT, Scholz M, Armanini F, et al. Studying Vertical
 Microbiome Transmission from Mothers to Infants by Strain-Level Metagenomic Profiling.
 2017;2:13.
- 559 22. Engel P, Moran NA. The gut microbiota of insects diversity in structure and function.
 560 FEMS Microbiol Rev. Oxford Academic; 2013;37:699–735.
- 23. Ivens ABF, Gadau A, Kiers ET, Kronauer DJC. Can social partnerships influence the
 microbiome? Insights from ant farmers and their trophobiont mutualists. Mol Ecol.
 2018;27:1898–914.
- 24. Powell JE, Martinson VG, Urban-Mead K, Moran NA. Routes of Acquisition of the Gut
 Microbiota of the Honey Bee Apis mellifera. Goodrich-Blair H, editor. Appl Environ Microbiol.
 2014;80:7378–87.
- 25. Walsh MC, Sholly DM, Hinson RB, Saddoris KL, Sutton AL, Radcliffe JS, et al. Effects of
 water and diet acidification with and without antibiotics on weanling pig growth and microbial
 shedding, J Anim Sci. Oxford Academic; 2007;85:1799–808.

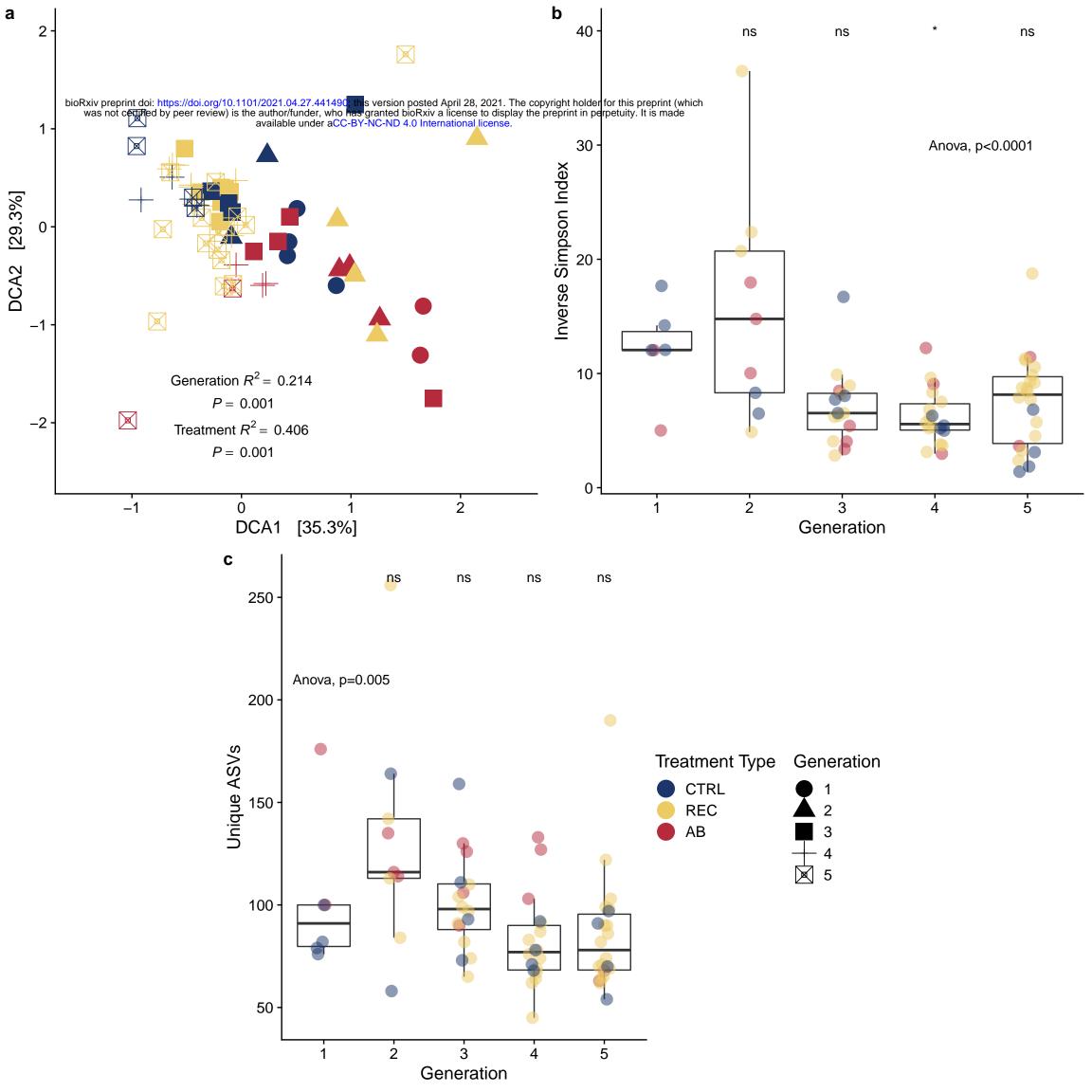
- 570 26. Fouhy F, Guinane CM, Hussey S, Wall R, Ryan CA, Dempsey EM, et al. High-Throughput
- 571 Sequencing Reveals the Incomplete, Short-Term Recovery of Infant Gut Microbiota following 572 Parenteral Antibiotic Treatment with Ampicillin and Gentamicin. Antimicrob Agents Chemother.
- 573 2012;56:5811–20.
- 574 27. Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R, Watson M. Compendium of 4,941
 575 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery.
 576 Nat Biotechnol. 2019;37:953–61.
- 577 28. Poynton HC, Varshavsky JR, Chang B, Cavigiolio G, Chan S, Holman PS, et al. *Daphnia*578 *magna* Ecotoxicogenomics Provides Mechanistic Insights into Metal Toxicity. Environ Sci
 579 Technol. 2007;41:1044–50.
- 29. OECD. Test No. 211: Daphnia magna Reproduction Test. OECD Publ Paris [Internet]. 2012
 [cited 2020 Sep 21]; Available from: https://www.oecd-ilibrary.org/environment/test-no-211daphnia-magna-reproduction-test_9789264185203-en
- 585 2018 Oct 26];62. Available from: http://link.springer.com/10.1007/s00248-011-9886-8
- 31. Peerakietkhajorn S, Kato Y, Kasalický V, Matsuura T, Watanabe H. Betaproteobacteria
 Limnohabitans strains increase fecundity in the crustacean Daphnia magna: symbiotic
 relationship between major bacterioplankton and zooplankton in freshwater ecosystem. Environ
 Microbiol. 2016;18:2366–74.
- 32. Cooper RO, Vavra JM, Cressler CE. Targeted Manipulation of Abundant and Rare Taxa in
 the Daphnia magna Microbiota with Antibiotics Impacts Host Fitness Differentially. mSystems
 [Internet]. American Society for Microbiology Journals; 2021 [cited 2021 Apr 20];6. Available
 from: https://msystems.asm.org/content/6/2/e00916-20
- 33. Macke E, Callens M, De Meester L, Decaestecker E. Host-genotype dependent gut
 microbiota drives zooplankton tolerance to toxic cyanobacteria. Nat Commun [Internet]. 2017
 [cited 2018 Oct 26];8. Available from: http://www.nature.com/articles/s41467-017-01714-x
- 597 34. Cooper RO, Cressler CE. Characterization of key bacterial species in the Daphnia magna
 598 microbiota using shotgun metagenomics. Sci Rep. 2020;10:652.
- 35. Mushegian AA, Arbore R, Walser J-C, Ebert D. Environmental Sources of Bacteria and
 Genetic Variation in Behavior Influence Host-Associated Microbiota. Stams AJM, editor. Appl
 Environ Microbiol. 2019;85:e01547-18, /aem/85/8/AEM.01547-18.atom.
- 36. Gorokhova E, Rivetti C, Furuhagen S, Edlund A, Ek K, Breitholtz M. Bacteria-Mediated
 Effects of Antibiotics on Daphnia Nutrition. Environ Sci Technol. 2015;49:5779–87.
- 37. Motiei A, Brindefalk B, Ogonowski M, El-Shehawy R, Pastuszek P, Ek K, et al. Disparate
 effects of antibiotic-induced microbiome change and enhanced fitness in Daphnia magna.
 Oliveira PL, editor. PLOS ONE. 2020;15:e0214833.

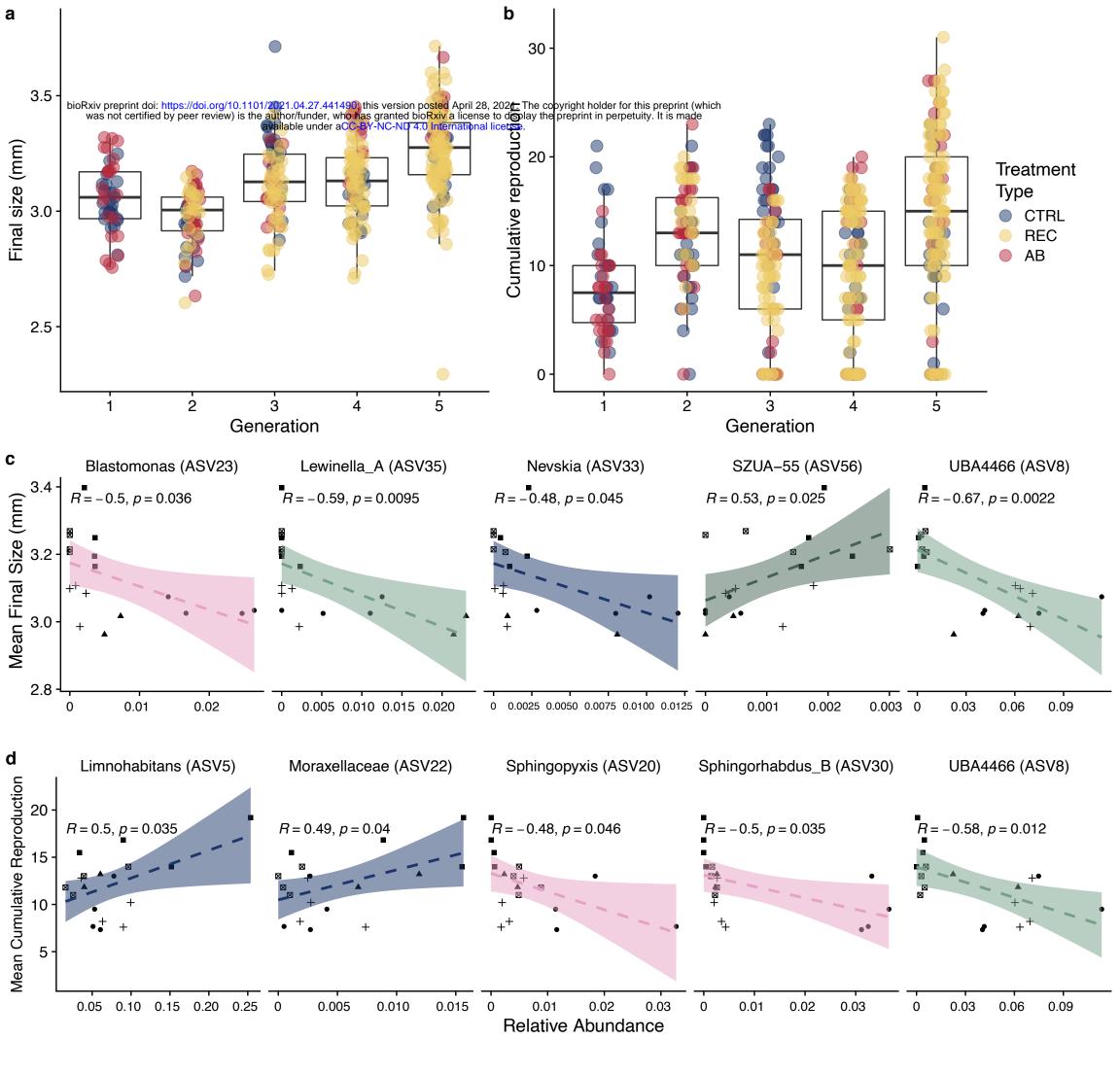
38. Frankel-Bricker J, Song MJ, Benner MJ, Schaack S. Variation in the Microbiota Associated
with Daphnia magna Across Genotypes, Populations, and Temperature. Microb Ecol [Internet].
2019 [cited 2019 Dec 2]; Available from: https://doi.org/10.1007/s00248-019-01412-9

39. Macke E, Callens M, Massol F, Vanoverberghe I, De Meester L, Decaestecker E. Diet and


- 611 Genotype of an Aquatic Invertebrate Affect the Composition of Free-Living Microbial
- 612 Communities. Front Microbiol [Internet]. 2020 [cited 2020 Jun 11];11. Available from:
- 613 https://www.frontiersin.org/articles/10.3389/fmicb.2020.00380/full?report=reader
- 40. Callens M, De Meester L, Muylaert K, Mukherjee S, Decaestecker E. The bacterioplankton
 community composition and a host genotype dependent occurrence of taxa shape the Daphnia
 magna gut bacterial community. FEMS Microbiol Ecol. 2020;fiaa128.
- 41. Sison-Mangus MP, Mushegian AA, Ebert D. Water fleas require microbiota for survival,
 growth and reproduction. ISME J. 2015;9:59–67.
- 42. Auld SKJR, Wilson PJ, Little TJ. Rapid change in parasite infection traits over the course of an epidemic in a wild host-parasite population. Oikos. 2014;123:232–8.
- 43. Kilham SS, Kreeger DA, Lynn SG, Goulden CE, Herrera L. COMBO: a defined freshwater culture medium for algae and zooplankton. :13.
- 44. Caporaso JG, Lauber CL, Walters WA, Lyons DB-, Lozupone CA, Turnbaugh PJ, et al.
 Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl
 Acad Sci U S A. 2011;108:4516–22.
- 45. Zeileis A, Kleiber C, Jackman S. Regression Models for Count Data in R. J Stat Softw.
 2008;27:1–25.
- 46. Lenth RV. emmeans: Estimated Marginal Means, aka Least-Squares Means. [Internet].
 2021. Available from: https://CRAN.R-project.org/package=emmeans
- 47. Therneau TM. A Package for Survival Analysis in R [Internet]. 2021. Available from:
 https://CRAN.R-project.org/package=survival
- 48. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: Highresolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
- 49. McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and
 Graphics of Microbiome Census Data. PLOS ONE. 2013;8:e61217.
- 50. Ali Alishum. DADA2 formatted 16S rRNA gene sequences for both bacteria & archaea
 [Internet]. Zenodo; 2019 [cited 2019 Dec 1]. Available from: https://zenodo.org/record/2541239
- 638 51. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-
- seq data with DESeq2. Genome Biol [Internet]. 2014 [cited 2018 Oct 26];15. Available from:
 http://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8
- 52. Ewald PW. Transmission Modes and Evolution of the Parasitism-Mutualism Continuuma.
 Ann N Y Acad Sci. 1987;503:295–306.


- 53. Bauer MA, Kainz K, Carmona-Gutierrez D, Madeo F. Microbial wars: Competition in ecological niches and within the microbiome. Microb Cell. 2018;5:215–9.
- 54. Akbar S, Gu L, Sun Y, Zhou Q, Zhang L, Lyu K, et al. Changes in the life history traits of
 Daphnia magna are associated with the gut microbiota composition shaped by diet and
 antibiotics. Sci Total Environ. 2020;705:135827.
- 55. Akbar S, Huang J, Zhou Q, Gu L, Sun Y, Zhang L, et al. Elevated temperature and toxic
 Microcystis reduce Daphnia fitness and modulate gut microbiota. Environ Pollut. 2020;116409.
- 56. Taipale SJ, Galloway AWE, Aalto SL, Kahilainen KK, Strandberg U, Kankaala P. Terrestrial
 carbohydrates support freshwater zooplankton during phytoplankton deficiency. Sci Rep.
 2016;6:30897.
- 653 57. Coyte KZ, Rao C, Rakoff-Nahoum S, Foster KR. Ecological rules for the assembly of 654 microbiome communities. PLOS Biol. Public Library of Science; 2021;19:e3001116.
- 58. Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O'Connor MI, et al. Function and
 functional redundancy in microbial systems. Nat Ecol Evol. Nature Publishing Group;
 2018;2:936–43.
- 658 59. Moya A, Ferrer M. Functional Redundancy-Induced Stability of Gut Microbiota Subjected to
 659 Disturbance. Trends Microbiol. 2016;24:402–13.
- 60. Liu Z, Klümper U, Liu Y, Yang Y, Wei Q, Lin J-G, et al. Metagenomic and
 metatranscriptomic analyses reveal activity and hosts of antibiotic resistance genes in activated
 sludge. Environ Int. 2019;129:208–20.
- 663 61. Eckert EM, Di Cesare A, Stenzel B, Fontaneto D, Corno G. Daphnia as a refuge for an
 664 antibiotic resistance gene in an experimental freshwater community. Sci Total Environ.
 665 2016;571:77–81.
- 666
- 667
- 668


669 Supplementary Figures


- 670
- 671 Supplementary Figure 1: *Daphnia magna* final size across all treatments colored by treatment
- 672 type (CTRL = control, REC = recovery, AB = antibiotic).
- 673
- 674 Supplementary Figure 2: Daphnia magna cumulative reproduction across all treatments colored

675	by treatment type (CTRL = control, REC = recovery, AB = antibiotic).
676	
677	Supplementary Figure 3: Proportion of <i>Daphnia magna</i> surviving across the 21-day duration of
678	the experiment, separated by generation.
679	
680	Supplementary Figure 4: Alpha diversity of the Daphnia magna microbiome across treatments,
681	measured by the Inverse Simpson Index and colored by treatment type (CTRL = control, REC =
682	recovery, AB = antibiotic).
683	
684	Supplementary Figure 5: Number of unique ASVs found in the Daphnia magna microbiome
685	across treatments, colored by treatment type (CTRL = control, REC = recovery, AB = antibiotic).
686	
687	Supplementary Figure 6: Detrended correspondence analysis using only control samples, with
688	points colored by generations spent in the control.
689	
690	Supplementary Figure 7: Detrended correspondence analysis using only antibiotic samples, with
691	points colored by generations spent in the control.
692	

