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 28 

Abstract. 29 

 30 

The biology of vector adaptation to the human habitat remains poorly understood for many 31 

arthropod-borne diseases but underpins effective and sustainable disease control.  We 32 

adopted a landscape genomics approach to investigate gene flow, signatures of local 33 

adaptation, and drivers of population structure among multiple linked wild and domestic 34 

population pairs in Rhodnius ecuadoriensis, an important vector of Chagas Disease. 35 

Evidence of high triatomine gene flow (FST) between wild and domestic ecotopes at sites 36 

throughout the study area indicate insecticide-based control will be hindered by constant re-37 

infestation of houses. Genome scans revealed genetic loci with strong signal of local 38 

adaptation to the domestic setting, which we mapped to annotated regions in the Rhodnius 39 

prolixus genome. Our landscape genomic mixed effects models showed Rhodnius 40 

ecuadoriensis population structure and connectivity is driven by landscape elevation at a 41 

regional scale. Our ecologically- and spatially-explicit vector dispersal model enables 42 

targeted vector control and recommends spatially discrete, periodic interventions to local 43 

authorities as more efficacious than current, haphazard approaches. In tandem, evidence for 44 

parallel genomic adaptation to colonisation of the domestic environment at multiple sites 45 
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sheds new light on the evolutionary basis of adaptation to the human host in arthropod 46 

vectors.  47 

 48 

Main. 49 

 50 

The process by which insect vectors of human diseases adapt to survive and breed in 51 

human habitats is fundamental to the emergence and spread of vector-bone disease   52 

 (e.g., Aedes aegypti1). Relatively modest changes in vector host preference between 53 

ancestral (wild) and derived (domesticated) forms can drive devastating epidemics that 54 

result in millions of deaths2. Understanding the evolution and genetic bases of traits 55 

associated with domestication in disease vectors is, therefore, paramount and could inform 56 

control efforts and reveal the epidemic potential for new vector species3,4. Furthermore, an 57 

accurate definition of landscape functional connectivity (the level at which the landscape 58 

heterogeneity facilitates or impedes an organism’s movement from, and to, different habitat 59 

patches5) can shed light on the drivers of vector dispersal, and even assist in identifying 60 

poorly connected or isolated areas that can be easily targeted by eradication interventions6–
61 

8. 62 

 63 

Triatominae (Hemiptera: Reduviidae) are a group of hematophagous arthropods that 64 

transmit Trypanosoma cruzi, the parasite that causes Chagas disease, a fatal parasitic 65 

infection afflicting > 7 million people in Latin America9. Eradication of ‘domesticated’ 66 

triatomines has been the mainstay of disease control in the past (e.g., Triatoma infestans10, 67 

Rhodnius prolixus and Triatoma dimidiata11). However, wild (e.g., T. infestans12 and R. 68 
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prolixus13) and/or secondary competent species of triatomines (e.g., Triatoma sordida14, 69 

Triatoma maculata and Rhodnius pallescens15, Panstrongylus howardi16 and P. chinai17) can 70 

occupy empty domestic niches and continue to jeopardise Chagas disease control 71 

strategies. 72 

 73 

Colonisation of the domestic niche may involve multiple, independent evolutionary 74 

processes across the geographic distribution of a given vector species18,19, analogous to 75 

parallel trophic speciation observed in other arthropods20. Alternately, domestication of 76 

zoonotic parasites and their vectors may result from a single or limited number of 77 

independent colonisation events, followed by rapid and widespread dispersal within the 78 

domestic setting21,22. Domestication of a given species may also represent a combination of 79 

these two scenarios, where multiple domesticated lineages serially introgress with wild 80 

lineages over evolutionary time, as has been elegantly demonstrated through analysis of the 81 

genomes of the domestic pig23. Disentangling these different scenarios in triatomine species, 82 

and their important implications for disease control, has been challenging due to a lack of 83 

genomic resources for these organisms which are only recently becoming available24–26. 84 

With adequate genomic tools; however, the occurrence of domestic colonisation can be 85 

established, and its underlying mechanisms unveiled. Parallel colonisation events explored 86 

using models of ‘adaptation with gene flow’ (e.g., 27) can exploit standard population genetic 87 

metrics and theory to make generalisations about the genomic basis of adaptations (e.g., 20) 88 

and reveal fundamental traits associated with the domestic niche. 89 

 90 
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Rhodnius ecuadoriensis is the major vector for Chagas disease in Ecuador and Northern 91 

Peru28. Both domestic and wild populations of this species exist throughout its range29. 92 

Preliminary morphological and genetic evidence suggests some gene flow of R. 93 

ecuadoriensis between domestic and wild ecotopes30,31. By comparison, genetic studies of 94 

T. cruzi infecting the same vectors in Ecuador have shown strong  to moderate  95 

differentiation between wild and domestic isolates32,33. As such there is a lack of a clear 96 

understanding of the micro and macro-evolutionary and ecological forces shaping vector 97 

domestic adaptation and dispersal capabilities, and those of the parasites they transmit. 98 

Morphometric studies have attempted to develop phenotypic markers in triatomines 99 

associated with domestic or wild ecotopes with little (e.g. 34) to moderate (e.g., 35) success. 100 

Therefore, domestication in triatomines has become a rather qualitative concept36 with 101 

urgent need for quantitative foundations. 102 

 103 

Our study represents a first attempt to accurately quantify genomic signatures of 104 

domestication of triatomine species, as well as landscape drivers of vector dispersal. We use 105 

a reduced-representation sequencing approach (2b- RADseq) to recover genome-wide SNP 106 

variation in 272 Rhodnius ecuadoriensis individuals collected across ecological gradients in 107 

Loja, Ecuador. We find strong evidence of gene flow between domestic and wild ecotopes 108 

and signatures of local adaptation in some genomic regions. Furthermore, we provide 109 

substantial evidence that triatomine dispersal is fundamentally restricted by landscape 110 

elevation. Our findings suggest frequent and spatially targeted interventions, to cope with 111 

high gene flow and fragmented populations, are necessary to suppress Chagas Disease 112 
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transmission in Loja. Moreover, discovery of signatures of local adaptation shed the first light 113 

on the genomics basis of domestication in triatomines. 114 

 115 

Results. 116 

 117 

Recovery of SNP markers from 272  Rhodnius ecuadoriensis SNP specimens.  Our 118 

CspCI-based 2b-RAD protocol was successful in obtaining genome-wide SNP information 119 

for R. ecuadoriensis. Sequencing of non-target species was minimal (0.2%) (Supplementary 120 

Figure 1). We genotyped six Rhodnius prolixus as controls and 80% of reads mapped to the 121 

R. prolixus reference genome. Only 9.5% of R. ecuadoriensis reads mapped to the same 122 

reference, a consequence of genomic sequence divergence between R. ecuadoriensis and 123 

R. prolixus 37. A stringent genotyping approach confidently identified 2,552 SNP markers 124 

across 272 R. ecuadoriensis samples from 25 collection sites, which represented closely 125 

administrative boundaries of human communities. (Supplementary Table 1). In seven 126 

collection sites (Figure 1a; CG, BR, CE, CQ, HY, SJ and GL- seven pairs) triatomines from 127 

both domestic and wild ecotopes were collected. Remaining sites only had individuals of one 128 

ecotope (domestic or wild). 129 

 130 

Reduced R. ecuadoriensis population genetic diversity in domestic ecotopes. Multiple 131 

genetic diversity estimates among populations from the 25 collection sites in Loja province 132 

were calculated (Obsvered (HO), and expected (HE) heterozygosity, inbreeding coefficient 133 

(FIS) and Allelic Richness (Ar); Supplementary Table 2). Sample-size corrected Ar values 134 

ranged from 1.19 to 1.44 with the lowest values in La Extensa (EX), San Jacinto (SJ), El 135 
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Huayco (HY) and Santa Rita (RT). In the paired ecotopes within the seven collection sites, Ar 136 

values were higher for wild than domestic triatomine populations in five out of seven 137 

instances, a significant effect observed (p<0.05, rarefaction method38). 138 

 139 

Genomic differentiation between domestic and wild ecotopes. To assay populations 140 

dynamics between sympatric domestic and wild foci, we focused our individual-based 141 

genomic differentiation and pairwise FST comparisons analyses on the seven collection sites 142 

for which samples from both ecotopes were available (Figure 1a). Supporting frequent 143 

migration between domestic and wild ecotopes, samples from each ecotope were 144 

interleaved at most collection sites in the phylogenetic tree, with collection site geography, 145 

not ecotope, impacting the tree topology (Figure 1b). As such, samples collected in 146 

Galapagos (GL), Coamine (CE) and Chaquizhca (CQ) formed distinct clusters, and El 147 

Huayco (HY) - San Jacinto (SJ) and Bramaderos (BR) - La Cienega (CG) also grouped 148 

discretely. Five broadly congruent clusters were defined in a discriminant analysis of 149 

principal components (DAPC) (Figure 1c), with geographic collection site rather than their 150 

ecotope again structuring observed diversity. FST indices between paired domestic and wild 151 

triatomine samples within each of the seven compared collection sites indicate little 152 

differentiation (e.g., FST ≤ 0.10). Permutation tests indicated that FST was significant (p < 153 

0.05) at only two sites - Bramaderos and El Huayco (Figure 1d). As expected, hierarchical 154 

analysis of molecular variance revealed genetic subdivision was significantly stronger 155 

(Fcollection sites/total = 0.26, p-value < 0.001) among collection sites than among ecotopes within 156 

collection sites (Fecotope/collection site = - 0.004, p-value < 0.001) or among collection year within 157 

communities (Fcollection year/collection site = 0.06, p-value < 0.001) (Supplementary Table 4). 158 
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 159 

 160 

 161 

Figure 1. Genomic differentiation of domestic and wild R. ecuadoriensis. a, geographic 162 

distribution of the seven collection sites with both ecotopes over an elevation surface map of Loja. b, 163 

Neighbor-Joining midpoint phylogenetic tree with phylogenies indicating the Euclidean distance 164 

between triatomine samples built from allele counts. Tree branches clades are colour-coded to 165 

approximately differentiate collection sites (or clusters of collection sites) with few samples (black 166 

asterisks) not conforming to the pattern. c, the scatter plot shows five clusters are built with the first 167 

and third principal components of the discriminant analysis eigenvalues. d, pairwise FST comparisons 168 

between domestic (blue box) and wild (green box) R. ecuadoriensis in multiple sites across Loja (a). 169 

Significant FST values (arrows) after FDR correction are highlighted in bold and an asterisk. In all 170 

panels, samples location (dots) and labels are colour-coded to indicate their domestic (blue) or wild 171 

(green) collection ecotope. Collection sites 2-letter ID labels: SJ, San Jacinto; HY, EL Huayco; GL, 172 

Galapagos; CQ, Chaquizhca; CE, Coamine; BR, Bramaderos; CG, La Cienega (see Supplementary 173 

Table 1 for full collection sites list). 174 

 175 

 176 
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Genetic loci correlated with domestic colonisation. To identify loci associated with 177 

domestic colonisation, we combined a Random Forest (RF) classification approach and 178 

redundancy analyses (RDA) with outlier scans. We included the seven collection sites with 179 

frequent domestic-wild migration and three additional wild-only sites to roughly conform 180 

similar number of domestic (n= 56) and wild (n= 52) samples. A total of 347 SNPs provided 181 

high ranked classification accuracy (mean > 3) across the three RF iterations (inset in Figure 182 

2a). Backwards purging on this highly discriminatory subset of SNPs detected a set of 43 183 

SNPs that minimised the ‘Out-of-bag’ error rate (OOB-ER) to a minimum of 0.09 and 184 

maximised the discriminatory power among domestic and wild samples (Figure 2a). In a 185 

parallel RDA model, ecotope (domestic / wild) was a predictor explaining approximately 186 

0.4% of the total variation and the constrained axis built from that variation was significant 187 

(p-value < 0.001), and so was the full model as indicated by the Monte Carlo permutation 188 

test. The distribution of each SNP loading/contribution to the RDA significant axis showed 189 

109 candidate adaptive loci as SNPs loadings at ±2 SD from the mean of this distribution 190 

(permissive threshold; Figure 2b). In a more conservative approach, we also identified seven 191 

loci from those 109 under very strong selection as represented by those SNPs loading at the 192 

extreme ±3 SD (conservative threshold) away from the mean distribution of the constrained 193 

axis (Figure 2b). The arrangement of the individual samples in the ordination space with 194 

relation to the RDA axis showed a clear pattern of subdivision comparable to the ecotope in 195 

which samples were collected (Figure 2c). The 21 loci/SNPs identified as adaptive loci (dark 196 

dots in Figure 2b) by RDA were also detected as highly discriminatory SNPs for domestic 197 

and wild ecotopes in the RF analysis. Assuming ‘adaptation with geneflow’ we assessed 198 

locus-specific estimates of FST (Figure 2d), among the 2552 SNPs between domestic and 199 
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wild ecotopes and identified one SNP (Locus ID 15732 – purple diamond in Figure 2bd) 200 

likely to be under local adaptation and/or spatial heterogeneous selection as suggested by 201 

OutFlank analysis (Figure 2d left). Moreover, outlier scan with fsthet (Figure 2d right) in the 202 

same subset flagged this OutFlank SNP and 73 additional SNPs showing FST higher that the 203 

average neutral loci distribution at a 5% threshold. In summary, 43 SNPs were identified with 204 

the highest classification accuracy in RF analysis. 21 of those SNPs showed some signal of 205 

adaptation (that is, loaded ± 2 SD away from mean distribution of contrained axis) and 4 206 

were identified showing strong signal of adaptation (that is, loaded ± 3 SD away from mean 207 

distribution of contrained axis) in RDA analysis. Three of the SNPs flagged as outliers in 208 

fsthet analysis were found also being at high classification accuracy in RF analysis. The 209 

SNP (Locus ID 15732) likely to be under strong selection as identified by OutFlank analysis, 210 

also had a high classification accuracy in RF and, interestingly, it was also identified within 211 

the RDA and fsthet SNPs sets under strong signal of selection. 212 

 213 

Mapping outlier loci to the Rhodnius prolixus genome. Several SNPs from the different 214 

analyses mapped to annotated regions of the R. prolixus genome. One SNP identified in the 215 

RDA analysis mapped (97.1% identity) in a R. prolixus genome region containing the 216 

characterised Krüppel gap gene (Accession No JN092576.1) involved in embryo 217 

development in arthropods39. Three SNPs likely to be under balancing selection identified in 218 

fsthet analysis mapped (100% identity) to regions in the R. prolixus genome containing 219 

characterised GE-rich and polylysine protein precursors (mRNA - Accession AY340265.1), 220 

and the Krüppel and giant gap genes39,40 (Accession No HQ853222.1). The former are 221 

important proteins within the sialome of blood-sucking bugs41 and the latter involved in 222 
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embryo development40. Mapping of the majority of putatively adaptive SNPs, including Locus 223 

ID 15732, was not possible in the absence of an available R. ecuadoriensis genome. 224 

 225 

 226 

Figure 2. Scanning outlier SNP markers for signatures of local adaptation. a, Random Forest 227 

backwards purging shows subsets with decreasing number of highly discriminatory SNPs and their 228 

resulting OOB-ER. The two vertical red lines indicated the 43 SNPs subset with the lowest OOB-ER 229 

and maximum discriminatory power between domestic and wild ecotopes. The inset shows SNPs 230 

ranked based on their classification accuracy averaged after 3-independent RF runs. SNPs with 231 

classification accuracy above three (red horizontal line) were used for the backwards purging. b, In 232 

our RDA model, SNPs (dots and diamonds) are arranged as a function of their relationship with the 233 

constrained predictor, ecotope (arrow outlines towards a wild ecotope relationship). SNPs closer to 234 

the centre (small grey dots) are not showing relation with the predictor. Adaptive loci/SNPs are 235 

represented by those large dots/diamond loading at ± 2 SD and ± 3 SD separated from the mean 236 

SNPs loading distribution. Black large dots (and purple diamond) represent loci/SNP identified with 237 

high classification power in RF analysis. c, a biplot of R. ecuadoriensis triatomine smaples and SNPs 238 

(small black dots in the centre) are arranged in relation to the constrained RDA axis with an arrow 239 

indicating those related to the wild ecotope. Dots are colour-coded to show sample ecotope of 240 

collection, domestic (blue) or wild (green). Biplot scaling is symmetrical with inset showing the density 241 

function for the RDA axis. d, Scatter plots show OutFlank (left) and fsthet (right) SNPs FST-242 
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heterozygosity relationship. 43 SNPs (large dots) had higher than average FST distribution of neutral 243 

loci in fsthet, whereas only one in OutFlank. Purple diamond indicated the SNP (ID 15732) flagged in 244 

all four analyses. 245 

 246 

Comparison of dispersal rates of R. ecuadoriensis between domestic sites with 247 

dispersal rates between wild sites. Including all samples (n = 272) and collection sites (n = 248 

25), we tested the strength of genetic isolation-by-distance (IBD) initially among domestic 249 

sample collection sites and latterly among wild collection sites (Figure 3). Mantel tests in 250 

both domestic (rm = 0.46, p-value < 0.001) and wild (rm = 0.31, p-value = 0.043) ecotopes 251 

strongly supported an effect of geographic distance on genetic distance (Figure 3a). Based 252 

on a generalised least square model (Supplementary Table 5) with maximum likelihood 253 

population effects parametrisation (GLS-MLPE), the effect of geographic distance 254 

significantly stronger (0.0018, p-value < 0.001) in wild compared to domestic foci (Figure 255 

3a), suggesting that the rate of vector dispersal occurred at a higher rate between domestic 256 

populations than between wild ones. 257 

 258 

 259 
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Figure 3. Dispersal rate in R. ecuadoriensis. a, correlation between pairwise genetic (FST) and 260 

geographic distances (data points) with fitted regression lines (95% CI) for domestic (blue dots) and 261 

wild (green diamonds) ecotopes. Fitted GLS-MLPE model in eqn 1. b, geographic distribution of the 262 

25 collection sites across Loja province used for estimating R. ecuadoriensis gene flow with 263 

geographic distance. Collection sites 2-letter ID labels: EX, La Extensa; SJ, San Jacinto; HY, EL 264 

Huayco; RT, Santa Rita; NJ, Naranjillo; GL, Galapagos; SS, Santa Rosa; TR, Tuburo; YS, Camayos; 265 

NT, San Antonio de Taparuca; AZ, Ardanza; GA, Guara; CQ, Chaquizhca; BM, Bella Maria; CE, 266 

Coamine; VC, Vega del Carmen; TM, Tamarindo; HG, Higida; ND, Naranjo Dulce; TC, Tacoranga; 267 

AH, Ashimingo; LM, Limones; BR, Bramaderos; CG, La Cienega; SF, San Francisco (SF). 268 

 269 

 270 

Landscape functional connectivity in R. ecuadoriensis. Landscape genomic mixed 271 

modellling aims to identify the effect of different combinations of landscape surfaces and 272 

their parameters on a given genomic differentiation pattern. To obtain an accurate 273 

representation of the genomic differentiation pattern among R. ecuadoriensis populations, 274 

we chose Hedrick’s GST pairwise comparisons (Figure 4b) which corrects for sampling 275 

limited number of populations42. The genomic pattern was consistent regardless of metric 276 

used (e.g., Pairwise FST 43 and  Meirman’s standardised FST 44) as revealed by strong and 277 

significant (r2 = 0.99 & 0.92, respectively; p < 0.001) Pearson’s correlations. Pairwise 278 

Hedrick’s GST comparisons showed a strong pattern of population structure across Loja 279 

province with presence of both high and low genetic differentiation among collection sites 280 

(Figure 4ab). San Francisco (SF) and San Antonio (NT) were two examples of clear, and 281 

mutually distinct, outliers in genetic terms. Santa Rita (RT), El Huayco (HY), San Jacinto 282 

(SJ) and La Extensa (EX) were genetically and geographically close but highly differentiated 283 

form the rest. Overall, clusters of collection sites were evident with some differentiation 284 

within and among clusters (Figure 4b). 285 

 286 
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The genomic pattern was iteratively regressed with different combinations of landscape 287 

variables and parameters using the ResistanceGA45 optimisation framework (see Methods). 288 

The optimisation process involves estimating unbiased resistance values for a given 289 

combination of surfaces and select the best (true) model representing the genomic pattern. 290 

To rule out collinearity between landscape variables, we calculated Spearman’s correlation 291 

coefficient, rho, between all pairs of surfaces which resulted in small and/or negative (rho < 292 

0.29) correlations (Supplementary Table 8). Similarly, a scatterplot matrix did not show 293 

highly correlated surfaces (Supplementary Figure 11). 294 

 295 

Our three ResistanceGA optimisation replicates (see Methods) showed comparable results. 296 

In all replicates, the single elevation surface showed the lowest AICc values and the highest 297 

AICc weight compared to the other single and composite optimised surfaces (Table 1 is a 298 

replicate example). Delta AICc shows the AICc difference between the elevation surface 299 

(best model) and the rest of the (combination of) surfaces.  A difference of ~2.26 units 300 

between elevation surface and a distance-only model was evident which suggests elevation 301 

surface is a better predictor that geographic distance. Optimisation of the elevation surface 302 

parameters confirmed gene flow resistance increases with altitude up to the highest 303 

resistance at approximately 2,400 m.a.s.l. (Supplementary Figure 12). 304 

 305 

To evaluate the roboustness of our optimisation procedure and test the effect of uneven 306 

distribution of sample sites, we ran a bootstrap analysis with resampling of the sites at each 307 

iteration. Interestingly, the bootstrap analysis revealed that, when resampling 85% of the 308 

collection sites, the optimised elevation surface model was ranked the top model in only 309 
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43.2% of the bootstrap iterations compared to 46% of the times in which a distance-only 310 

model was better (Table 2). The fact that elevation surface was slightly less supported in the 311 

bootstrap analysis is likely due to the irregular distribution of sites across the study area and 312 

altitudes. Nevertheless, elevation surface remains the strongest predictor of genetic 313 

connectivity across the study area (Table 1). 314 

 315 

Table 1 Model selection results for the generalised mixed-effects models optimised on genetic 316 

distance (Hedrick’s GST) for R. ecuadoriensis. For each resistance surface model, number of 317 

parameters plus the intercept (k), Akaike information criterion (AIC), additional parameters corrected 318 

AIC (AICc), marginal (R2m) and conditional (R2c) R2 values of the fitted MLPE model, log-likelihood 319 

(LL), delta AICc and AICc weight (ω) are provided. 320 

 321 

Resistance 
surface model 

Type k AIC AICc R2m R2c LL Delta AICc ω 

Elevation single 4 -751.51 -749.51 0.41 0.72 379.76 0 0.76 

Distance single 2 -743.79 -747.25 0.43 0.74 375.90 2.26 0.24 

Roads single 6 -744.91 -736.25 0.42 0.75 376.46 13.26 0.0010 

Elevation + 
Roads 

composite 9 -751.55 -729.55 0.42 0.72 379.77 19.96 3.49e-05 

Land Single 12 -762.26 -720.26 0.52 0.81 385.13 29.25 3.35e-07 

Elevation + Land 
cover 

composite 15 -763.15 -687.82 0.57 0.78 385.57 61.70 3.03e-14 

Land cover + 
Roads 

composite 17 -762.06 -648.63 0.56 0.78 385.03 100.88 9.37e-23 

Null model single 1 -561.25 -565.08 0 0.42 283.63 184.43 6.75e-41 

Elevation + Land 
cover + Roads 

composite 20 -762.44 -520.44 0.55 0.78 385.22 229.08 1.36e-50 

 322 

Table 2 Summary of bootstrap analysis. For each resistance surface model, number of parameters 323 

plus the intercept (k), and average (Avg) of the Akaike information criterion (AIC), additional 324 

parameters corrected AIC (AICc), AICc weight (ω), rank, R2m, LL, root mean square error (RMSE) and 325 

frequency the model was top ranked are provided. 326 

 327 

Resistance 
surface model 

k Avg AIC Avg 
AICC 

ω Avg 
rank 

Avg 
R2m 

Avg LL Avg 
RMSE 

Top 
model 
(%) 

Elevation 4 -535.59 -533.09 0.40 1.62 0.41 271.79 0.055 43.2 
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Distance 2 -531.44 -530.78 0.60 2.33 0.42 267.72 0.055 46 

Land cover 12 -526.59 -487.59 4.17e-05 3.91 0.51 275.30 0.053 10.8 

Roads 6 -523.81 -517.81 0.0008 4.18 0.41 267.91 0.055 0 

Elevation + 
Roads 

9 -525.76 -509.40 2.80e-06 4.40 0.41 271.88 0.055 0 

Elevation + 
Land cover 

15 -521.94 -425.94 1.45e-21 5.29 0.55 275.97 0.054 0 

Land cover + 
Roads 

17 -516.51 -312.51 3.97e-46 6.59 0.54 275.26 0.054 0 

Elevation + Land 
cover + Roads 

20 -511.14 328.86 1.11e-185 7.68 0.54 275.57 0.054 0 

 328 

 329 

To assist with the identification of vector management zones for regional health authorities, 330 

an electrical current map was built by applying a circuit theory algorithm46,47 on the optimised 331 

elevation surface model (Figure 4c). Specifically, the algorithm simulates the passing of an 332 

electric current across grids (zones) with low/high optimised resistance values. Low 333 

resistance grids are highlighted as high current intensity zones (yellow/light zones in Figure 334 

4c) in which high population connectivity, and therefore high degree of gene flow, is 335 

predicted. The map showed different gradients of connectivity within and among western, 336 

central, eastern and southern Loja province. These included individually isolated populations 337 

(e.g. SF & CG), isolated clusters (e.g EX; SJ; HY; RT; NJ); as well as well-connected hubs 338 

(e.g., BR-LM, AH-TM-ND, HG-TC and CE-VC).  339 

 340 
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 341 

Figure 4. Landscape connectivity of Rhodnius ecuadoriensis in Loja province, Ecuador. a, Map 342 

of the geographic location of collection sites across Loja. b, Heatmap shows pairwise genetic 343 

distances (GST) with collection sites ID labels on the right. Clusters and highly differentiated collection 344 

sites are circled in a. Grey scale indicate genetic distance with lighter colours showing higher 345 

differentiation. c, Electrical current map of Loja built from the optimised elevation surface model 346 

showing a gradient of high (yellow/light shade), medium (light greens) and low (blue/dark shade) 347 

functional connectivity across Loja. Clusters of highly connected sites are evident but isolated sites 348 

are also present across regions on Loja. Connectivity within and among clusters and collection sites is 349 

highly influenced by the landscape, specifically elevation surface.  350 

 351 

 352 

 353 

 354 

 355 

 356 
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Discussion.  357 

 358 

In this study we make several core observations: R. ecuadoriensis do invade houses from 359 

wild populations, genomic signatures of R. ecuadoriensis domestication can be functionally 360 

mapped, and the landscape drivers of vector dispersal can be identified. Consistent with 361 

frequent house invasion, high levels of gene flow between multiple domestic and wild R. 362 

ecuadoriensis populations were detected by hierarchical analysis. Low and largely non-363 

significant pairwise FST values, as well as interleaved sample clustering based on 364 

phylogenetic and discriminant analyses were also consistent with house invasion. 365 

Significantly elevated allelic richness in wild sites by comparison to nearby domestic foci 366 

clearly confirmed that dispersal occurred most frequently from wild ecotopes into domestic 367 

structures. Genome scans across these parallel domestication events revealed strong 368 

evidence of ‘adaptation with geneflow’, with key outlier loci associated with colonisation of 369 

human-made domestic structures and, presumably, human blood feeding - several of which 370 

mapped to the R. prolixus genome.  A strong signature of isolation-by-distance (IBD) was 371 

observable throughout the dataset, an effect less pronounced between domestic sites than 372 

between wild foci. Formal landscape genomic analyses revealed elevation surface as the 373 

major barrier to genetic connectivity between populations. Landscape genomic analysis 374 

enabled a spatial model of vector connectivity to be elaborated, informing ongoing control 375 

efforts in the region and providing a model for mapping the dispersal potential of triatomines 376 

and other disease vectors. 377 

 378 
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Vector control is the mainstay of Chagas Disease control11. Widespread wild reservoir hosts, 379 

as well as a lack of safe treatment options48,49 and associated healthcare infrastructure, 380 

mean that transmission cannot be blocked by reducing parasite prevalence in human and 381 

animal hosts50. Our data indicate that elimination of domesticated R. ecuadoriensis in 382 

Ecuador will be frustrated by repeated re-invasion from the wild environment. Similar risks to 383 

effective control are posed by wild T. infestans in the southern cone region12, R. prolixus in 384 

Los Llanos of Colombia and Venezuela13 and potentially elsewhere in Latin America where 385 

competent vectors are present in the wild environment and nearby domestic locales (e.g., T. 386 

sordida, T. maculata, R. pallescens and others14,15). 387 

 388 

Understanding evolutionary processes that underpin the colonisation of the domestic 389 

environment by arthropod vectors, and their specialisation to feeding on humans, is required 390 

to characterize their vectorial capacity. Hybrid ancestry in Culex pipiens, for example, is 391 

thought to contribute to the biting preference for humans51. Human feeding preference can 392 

be rapidly genetically selected for in Anopheles gambiae52. Specialisation of Aedes aegypti 393 

on humans, and resultant global outbreaks of dengue, yellow fever, and Chikungunya 394 

viruses, may be traceable to the emergence of a differential ligand-sensitivity of the odorant 395 

receptor AaegOr4 in East Africa2. In triatomines, the nature of genetic adaptions that have 396 

enabled the widespread dispersal of successful lineages are far from clear. T. infestans, 397 

thought to have originated in the Western Andean region of Bolivia, spread rapidly among 398 

human dwellings in the Southern Cone region of South America before its near eradication 399 

in the 1990s10. Cytogenetic analyses suggest this early expansion was accompanied by a 400 

substantial reduction in genome size53, but the adaptive significance such a change is not 401 
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clear. The advantage of the R. ecuadoriensis system we describe is that it captures multiple 402 

parallel adaptive processes and; therefore, can assist in the identification of common 403 

evolutionary features associated with colonisation of the domestic environment. Despite 404 

limited genomic coverage, and with no R. ecuadoriensis reference genome available, we 405 

mapped outlier loci to genes in the R. prolixus draft genome, and found they are related to 406 

salivary enzyme production41, as well as embryonic development39. Although these genes 407 

may have a role in domestic adaptation in triatomines, genome-wide association studies or 408 

quantitative trait locus mapping approaches are necessary to fully reveal the genomic 409 

architecture of adaptation to the domestic setting. Nevertheless, these findings motivate us 410 

to investigate further putative genes involved in local adaptation to the domestic environment 411 

such as blood-feeding54, sensory cues and host-seeking behaviour25,55, as well as human 412 

blood detoxification54,56. Recent data from our group in Loja province shows that, without 413 

doubt, domestic R. ecuadoriensis feed extensively on human blood57. 414 

 415 

Our analyses identified a strong signal of genetic IBD among R. ecuadoriensis populations 416 

across our study area. Geographic partitioning at this scale is consistent with limited 417 

autonomous dispersal capabilities of triatomines which, are, in the main, poor fliers58. Wind-418 

blown dispersal observed in smaller vector species is unlikely in triatomines59. Passive 419 

dispersal of triatomine vectors alongside the movements of their human hosts, which 420 

certainly underpins the successful dispersal of other domesticated vector species, is more 421 

likely (e.g., Aedes spp. 60,61). Lower IBD observed among domestic than wild settings may be 422 

consistent with passive dispersal alongside humans. We observed a similar phenomenon 423 

among parasite isolates from the same region in a previous study32. Nonetheless, our formal 424 
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exploration of the landscape drivers of vector dispersal did not reveal an important effect of 425 

roads, and it is not clear to what extent human dispersal of vectors takes place based on our 426 

data alone. 427 

 428 

According to our landscape genomic analysis, elevation surface is a key predictor of 429 

connectivity/discontinuity among R. ecuadoriensis populations. Our machine learning (ML) 430 

optimisation procedure provides objective parameterisation of altitude resistance values to 431 

R. ecuadoriensis gene flow62.  Based on our landscape model predictions we were able to 432 

construct a electric current map (Figure 4c) to assist medical entomologists and policy 433 

makers in understanding vector dispersal routes. Current vector control strategies in Loja 434 

target a single civic administrative unit (neighbourhood or town) for any given insecticidal 435 

intervention28. Our data and model suggest this approach may be effective for certain 436 

communities (e.g., SF, CG, NT and YS, Figure 4). However, for highly connected hubs (e.g. 437 

BM, GA, CQ, AZ), successful longer term triatomine control (e.g., insecticide spraying, 438 

house improvement, window nets, etc.) will depend on simultaneous intervention in multiple 439 

connected communities. 440 

 441 

In Ecuador, as with many other endemic regions in Latin America, efforts to control Chagas 442 

disease may be complicated in the long term by substantial wild populations of secondary 443 

triatomine vectors16. As with many other vector borne diseases, there is also a strong case 444 

for the use of integrated vector management (IVM) for Chagas disease, where 445 

improvements to housing, education, community engagement, in addition to bed net use and 446 

insecticide spraying are all likely to be necessary to achieve sustained control28,63. Our data 447 
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clearly indicate that triatomines do invade houses in Loja and low-lying valleys provide 448 

routes for vector dispersal between communities and cost-effective IVM must be 449 

underpinned by this understanding of vector population structure. Fortunately, genomic and 450 

analytical tools can now furnish much of the detail, although better genomic resources for 451 

secondary triatomine vector species are required to reveal the process of vector adaptation 452 

to the human host. Targeting secondary vector species must now be a priority for health 453 

authorities, as these now represent the most pernicious and persistent barrier to controlling 454 

residual Chagas disease transmission. 455 

 456 

Methods. 457 

 458 

Sample collection and study area. 459 

 460 

Rhodnius ecuadoriensis triatomine bugs (Supplementary Table 1) were derived from a larger 461 

collection in the Center for Research on Health in Latin America (CISeAL) of Pontificia 462 

Universidad Católica del Ecuador (PUCE). Rhodnius prolixus samples (n=6) were provided 463 

by the London School of Hygiene and Tropical Medicine and sequenced as an outgroup, as 464 

well as to assist with the decontamination of the of 2b-RAD reads and their mapping to 465 

functional regions in the draft R. prolixus genome24. R. ecuadoriensis individuals were 466 

collected using the one-hour-man method  during field surveys across Loja, Ecuador from 467 

2004 to 201828. The triatomines were collected under Ecuadorian collection permits: N° 002–468 

07 IC-FAU-DNBAPVS/MA; N° 003–2011-IC-FAU-DLP-MA; N° 006-IC-FAU-DLP-MA-2010; 469 

N° 010-IC-FAN-DPEO-MAE; N° 011–2015- IC-INF-VS-DPL-MA; MAE-DNB-CM-2015-0030 470 
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and internal mobilization guide N° 001-2018-UPN-VS-DPAL-MAE and N° 017-2018-UPN-471 

VS-DPAL-MAE, All these samples were exported to the University of Glasgow by the 472 

scientific export authorization N°70-2018-EXP-CM-FAU-DNB/MA. 473 

 474 

A widespread spatial sampling (Supplementary Figures 8, 9 and 10) of ecotopes (e.g., 475 

domestic and wild), altitudes (up to 1542.9 m.a.s.l.), vegetation types (e.g., tree/bush forest, 476 

cropland, etc.) and sites adjacent to different road infrastructure (e.g., highways, tertiary 477 

roads, etc.) was carried out in the study area. 478 

 479 

Genomic DNA extraction and sequencing. 480 

 481 

Genomic DNA (gDNA) was extracted in 88.2% (502/443) of the samples using a SSNT/Salt 482 

precipitation method64 previously applied in triatomine bugs65. For each sample, gDNA 483 

concentration was > 25 ng/uL and 288.4 ng/UL (sd. ± 241.8) on average with purity ratios 484 

(260/280 and 260/230) of 1.87 (sd. ± 0.10) and 2.30 (sd. ± 0.97), respectively. gDNA was 485 

digested with the CspCI Type IIB restriction enzyme (IIB-REase - New England BioLabs, 486 

Inc.) which has shown to yield a high marker density in triatomine65. DNA fragments (36bp) 487 

were ligated to Illumina single-end adaptors and a specific barcode added during PCR 488 

amplification to construct 382 150bp 2bRAD libraries66. Libraries were homogenised to an 489 

approximate similar concentration, purified with magnetic beads67 and pooled in two 490 

separate batches (n = 191). Each batch was sequenced separately on 1-flowcell (2 lanes) 491 

HiSeq 2500 (Illumina) Rapid Mode platform with a single-end (1x50 bp) setup using v2 SBS 492 
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chemistry at the Science for Life Laboratory (SciLifeLab, Stockholm, Sweden), which also 493 

implemented the reads demultiplexing and their in-house quality-filtering. 494 

 495 

Bioinformatics of 2b-RAD sequenced data. 496 

 497 

Data cleaning and decontamination. Demultiplexed raw data quality scores were verified 498 

in FastQC software v0.11.9 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 499 

2.3% (16/689) Million reads (Mreads) were removed due to incomplete CspCI restriction site 500 

(36 bp) and having across read quality score below 3068. The 624.7 high quality Mreads with 501 

integrate restriction site had their Illumina adaptors and barcodes trimmed, and reads were 502 

forwarded (5’-3’) using custom scripts. To exclude non-target sequences (Supplementary 503 

Methods 1.1), 1.2 Mreads (0.2%) reads mapping to bacteria, virus, archaeal, Trypanosoma 504 

cruzi69 and homo sapiens (Genome Reference Consortium human build 38) genomes were 505 

removed using DeconSeq standalone v4.370 with an alignment identity threshold of 85% and 506 

Kraken71 taxonomic classifier (Supplementary Figure 1). After decontamination, each sample 507 

yield on average 1.6 Million reads (interquartile range = 1.9 Mreads). 508 

 509 

Optimisation and genotyping. As advised in refs.72,73, we optimised (Supplementary 510 

Methods 1.1) STACKS v2.5574 DENOVO_MAP.PL programme by varying at a time one of 511 

the main controlling parameters (-m, -M and -n; Supplementary Table 2) on each run while 512 

keeping the rest of the parameters at the setting used in early experiments (e.g., -m 5, -M 2, 513 

-n 1, -N 4, -alpha 0.01, -bound_low 0, -bound_high 0.01, -r 0.8, -min_maf 0.0165). The 514 

parameter combination yielding the highest number of SNPs with the least missing data and 515 
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genotyping error rate was chosen to be the optimal set. Genotypes below a quality score of 516 

30, and samples with above 50% missing genotypes across sites and among loci were 517 

removed from downstream analysis using the VCFtools software suite v0.1.5 575. The 518 

remaining missing genotypes (< 0.5%) were imputed using the k-nearest neighbour 519 

genotype imputation (LDkNNi) method76 implemented in the TASSEL software v577. 520 

 521 

Genomic differentiation between domestic and wild ecotopes 522 

 523 

Genetic diversity and linkage disequilibrium. Genetic diversity measures (e.g., observed 524 

(HO) and expected heterozygosity (HE), inbreeding coefficient (FIS) and percentage of loci in 525 

Hardy-Weinberg equilibrium (% HWE)) were calculated for each collection site, and 526 

ecotopes (domestic and wild) within collection sites, in the HIERFSTAT78 and pegas79 527 

packages in R80. Sample-size corrected Allelic richness (Ar) was calculated using the 528 

rarefaction method38 implemented in the PopGenReport81 R package. To evaluate the 529 

percentage of SNP markers in linkage disequilibrium (LD), correlation coefficient (r2) 530 

estimates were calculated between markers pairs using using the GUS-LD R package82 531 

which revealed a very low percentage (< 0.20%). To observe whether genetic diversity 532 

difference between ecotope pairs was significant, a permutation-based (10,000 533 

permutations) two sample t-test was performed on each pair diversity values using the 534 

RVAideMemoire R package (https://www.rdocumentation.org/packages/RVAideMemoire). 535 

 536 

Individual-based genomic differentiation. Genomic differentiation among R. 537 

ecuadoriensis domestic and wild samples within a subset of seven collection sites was 538 
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visualised in a neighbour-joining midpoint tree83 (Figure 1b) built from Euclidean genetic 539 

distances of allele frequencies with the ape84 R package. Tree components were edited in 540 

FigTree software v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/) to better illustrate domestic 541 

and wild samples and their overall clustering pattern. To explore samples genomic 542 

differentiation further, a DAPC85 was performed in the same seven collection sites with the 543 

adegenet86 R package (Figure 1c). The most likely a priori number of clusters was chosen 544 

based on the lowest Bayesian information criterion (BIC). In the DAPC, all principal 545 

components (PCs) and the eigenvectors of the first three DA discriminant functions were 546 

kept for visualizing the samples individual coordinates of different PCs linear combinations 547 

(Supplementary Figure 5). 548 

 549 

Pairwise FST comparisons. To support previous hierarchical analyses, pairwise FST 550 

comparisons43 were performed between R. ecuadoriensis from domestic and wild ecotopes 551 

within the seven collection sites (Figure 3b). In this study, FST was exploited as a measure of 552 

genomic connectivity (flow) between ecotopes within given collection sites. Specifically, Nei’s 553 

FST
87 pairwise comparisons were computed in adegenet R package and tested at 5% 554 

significance via 999 permutations of individuals selected randomly within and between 555 

groups. P-values were corrected for multiple comparisons using the false discovery rate 556 

(FDR) method88 in the function p.adjust of the stats R package80. 557 

 558 

Hierarchical F-statistics. R. ecuadoriensis molecular variation was explored at a four-level 559 

(e.g., among collection sites, among ecotopes (domestic or wild) within collection sites, 560 

among collection year within collection sites and among individuals within populations) 561 
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hierarchy of population structure. For each hierarchy, a F-statistic (with 95% C.I.) was 562 

calculated, and its significance tested via 999 randomised permutations with the 563 

HIERFSTAT R package. For comparison and given not all sites had both ecotopes, two 564 

hierarchical analysis were performed, one with the total collection sites (n = 25) and the 565 

other with a subset of collection sites (n = 7) with samples collected in both ecotopes 566 

(Supplementary Table 4). 567 

 568 

Domestic-wild SNP association analyses. 569 

 570 

As a response of R. ecuadoriensis ecotopes fluxes in multiple collection sites across Loja, 571 

we screened for SNP RADseq markers under a strong signal of selection (outlier loci). The 572 

power for detecting outlier loci of four different approaches, Random Forest (RF) machine 573 

learning (ML) classification algorithm (implemented in refs.89–91), redundancy analysis (RDA) 574 

constraint ordination92, and OutFlank93 and fsthet94 FST-outlier methods, was evaluated using 575 

a roughly similar number of domestic (n= 56) and wild (n= 52) R. ecuadoriensis across Loja 576 

province sharing a total of 2552 SNPs. 577 

 578 

Random Forest. The RF algorithm95 implemented in the randomForest96 R package was 579 

used to build a series of recursive decision trees, or forest, to classify domestic and wild R. 580 

ecuadoriensis based on their shared SNPs (predictors) covarying to a specific ecotope 581 

(response variable) (Supplementary Figure 6). Within each RF run, decision trees were 582 

trained by random subsampling with replacement 66.6% of triatomine samples (training 583 

dataset), for which aleatory selected SNPs were top-ranked classifiers when minimizing the 584 
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most within-ecotope variation (that is, partitioning triatomine by ecotope). Trained trees 585 

predictive power was tested with the remaining 33.3% triatomine samples (‘Out-of-bag’ test 586 

dataset) in which ecotope misclassification of samples estimated an OOB-ER for that RF 587 

run; SNPs importance classification accuracy was averaged among the total number of trees 588 

created in a given RF. Three independent (spatial structure-corrected) RFs with 100,000 589 

trees were run and their convergence on SNPs importance classification accuracy was 590 

evaluated by Pearson’s correlation test. Top-ranked SNPs (Figure 2a inset) among the three 591 

RFs (that is, importance classification accuracy above 3) were chosen for backwards 592 

purging, as implemented in refs.90,97. Backwards purging (Figure 2a) iteratively runs RFs 593 

starting with the full top-ranked SNPs and discarding the least important ones before the 594 

next iteration until only two were left. The subset with the lowest OOB-ER contained SNPs 595 

outlying strongly for the ecotope response. 596 

 597 

Redundancy analysis. Outlier loci likely under selection were also identified using RDA 598 

multivariate constrained ordination98 implemented in the vegan99,100 R package. First, a 599 

matrix fitted values (Supplementary Figure 7a) were obtained using multivariate linear 600 

regression between a matrix of genotypes (response) and ecotopes (explanatory) with an 601 

additional term controlling for spatial structure (based on the three first axes of an individual 602 

principal coordinates of each sample). Then, principal component analysis (PCA) on the 603 

fitted values matrix resulted in a constrained axis composed from the variation explained, 604 

‘redundancy’, by our explanatory variable (Supplementary Figure 7b). Overall RDA model 605 

and variation explained by the constrained RDA axis were tested for significance via 999 606 

permutations designed for constrained correspondence analysis. Additionally, SNPs 607 
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coordinates were scaled and plotted in the ordination space to see their relationship with the 608 

constraint axis, ecotope (Supplementary Figure 7c and Figure 2b). SNPs z-transformed 609 

loadings (Supplementary Figure 7d) separated by ±2 and ±3 standard deviations 610 

(permissible and conservative thresholds, respectively) from the mean distribution of the 611 

total SNPs loadings in our RDA axis were considered under selection (Figure 2b) (for further 612 

details on RDA see refs.92,101,102). 613 

 614 

FST-Heterozygosity outlier method. The FST-Heterozygosity outlier method aims to identify 615 

loci with strong allele differences among ecotopes. First, ecotope differentiation for each 616 

locus is calculated using Wright’s FST without sample correction. The distribution of these 617 

values is expected to have a chi-squared shape. The main goal is inferring a null FST 618 

distribution from neutral loci not strongly affected by diversifying selection93. Therefore, a 619 

best-fit to the chi-squared FST distribution was achieved by trimming the lowest and highest 620 

FST values (loci in the tails of the distribution are likely to be under effective diversifying 621 

selection) and considering only the values in the centre (neutral loci and loci experiencing 622 

spatial uniform balancing selection). Loci with unusual FST values relative to this fitted 623 

distribution can be thought of experiencing additional diversifying selection93,94. We used two 624 

R packages to accomplish this analysis, OutFlank93 and fsthet94, and compared the results 625 

(Figure 2d). The difference between the packages is that fsthet uses smoothed quantiles of 626 

the empirical FST-Heterozygosity distribution to identify outlier loci and does not assume a 627 

particular distribution or model of evolution as compared to OutFlank. We set OutFlank 628 

function with proportion of lower and upper loci trimmed to 0.06 and 0.35, respectively, and 629 

the rest of the values to default. 630 
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 631 

Mapping SNP outlier loci. In order to identify genes that may be responsible for local 632 

adaptation in the Chagas disease vector, R. ecuadoriensis, to the domestic environment we 633 

mapped the SNPs found in the association analyses to the R. prolixus annotated genome24. 634 

We used the BWA alignment tool implemented in DeconSeq software v0.4.370 to map SNPs 635 

sequences (38 bp) at a minimum alignment threshold of 85. The sequences of the regions 636 

(60-300kb) in which our SNPs aligned were BLAST searched and compared to the R. 637 

prolixus genome. 638 

 639 

Estimating gene flow with distance. Matrices of genetic (FST
87) and geographic (Km) 640 

distances between the 25 collection sites, and between domestic and wild collection sites 641 

separately, were obtained with the adegenet and raster103 R packages, respectively. Mantel 642 

tests104 were performed on those matrices using the ecodist105 R packages. Genetic and 643 

geographic correlation between domestic and wild ecotopes was also viewed separately by 644 

fitting a generalised least square (GLS) model with a maximum likelihood population effects 645 

correction (MLPE)106 implemented in the corMLPE (https://github.com/nspope/corMLPE/) R 646 

package and assuming a linear relationship 647 

 648 

Υ�j = � + �(��j - ��) + H� + �ij + ��j (�	
1) 649 

 650 

between two distance matrices based on genetic and geographic distance measures, Y and 651 

X, respectively. Centring the ��j in about its mean, ��, removes the correlation between the 652 
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estimates of � and �106. H, determines the ecotope and the �ij term adds the MLPE random 653 

effect correlation structure. 654 

 655 

Estimating gene flow with resistance. 656 

 657 

Genetic distances. Given genomic differentiation between domestic and wild ecotopes was 658 

low, we combined all samples within a collection site and used collection site as the unit in 659 

our landscape genetic analysis. Collection site units are logistically and budgetary important 660 

when carrying out triatomine surveys and insecticide spraying. Using a landscape genomics 661 

mixed modelling framework (Supplementary Figure 2), we aimed to disentangle the effects 662 

of landscape heterogeneity on R. ecuadoriensis population structure and gene flow. A 663 

Hedrick’s GST 
42, which corrects for sampling limited populations107, distance matrix among 664 

the 25 collection sites was obtained in the GenoDive v3.04108 software. In addition, we ran a 665 

Pearson’s correlation test between the Hedrick’s GST matrix, and Meriman’s standardised 666 

FST
44 and FST

43 matrices, calculated in the same software, to evaluate the consistency of 667 

genomic differentiation pattern among collection sites with different genetic distance 668 

measures. 669 

 670 

GIS data collection and preparation. Three landscape variables (elevation, land cover and 671 

road network - hereafter, surfaces) were hypothesized to influence R. ecuadoriensis 672 

dispersal and gene flow (Supplementary Figures 8, 9 and 10). For the continuous surfaces 673 

(elevation surface), only monomolecular transformations (e.g., Supplementary Figure 12ab) 674 

with any possible shape and maximum parameters were explored to assume a linear 675 
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relationship in which gene flow decreases as altitude increases as hypothesised in other 676 

triatomine species109. Our categorical surfaces, land cover and road network, were 677 

reclassified as follows. Highly fragmented land cover categories (e.g., cultivated and 678 

managed areas) produced the least resistance to gene flow, whereas regular flooded areas 679 

and water bodies were barriers. Habitat fragmentation and human agricultural activities has 680 

been shown to affect triatomine populations dynamics110. Human-mediated passive 681 

triatomine dispersal has been suggested elsewhere11, and therefore, we assumed roads 682 

would connect humans populations, and likely triatomines by passive carriage. High 683 

transitable roads (e.g., highways and tertiary roads) had the least resistant values, whereas 684 

absence of roads was a strong barrier (see Supplementary Table 9 & Supplementary Table 685 

10). Original GIS surfaces were obtained from multiple sources (Supplementary Table 6) 686 

and transformed to have the same format (raster), resolution (250 m2 grid), extent (~ 97 Km2) 687 

and coordinate reference system (Universal Transverse Mercator (UTM)). 688 

Spearman’s rank correlation coefficient (rho) tests were run (Supplementary Table 8) and 689 

plotted (Supplementary Figure 11) on each pair of surfaces to ensure variables were 690 

uncorrelated (rho < 0.29 based on Cohen111). All three surfaces original values were 691 

transformed to the same scale (i.e., a minimum value of 1 and a maximum of 100) to meet 692 

our initial hypothesis. 693 

 694 

ResistanceGA principle. The genetic algorithm112 implemented in the R package, 695 

ResistanceGA45, was used for multiple and sinlge-surface optimization of resistance values 696 

to gene flow in the above surfaces (Supplementary Figure 3). Briefly, ResistanceGA method 697 

is a powerful, flexible, stochastic and assumption-free framework based on an evolutionary 698 
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ML process that finds unbiased optimal resistance parameters (resistance weights values for 699 

a given surface) in space that best fits the genomic structure pattern113. The method works 700 

by correlating genomic (response) and effective (predictor) distances (derived from a 701 

random-walk commute time algorithm114 – Supplementary Figure 4b) matrices through a 702 

maximum likelihood population effects106 model and, on each iteration, evaluates the best 703 

resistance parameters based on a ML objective function, log-likelihood in our case. 704 

Simulating the process of evolution on each iteration, the best model and parameters are 705 

selected and pass over the next generation with some random change on parameter values 706 

to explore the parameter space widely. 707 

 708 

Multiple surface optimisation. We performed three replicate runs to optimise all possible 709 

combinations of our surfaces (hereafter, composite surfaces), including surfaces individually 710 

(hereafter, single surfaces) to generate models with optimised resistance values. The major 711 

GA algorithm options were set to default, except for the ‘pop.mult’ which was set to 20 to 712 

increase the number of parameters to evaluate on each surface every iteration. All 713 

optimisation processes were run in parallel with 10-20 cores in a Debian cluster 714 

(http://userweb.eng.gla.ac.uk/umer.ijaz/#orion) at the University of Glasgow. Running times 715 

varied from days to weeks depending on surface size and number combined at a time. 716 

 717 

Model selection. Composite and single surface models, including an intercept- only (null 718 

model) and a geographic distance (resistance grid cells are set to 1 to model isolation-by-719 

distance) model were evaluated (Table 1) and the best model was selected based on the 720 

lowest AICc, AICc weight and Delta AICc. To confirm the robustness of the optimisation 721 
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surfaces and controlling for potential bias due to uneven distribution of sample locations in 722 

the landscape, we carried out bootstrap resampling (10,000 iterations) in 85% of our sample 723 

locations and then fit the subset to each of the effective distance matrices from the optimised 724 

surfaces. After the bootstrapping analysis, the average AICc among all iterations and the 725 

percentage a model was top over all iterations was used as a criterion to rank the best 726 

model (Table 2). 727 

 728 

Landscape connectivity model. We used the best optimised single (elevation surface) 729 

resistance surface models to estimate landscape connectivity through a circuit theory 730 

algorithm46,47 (Supplementary Figure 4) implemented in the software CIRCUITSCAPE v5115. 731 

Here, our resistance surfaces were converted into electric networks (Supplementary Figure 732 

4c) in which each grid cell represented a node connected to their neighbours by resistors of 733 

different weight. Resistor weights were calculated from the average resistance values (i.e., 734 

optimised resistance values) of the two grid cells being connected. The algorithm applies a 735 

simulated electric current between all pairs of focal nodes (collection sites) in the network to 736 

estimate effective distances between them. A current density map (Figure 4c) was obtained 737 

from those resistance distance estimations representing a random walk probability of 738 

movement through our study area. 739 

 740 

Data availability 741 

Raw sequenced data will be uploaded to the Sequence Read Archive (SRA) repository on 742 

publication. 743 

 744 
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Correspondance to Martin Llewellyn and Luis Enrique Hernandez Castro 746 
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Code availability 748 

Code for population, assosiation and landscape genomics analyses will be available 749 

via Github repository (github.com/lehernandezc/recuadoriensis) on publication. 750 
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