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Abstract

Motivation: The accumulation of sequencing data has enabled researchers to predict the interactions between RNA sequences
and RNA-binding proteins (RBPs) using novel machine learning techniques. However, existing models are often difficult to
interpret and require additional information to sequences. Bidirectional encoder representations from Transformer (BERT)
is a language-based deep learning model that is highly interpretable. Therefore, a model based on BERT architecture can
potentially overcome such limitations.
Results: Here, we propose BERT-RBP as a model to predict RNA-RBP interactions by adapting the BERT architecture pre-
trained on a human reference genome. Our model outperformed state-of-the-art prediction models using the eCLIP-seq data of
154 RBPs. The detailed analysis further revealed that BERT-RBP could recognize both the transcript region type and RNA
secondary structure only from sequential information. Overall, the results provide insights into the fine-tuning mechanism of
BERT in biological contexts and provide evidence of the applicability of the model to other RNA-related problems.
Availability: Python source codes are freely available at https://github.com/kkyamada/bert-rbp.
Contact: mhamada@waseda.jp

1 Introduction

Interactions between RNA sequences and RNA-binding pro-
teins (RBPs) have a wide variety of roles in regulating cellular
functions, including mRNA modification, splicing, translation,
and localization (Hentze et al., 2018). For instance, the T-cell-
restricted intracellular antigen family of proteins function as
alternative splicing regulators (Wang et al., 2010), and hetero-
geneous nuclear ribonucleoprotein K (hnRNPK) is a versatile
regulator of RNA metabolism (Geuens et al., 2016). Numer-
ous attempts have been made to identify RNA-RBP interac-
tions to accurately capture their biological roles.

Among the various in vivo experimental methods, high-
throughput sequencing of RNA isolated by crosslinking im-
munoprecipitation (CLIP-seq) is widely used to reveal a com-
prehensive picture of RNA-RBP interactions (Licatalosi et al.,
2008; Lin and Miles, 2019). Altered CLIP-seq protocols have
also been developed (Hafner et al., 2010; König et al., 2010;
Van Nostrand et al., 2016). Recently, a large amount of en-
hanced CLIP-seq (eCLIP) data, targeting more than 150 dif-
ferent RBPs, was generated during phase III of the Encyclo-
pedia of DNA Elements (ENCODE) Project (Van Nostrand
et al., 2020a).

Because there is a vast volume of available CLIP-seq data,
recent bioinformatics studies have focused on developing ma-
chine learning models to predict RNA-RBP interactions and
deciphering hidden patterns translated by these models (Pan
et al., 2019; Yan and Zhu, 2020). Early models use statis-
tical evaluations or support vector machines (SVMs) to clas-
sify RNA sequences into RBP-bound or RBP-unbound groups

(Hiller et al., 2006; Kazan et al., 2010; Maticzka et al., 2014).
One of the SVM-based models, GraphProt, encodes RNA se-
quences and their estimated secondary structures into graph
representations (Maticzka et al., 2014). Non-negative matrix
factorization (NMF) and random forest were also adapted to
other models (Stražar et al., 2016; Yu et al., 2019). Since Ali-
panahi et al. (2015) demonstrated the applicability of convo-
lutional neural networks (CNNs) for predicting RNA-protein
and DNA-protein interactions, several deep learning models
have been developed. While some models incorporate a single
CNN with some modifications (Pan and Shen, 2018; Zhang
et al., 2019; Tahir et al., 2021), others use a different neu-
ral network model (Uhl et al., 2020) or a combination of sev-
eral neural network architectures (Ben-Bassat et al., 2018; Pan
et al., 2018; Yan et al., 2020; Deng et al., 2020; Grønning et al.,
2020). For instance, HOCNNLB uses high-order encodings of
RNA sequences as inputs for CNN (Zhang et al., 2019), and
iDeepS uses stacked CNN and bidirectional long short-term
memory (biLSTM) and takes both RNA sequences and their
estimated secondary structures as inputs (Pan et al., 2018).
However, existing models are often poorly interpretable be-
cause of the complex nature of the neural network and require
additional information to RNA sequences. Therefore, the de-
velopment of advanced models that overcome these limitations
is awaited.

The improvement of deep learning architectures largely
buttresses progress in building better bioinformatics tools.
In the field of natural language processing, self-attention-
based deep learning architectures, such as Transformer and
BERT, have achieved state-of-the-art performance in vari-
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Figure 1: The architecture of BERT-RBP. The input RNA
sequence was first tokenized into 3-mers and modified with
CLS (classification) and SEP (separation) tokens. Then, each
token was embedded into a 768-dimensional feature vector.
These feature vectors were consequently processed through 12
Transformer encoder layers, where each layer included 12 self-
attention heads. The CLS token of the output vector from
the last layer was further utilized for classification to predict
whether the input RNA sequence bound to the RBP. Upon
fine-tuning, the model parameters of the embedding layer and
the stacked Transformer encoder layers were initialized with
those of DNABERT. These parameters were randomly initial-
ized for the BERT-baseline model.

ous tasks (Vaswani et al., 2017; Devlin et al., 2018). Addi-
tionally, BERT, which essentially consists of stacked Trans-
former encoder layers, shows enhanced performance in down-
stream task-specific predictions after pre-training on a massive
dataset (Devlin et al., 2018). In the field of bioinformatics,
several BERT architectures pre-trained on a massive corpus of
protein sequences have been recently proposed, demonstrating
their capability to decode the context of biological sequences
(Rao et al., 2019; Rives et al., 2020; Elnaggar et al., 2020; Iuchi
et al., 2021). In comparison to the protein language models, Ji
et al. (2021) a pre-trained BERT model, named DNABERT,
on a whole human reference genome demonstrated its broad
applicability for predicting promoter regions, splicing sites,
and transcription factor binding sites upon fine-tuning. Thus,
pre-trained BERT models are potentially advantageous for a
wide variety of bioinformatics tasks, including the prediction
of RNA-RBP interactions.

In addition to its performance, BERT is highly interpretable
and suitable for translating extended contextual information
compared to conventional deep learning architectures, such as
CNNs and long short-term memory (Rogers et al., 2020). Re-
searchers in an emerging field, called BERTology, intend to
elucidate how BERT learns contextual information by analyz-
ing attention, which essentially represents the flow of informa-
tion within a model (Vig and Belinkov, 2019). For instance,
analysis of protein BERT models revealed that protein con-
tact maps could be reconstructed from the attention of the
model (Vig et al., 2021; Rao et al., 2021). This implies that,

by analyzing the fine-tuned BERT model, we can reasonably
explain the types of features that are crucial for predicting
RNA-RBP interactions.

In this study, we applied the BERT model pre-trained on a
human reference genome to predict the RBP-binding property
of RNA sequences. Our model, named BERT-RBP, outper-
formed existing state-of-the-art models as well as the base-
line BERT model whose weight parameters were randomly
initialized, showing the significance of pre-training on a large
corpus. Attention analysis on the fine-tuned model further
revealed that BERT-RBP could translate biological contexts,
such as transcript region type, transcript region boundary, and
RNA secondary structure, only from RNA sequences. Thus,
this study highlights the powerful capability of BERT in pre-
dicting RNA-RBP interactions and provides evidence of the
architecture’s potential applicability to other bioinformatics
problems.

2 Materials and methods

2.1 Terminology

k-mer : For a given sequence, k-mers of the sequence con-
sisted of every possible subsequence with length k, i.e., given
a sequence ACGTAC, the 3-mers of this sequence included
ACG, CGT, GTA, and TAC, and the 4-mers included ACGT,
CGTA, and GTAC.
Token : Tokens are referred to as words or their positions
within a sequence. Tokens included not only k-mers but also
special tokens, such as CLS (classification) and SEP (separa-
tion). In our model, CLS was appended at the beginning of
each input sequence, and its feature vector from the final layer
was used for classification. The SEP was attached only to the
end of each sequence.
Attention : Attention represents the flow of information
within the BERT model. The attention weight indicates how
much information the hidden state of a token in the upper
(closer to the output) layer referred to the hidden state of a
token in the lower (closer to the input) layer.

2.2 Data Preparation

An eCLIP-seq dataset previously generated from the EN-
CODE3 database by Pan et al. (2020) was used. The original
dataset consisted of 154 RBP sets with up to 60,000 positive
RNA sequences that bind to the corresponding RBP and the
same number of negative sequences. Each positive sequence
had a length of 101 nucleotides with the eCLIP-seq read peak
at its center, while each negative sequence was sampled from
the non-peak region of the same reference transcript as its
positive counterpart. First, all sequences that included unan-
notated regions or repeatedly appeared in the same set were
removed to create the dataset, and 12,600 positive and nega-
tive sequences were randomly sampled. If the original RBP set
included less than 12,600 samples, all sequences were retrieved.
The resulting samples were split into training (19,200) and test
sets (6,000). Additionally, for the selected RBPs, non-training
datasets were created that included all positive and negative
samples, except those in the training sets. The training sets
were used during the fine-tuning step, the individual test sets
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were used to measure performance after fine-tuning, and the
non-training sets were used for attention analysis.

2.3 Models and Training

2.3.1 Pre-trained BERT model

DNABERT, a BERT-based architecture pre-trained on a hu-
man reference genome, was adapted to model RNA sequences
and their RBP-binding properties. Briefly, DNABERT
was pre-trained on k-mer (k = 3-6) representations of nu-
cleotide sequences obtained from a human reference genome,
GRCh38.p13 (Ji et al., 2021). Once the CLS and SEP tokens
were appended to the input k-mers, each token was embedded
into real vectors with 768 dimensions. The model was pre-
trained with the masked language modeling objective, self-
supervised learning, to predict randomly masked tokens using
information from other tokens. The model had 12 Transformer
encoder layers, each of which consisted of 12 self-attention
heads and utilized the multi-head self-attention mechanism
(Figure 1).

2.3.2 Fine-tuning

Upon fine-tuning, the parameters of the model were initialized
with those of DNABERT (Figure 1). Subsequently, BERT-
RBP was fine-tuned on the training datasets. The hyperpa-
rameters used for training are listed in Table S1, and these hy-
perparameters were kept consistent for all the different k-mer
models (k = 3-6). The models were trained on four NVIDIA
Tesla V100 GPUs (128GB memory). The training of one RBP
model using 19,200 samples took less than 10 min. After fine-
tuning, the model performance was measured using the area
under the receiver operating characteristic curve (AUROC)
using independent test sets.

2.3.3 Baseline Models

The following three existing models were implemented as base-
lines: GraphProt, iDeepS, and HOCNNLB. GraphProt is an
SVM-based model that converts RNA sequences and their es-
timated secondary structures into graph representations and
predicts RBP-binding sites (Maticzka et al., 2014). iDeepS
uses a combination of CNN and biLSTM to predict RBP-
binding sites from RNA sequences and their estimated sec-
ondary structures (Pan et al., 2018). HOCNNLB is another
method for training CNNs to predict RBP binding sites while
taking k-mer representations of RNA sequences (Zhang et al.,
2019). In addition to the above models, the baseline BERT
model (BERT-baseline), whose parameters were randomly ini-
tialized instead of transferring parameters from DNABERT,
was also trained. Hyperparameters were kept consistent with
BERT-RBP except that the learning rate was set to a ten
times larger value (0.002) to promote optimization. All base-
line models were trained and tested using the same training
and independent test sets as BERT-RBP.

2.4 Attention Analysis

We examined whether attention reflected any biological fea-
tures of the input RNA sequences after fine-tuning. The
method proposed by Vig et al. (2021) was adapted to ask

Figure 2: Overall performance of our model. a) Area under
the receiver operating characteristic curve (AUROC) scores of
BERT-RBP and four baseline models over 154 RBP datasets.
Each violin plot shows the performance of each model, and
each dot within each violin plot represents the AUROC score
for a single RBP dataset. b-e) Detailed comparison of this
model’s performance against b) GraphProt, c) iDeepS, d)
HOCNNLB, or e) BERT-baseline by AUROC measurement.
Each dot represents the AUROC scores of BERT-RBP and
the corresponding baseline model trained using the same RBP
dataset. The diagonal dashed line indicates that the perfor-
mances of the two models are identical.

whether attention agrees with hidden properties of inputs both
at the sequence level (transcript region type) and at the token
level (transcript region boundary and RNA secondary struc-
ture).

2.4.1 Sequence-level and Token-level Properties

When conditioned by an input sequence, each head emits a set
of attention weights α, where αi,j(> 0) indicates the attention
weight from the ith token in the upper layer to the jth token
in the lower layer.

∑
j αi,j = 1 is satisfied, as the attention
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weights are normalized over each token in the upper layer. We
calculated the attention weights for the CLS in each head as
follows:

sα(f) =
1
M

∑M
m=1 f(m)

∑L+2
i αi,CLS

1
N−M

∑N−M
m=1 (1 − f(m))

∑L+2
i αi,CLS

(1)

where N and M indicate the number of input sequences and
the number of inputs with the property of interest, respec-
tively; f(m) is an indicator that returns 1 if the property
exists in the mth sequence and 0 otherwise; L indicates the
number of sequential tokens in the mth sequence, and L+2 is
the number of all tokens, including CLS and SEP. Intuitively,
sα(f) represents the relative attention to the CLS associated
with the property f .

For token-level analysis, attention weights to the token of
interest were computed at each head using the following equa-
tion:

tα(g) =

∑M
m=1

∑L
i

∑L
j g(j)αi,j∑N

m=1

∑L
i

∑L
j αi,j

(2)

where g(j) is an indicator that returns 1 if the property exists
in the jth token in the lower layer and 0 otherwise. Note that
attention weights to CLS and SEP were not considered during
the token-level analysis, and the sequential token length L was
used. Here, tα(g) represents the ratio of attention to property
g.

2.4.2 Analysis of Transcript Region Type

We first examined whether attention weights reflect transcript
region types, including the 5’UTR, 3’UTR, intron, and CDS.
Region-type annotations were downloaded from the Ensembl
database (Ensembl Genes 103, GRCh38.p13) (Yates et al.,
2020). For each gene, we selected the most prominent isoform
based on the APPRIS annotation (Rodriguez et al., 2013),
transcript support level, and length of the transcript (the
longer, the better). Region types were applied for each nu-
cleotide as binary labels, resulting in a 4×101 annotation ma-
trix per sequence. The original eCLIP dataset curated by (Pan
et al., 2020) used GRCh37/hg19 as a reference genome, so we
converted sequence positions into those of GRCh38/hg38 us-
ing the UCSC liftOver tool (Kent et al., 2002) and retained
those sequences that could be remapped with 100% sequence
identity. For simplicity, sequences containing one or more nu-
cleotides labeled with the region type were regarded as hav-
ing that property. Using the non-training dataset, we accu-
mulated attention weights to the CLS token at each head,
averaged over the region type, and calculated the attention
level relative to the background (Equation (1)). Consequently,
the head, which showed the most significant relative attention
level, was selected for each RBP and each region type, and
the raw attention weights to CLS (

∑
i αi,CLS) were extracted

from the head of each sample. Because of the nature of atten-
tion, the number of samples tends to be sparse in the range
where attention weights are relatively high; therefore, samples
whose attention weights were within the 99.5 percentile were
the focus. Finally, the Spearman’s rank correlation coefficient
between the raw attention weights to CLS and the RNA se-
quence probability of being the region type were calculated.

Figure 3: Results of sequence-level attention analysis of tran-
script region type. a) The degree of specialization was mea-
sured for 15 RNA-binding proteins (RBPs) and four region
types using BERT-baseline and BERT-RBP. The degree of
specialization was evaluated using the coefficient of variation
of the relative attention levels among 144 attention heads.
The value was directly annotated for data points where the
coefficient of variation was saturated (¿20%).b-c) Exemplary
results showing attention patterns measured by the relative
attention to CLS among 144 heads. b) BERT-baseline and
c) BERT-RBP trained on the same TIAL1 training set were
analyzed using the 3’UTR annotation. d) Correlation analysis
was conducted between the raw attention weights to CLS and
the RNA sequence probability of the region type. For each
RBP and region type, the head showing the greatest relative
attention (most specialized) was chosen, and the Spearman’s
rank correlation coefficient was calculated. e) An example
showing the relationship between raw attention to CLS and
the RNA sequence probability as the region type. For the
BERT-RBP trained on the TIAL1 training set, the head 9-
11 was selected to be most specialized for the 3’UTR in the
heatmap (specified with the arrow in Figure 3c). The horizon-
tal dashed line represents the background probability of the
3’UTR label within the TIAL1 non-training dataset. Error
bars represent the mean ± standard deviations among three
subsets randomly split from the original non-training set.

2.4.3 Analysis of Transcript Region Boundary

In addition, analysis of the transcript region boundary was
conducted using non-training datasets with region-type anno-
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tations. 3-mer tokens containing nucleotides labeled with dif-
ferent region types were defined as having boundaries. Instead
of the relative attention level, the ratio of attention weights
to the property (Equation (2)) was calculated for each head
so that the calculated ratio could be compared to the overall
probability of the region boundary within the dataset. The
similarity of attention ratio patterns between DNABERT and
BERT-RBP was measured using Pearson’s correlation coef-
ficient to assess the degree of variation from DNABERT to
BERT-RBP. Finally, the correlation between the raw atten-
tion weight to the boundary and the 3-mer token probability
of the boundary was analyzed using the same pipeline used
for transcript region type analysis.

2.4.4 Analysis of RNA Secondary Structure

The secondary structure of RNA was another property that
was analyzed. For each input RNA sequence, the struc-
ture was estimated based on the maximum expected accuracy
(MEA) using LinearPartition (Zhang et al., 2020). Once the
MEA structures were estimated, each nucleotide was labeled
with one of six structural properties; F (dangling start), T
(dangling end), I (internal loop), H (hairpin loop), M (multi-

Figure 4: Results of token-level attention analysis of a) the
transcript region boundary and b) the RNA secondary struc-
ture. The similarity between DNABERT and BERT-RBP was
measured for a) five transcript region boundaries and b) six
structure types. The similarity was evaluated using Pearson’s
correlation coefficient between the attention ratio patterns of
DNABERT and BERT-RBP. Each dot represents the similar-
ity score for a single RBP dataset.

branched loop), and S (stem). 3-mer tokens containing one or
more nucleotides labeled with structural properties were de-
fined as having the structure. Similar to the transcript region
boundary analysis, the ratio of attention weights to the struc-
tural property (Equation (2)) was computed for each head and
compared to the overall probability of the structure within the
dataset. Consequently, we analyzed the similarity of attention
patterns between DNABERT and BERT-RBP and the corre-
lation between the raw attention weight to the structure and
the 3-mer token probability to have the structural property.

3 Results

3.1 Performance of BERT-RBP

We evaluated the prediction performance of our model along
with three existing models (GraphProt, iDeepS, and HOC-
NNLB) and BERT-baseline. GraphProt is an SVM-based
model for predicting RNA-RBP interactions using graph rep-
resentations of RNA sequences and their estimated secondary
structures. iDeepS is based on stacked CNN and biLSTM
and takes the sequence and estimated secondary structure of
input RNAs to estimate their RBP binding properties. HOC-
NNLB uses k-mer representations of RNA sequences and pre-
dicts RNA-RBP interactions using a set of CNNs. All mod-
els were trained on the same training set, and their per-
formance was measured using an independent test set over
154 RBPs. BERT-RBP resulted in an average AUROC of
0.785, which was higher than that of any other model (Fig-
ure 2a). The average AUROCs of the other models were
0.638, 0.693, 0.671, and 0.686 for GraphProt, iDeepS, HOC-
NNLB, and BERT-baseline, respectively. While the baseline
BERT model alone showed comparable performance to exist-
ing methods, our model improved the scores, indicating the
significance of pre-training on a large DNA corpus to predict
RNA-RBP interactions. In addition, the score of BERT-RBP
was higher than the previously reported AUROC (0.781) of
the updated iDeepS (Pan et al., 2020), even though we used
approximately five times smaller subsets of their training data
to train BERT-RBP. Furthermore, a one-to-one comparison
against each baseline revealed that our model improved the
scores for every single RBP dataset by a notable margin (Fig-
ure 2b-e). These results demonstrated that our model ex-
ceeded the state-of-the-art methods in predicting RNA-RBP
interactions while taking only sequential information.

Because the original DNABERTs were pre-trained on 3-
to 6-mer representations, we fine-tuned three other models,
where each model takes 4- to 6-mer representations as inputs.
When the AUROCs of fine-tuned models with different k-mers
were compared, all fine-tuned models showed comparable per-
formance to the 3-mer model, again demonstrating the robust-
ness of the two-step training method (Figure S1). The detailed
comparison showed that the 3-mer model outperformed others
for 135 out of 154 RBPs; thus, we refer to the 3-mer model as
BERT-RBP throughout this study.

3.2 Attention analysis

While being a deep learning model, BERT has high inter-
pretability (Rogers et al., 2020). In this study, we investigated
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Figure 5: The detailed attention analysis of RNA secondary structure. a-b) Exemplary results of analysis for a) DNABERT
and b) BERT-RBP using the same heterogeneous nuclear ribonucleoprotein K (hnRNPK) dataset. The relationship between
the raw attention and the token probability for each structural property was measured at the head 6-8. The head was most
specialized for detecting the internal, hairpin, and multi-branched loops within the BERT-RBP trained on the hnRNPK
training set. The horizontal dashed lines represent the background probability of the corresponding structure within the
hnRNPK non-training dataset. Error bars represent means ± standard deviations among three subsets randomly split from
the original non-training set.

the types of biological information that could be deciphered
by our model.

3.2.1 Transcript Region Type

The transcript region type plays an essential role in predict-
ing RNA-RBP interactions (Stražar et al., 2016; Avsec et al.,
2018; Uhl et al., 2020). We investigated whether the model
showed high attention toward sequences from a specific tran-
script region, such as 5’UTR, 3’UTR, intron, or CDS, as de-
scribed in section 2.4.2. The use of the CLS token stimu-
lates the model to accumulate sequence-level information in
the CLS token (Rogers et al., 2020). We hypothesized that
attention associated with the CLS token represents sequence-
level information, that is, the transcript region type property.
To test this hypothesis, we computed the relative attention
to CLS associated with each region type for both BERT-RBP
and BERT-baseline using 15 selected RBP datasets. These
15 RBPs were selected because their CLIP-seq data were an-
alyzed and included in the previous benchmark created by
Stražar et al. (2016). When the degree of specialization was
then measured using the coefficient of variation, the relative
attention level of BERT-RBP varied more than that of BERT-
baseline for all 15 RBPs and four transcript region types (Fig-
ure 3a-c and S2). This result indicated that BERT-RBP rec-
ognized the transcript region type of RNA sequences more
than BERT-baseline.

To provide more evidence that our model could deduce tran-
script region types from RNA sequences, we inspected BERT-
RBP heads, which showed the most substantial relative atten-
tion level, and calculated the probability of RNA sequences
incorporating the corresponding transcript region type. Posi-
tive correlations were observed between the raw attention to
CLS and the RNA sequence probability as the region type

(Figure 3d-e). A strong correlation (¿ 0.9) for introns was ob-
served in nine out of 15 RBPs and a positive correlation (¿
0.6) for 14 RBPs. These correlations are attributable to the
abundance of introns within the genome, as well as the eCLIP-
seq datasets. QKI, TAF15, and TIAL1 exhibited strong cor-
relations (¿ 0.9) for 3’UTR. Direct eCLIP-seq analysis and
other experimental results provided evidence of the enrich-
ment of binding sites in the 3’UTR and its functional impor-
tance for QKI, TAF15, and TIAL1 (Kapeli et al., 2016; Meyer
et al., 2018; Ciolli Mattioli et al., 2019; Van Nostrand et al.,
2020a,b). In addition, the correlations of TAF15 and TIAL1
agreed with the essential region types to predict RNA-RBP
interactions previously reported using the NMF-based model
(Stražar et al., 2016). The correlation for CDS was above 0.9
in IGF2BP1 and IGF2BP3. These results are also in line with
the known function of IGF2BPs of binding to the end of CDS
and 3’UTR to stabilize messenger RNAs (Huang et al., 2018).
On the other hand, correlations for the 5’UTR were not in
accordance with those of previous studies. This may explain
the information translated by BERT-RBP but not by other
models; however, more extensive rationalization is necessary.

3.2.2 Transcript Region Boundary

To further investigate the capability of the model to extract
transcript region type information from sequences, we ana-
lyzed the boundary between transcript regions (Section 2.4.3).
For most RBPs and region boundaries, the similarity of at-
tention patterns between DNABERT and BERT-RBP was
consistently above 0.7, indicating that the variation from
DNABERT to BERT-RBP was limited during fine-tuning
(Figure 4a). A detailed comparison of the most specialized
head demonstrated that both models were analogously spe-
cialized for the transcript region boundary, especially among
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intron-exon boundaries (Figure S3). These results indicated
that BERT-RBP’s capability to translate transcript region
boundaries was transferred from DNABERT, inferring the sig-
nificance of pre-training using the genome-size corpus and the
potential applicability of DNABERT for other prediction tasks
where transcript region type information is crucial.

3.2.3 RNA Secondary Structure

The RNA secondary structure is another feature that improves
the prediction performance of several models (Maticzka et al.,
2014; Stražar et al., 2016; Chung and Kim, 2019; Deng et al.,
2020). Accordingly, we investigated whether our model could
consider the RNA secondary structure during prediction (Sec-
tion 2.4.4). For this purpose, nine RBPs with varied structural
preferences were selected (Dominguez et al., 2018; Adinolfi
et al., 2019). When DNABERT and BERT-RBP were com-
pared, there were variations in the attention patterns for loop
structures (Figure 4b). Using the hnRNPK dataset, we fur-
ther examined the variation of attention weights at the head
7-12, which had the highest attention ratio for the internal,
hairpin, and multi-branched loops. The examination revealed
a shift in specialization from DNABERT to BERT-RBP (Fig-
ure 5a-b). The head 7-12 of DNABERT was initially special-
ized for detecting the dangling ends, but it began to attend
more to loop structures after fine-tuning. The shifted spe-
cialization was also observed for the other seven RBPs (Fig-
ure S4). These results align with the RBP’s general binding
preferences toward unstructured regions (Dominguez et al.,
2018). Taken together, the pre-trained BERT architecture
can vary the type of structural information processed during
fine-tuning.

4 Discussion

Although our analysis implied that the fine-tuned model could
utilize the information learned by DNABERT, it is necessary
to conduct a more extensive BERTological analysis to eluci-
date the accurate picture of the fine-tuning mechanism of bi-
ological BERT models. The syntactic relationship among to-
kens, for example, is an intensely researched topic in BERTol-
ogy and may incorporate hidden contextual patterns of nu-
cleotide sequences (Goldberg, 2019). In the context of protein
BERT models, it was recently demonstrated that protein con-
tact maps can be reconstructed using the attention maps ex-
tracted from the pre-trained protein BERT model (Rao et al.,
2021). If one could overcome the difference in the frequency
of tokens in contact, it would be possible to reconstruct the
base-pairing probability matrix using the attention maps of a
nucleotide BERT model.

In this study, we proposed BERT-RBP, a fine-tuned BERT
model for predicting RNA-RBP interactions. Using the
eCLIP-seq data of 154 different RBPs, our model out-
performed state-of-the-art methods and the baseline BERT
model. Attention analysis revealed that BERT-RBP could dis-
tinguish both the transcript region type and RNA secondary
structure using only sequential information as inputs. The
results also inferred that the attention heads of BERT-RBP
could either utilize information acquired during DNABERT
pre-training or vary the type of information processed when

necessary. As the analysis demonstrated the model’s capabil-
ity to translate transcript region type and RNA secondary
structure, DNABERT can potentially be applied to other
RNA-related tasks, such as RNA subcellular localization pre-
diction (Gudenas and Wang, 2018; Yan et al., 2019), RNA
secondary structure prediction (Chen et al., 2020; Sato et al.,
2021), and RNA coding potential prediction (Hill et al., 2018).
Thus, this study provides a state-of-the-art tool to predict
RNA-RBP interactions and infers that the same method can
be applied to other bioinformatics tasks.
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Stražar, M. et al. (2016). Orthogonal matrix factorization en-
ables integrative analysis of multiple RNA binding proteins.
Bioinformatics, 32(10), 1527–1535.

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.04.27.441365doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.27.441365
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tahir, M. et al. (2021). kDeepBind: Prediction of RNA-
Proteins binding sites using convolution neural network and
k-gram features. Chemometrics and Intelligent Laboratory
Systems, 208, 104217.

Uhl, M. et al. (2020). GraphProt2: A novel deep learning-
based method for predicting binding sites of RNA-binding
proteins. bioRxiv , page 850024.

Van Nostrand, E. L. et al. (2016). Robust transcriptome-
wide discovery of RNA-binding protein binding sites with
enhanced CLIP (eCLIP). Nature methods, 13(6), 508–514.

Van Nostrand, E. L. et al. (2020a). A large-scale binding and
functional map of human RNA-binding proteins. Nature,
583(7818), 711–719.

Van Nostrand, E. L. et al. (2020b). Principles of RNA pro-
cessing from analysis of enhanced CLIP maps for 150 RNA
binding proteins. Genome biology , 21(1), 90.

Vaswani, A. et al. (2017). Attention is all you need. arXiv ,
page 1706.03762.

Vig, J. and Belinkov, Y. (2019). Analyzing the structure of at-
tention in a transformer language model. In Proceedings of
the 2019 ACL Workshop BlackboxNLP: Analyzing and In-
terpreting Neural Networks for NLP , pages 63–76, Florence,
Italy. Association for Computational Linguistics.

Vig, J. et al. (2021). BERTology meets biology: Interpret-
ing attention in protein language models. In International
Conference on Learning Representations.

Wang, Z. et al. (2010). iCLIP predicts the dual splicing effects
of TIA-RNA interactions. PLoS biology , 8(10), e1000530.

Yan, J. and Zhu, M. (2020). A review about RNA–Protein-
Binding sites prediction based on deep learning. IEEE Ac-
cess, 8, 150929–150944.

Yan, Z. et al. (2019). Prediction of mRNA subcellular localiza-
tion using deep recurrent neural networks. Bioinformatics,
35(14), i333–i342.

Yan, Z. et al. (2020). Graph neural representational learning
of RNA secondary structures for predicting RNA-protein
interactions. Bioinformatics, 36(Supplement 1), i276–i284.

Yates, A. D. et al. (2020). Ensembl 2020. Nucleic acids re-
search, 48(D1), D682–D688.

Yu, H. et al. (2019). beRBP: binding estimation for human
RNA-binding proteins. Nucleic acids research, 47(5), e26.

Zhang, H. et al. (2020). LinearPartition: linear-time approxi-
mation of RNA folding partition function and base-pairing
probabilities. Bioinformatics, 36(Supplement 1), i258–i267.

Zhang, S.-W. et al. (2019). Prediction of the RBP binding
sites on lncRNAs using the high-order nucleotide encoding
convolutional neural network. Analytical biochemistry , 583,
113364.

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.04.27.441365doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.27.441365
http://creativecommons.org/licenses/by-nc-nd/4.0/

