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Abstract 

 

When intense sound is presented during light muscle contraction, inhibition of the 

corticospinal tract is observed. During action preparation, this effect is reversed, with sound 

resulting in excitation of the corticospinal tract. We investigated how the combined 

maintenance of a muscle contraction during preparation for a ballistic action impacts the 

magnitude of the facilitation of motor output by a loud acoustic stimulus (LAS) – a 

phenomenon known as the StartReact effect. Participants executed ballistic wrist flexion 

movements and a LAS was presented simultaneously with the imperative signal in a subset of 

trials. We examined whether the force level or muscle used to maintain a contraction during 

preparation for the ballistic response impacted reaction time and/or the force of movements 

triggered by the LAS. These contractions were sustained either ipsilaterally or contralaterally 

to the ballistic response. The magnitude of facilitation by the LAS was greatest when low 

force flexion contractions were maintained in the limb contralateral to the ballistic response 

during preparation. There was little change in facilitation when contractions recruited the 

contralateral extensor muscle, or when they were sustained in the same limb that executed the 

ballistic response. We conclude that a larger network of neurons which may be engaged by a 

contralateral sustained contraction prior to initiation may be recruited by the LAS, further 

contributing to the motor output of the response. These findings may be particularly 

applicable in stroke rehabilitation where engagement of the contralesional side may increase 

the benefits of a LAS to the functional recovery of movement.  
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1.0 Introduction 

The presentation of a loud acoustic stimulus (LAS) during movement preparation can affect 

the time of movement initiation as well as movement vigour. Actions that are sufficiently 

prepared at the time a LAS is delivered are involuntarily triggered at much shorter latencies, 

and are executed with greater force and vigour, than is typically produced voluntarily (Anzak, 

Tan, Pogosyan, & Brown, 2011; Anzak, Tan, Pogosyan, Djamshidian, et al., 2011; Marinovic 

et al., 2015; McInnes, Corti, et al., 2020; Valls-Solé et al., 1999). This is referred to as the 

StartReact effect (Valls-Solé et al., 1999). However, the effects of a LAS on motor circuits 

are contingent on the state of preparation for action at the time the stimulus is presented. For 

example, when the task is simply to maintain a light muscle contraction at a stable level, loud 

acoustic stimuli suppress the excitability of corticospinal pathways (Fisher et al., 2004; 

Furubayashi et al., 2000; Kuhn et al., 2004). In contrast, during a state of imminent 

preparation for a discrete action (i.e. the context in which the StartReact effect occurs), 

corticospinal excitability is increased shortly after the presentation of a LAS, which may 

provide a neurophysiological means by which motor output can be facilitated in the 

StartReact effect (Marinovic, Tresilian, et al., 2014). These observations highlight that the 

effects of a LAS on motor pathways are not fixed, but depend on the state of the motor 

system. However, the modulation of corticospinal excitability is further nuanced in that 

inhibition after acoustic stimulation is only observed when there is weak background muscle 

activity. During maintenance of a slightly stronger contraction, at 10% of maximum 

voluntary contraction (MVC), suppression of the corticospinal tract is less evident (Chen et 

al., 2016). This may be due to voluntary activation of the primary motor cortex (M1) 

suppressing intracortical inhibitory circuits as the amount of contraction force is increased 

(Roshan et al., 2003). 

Furthermore, it is unclear how the maintenance of a muscle contraction during 

preparation for action may impact the StartReact effect. The potential observations which 

may be made under these conditions are currently uncertain as the effects of acoustic 

stimulation on the corticospinal tract during light muscle contraction are opposite (Fisher et 

al., 2004; Furubayashi et al., 2000; Kuhn et al., 2004) to those observed during action 

preparation (Marinovic, Tresilian, et al., 2014). Here, we investigated how different types of 

muscle contractions held during a preparatory foreperiod may impact the early triggering of 

motor actions and the enhancement of response vigour when the motor response is triggered 

by a LAS. If the combined maintenance of a muscle contraction during preparation for a 

subsequent action results in a decreased StartReact effect (i.e. reduced shortening of RT, 
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reduced enhancement of response force/vigour), this would suggest that the contraction 

induces a suppressive effect of acoustic stimulation on motor pathways. In accordance with 

observations that the inhibitory LAS effect depends on the amount of background muscle 

activity, any putative reduction of the StartReact effect would be expected to be greatest at 

low contraction force levels. Alternatively, stable background contractions may increase 

preparatory neural activity prior to the discrete action and subsequently magnify the 

StartReact effect. During unilateral muscle contraction, excitability of the M1 ipsilateral to 

the contracting muscle increases as the amount of force is increased (Chen et al., 2019; Perez 

& Cohen, 2008; Shibuya et al., 2014; Stinear et al., 2001; Uematsu et al., 2010). In addition, 

regional cerebral blood flow in ipsilateral M1 decreases at light muscle contractions (5% of 

MVC) and increases in proportion to the strength of the muscle contraction from 10% - 60% 

of MVC (Dettmers et al., 1996). Therefore, contraction of a muscle during preparation of a 

contralateral response may result in an enhancement of the StartReact effect that is 

proportional to the strength of the contraction maintained during preparation. The StartReact 

effect has also been proposed as a tool to aid in rehabilitation in neurological conditions such 

as stroke, with startling sensory stimuli capable of reducing movement initiation-related 

deficits (Choudhury et al., 2019; Coppens et al., 2018; Honeycutt et al., 2015; Honeycutt & 

Perreault, 2012; Jankelowitz & Colebatch, 2004; Marinovic et al., 2016; Rahimi & 

Honeycutt, 2020). Given this, and the fact that stroke survivors typically experience 

exaggerated movement impairment on one side of the body (Zemke et al., 2003), 

maintenance of a contraction contralateral to the impaired side may be particularly beneficial 

for people with stroke if it enhances the benefits derived from intense sensory stimuli. 

Therefore, we examined how the type of isometric contraction maintained during preparation 

for a ballistic response impacts the facilitation of movement initiation and execution by a 

LAS, in both bilateral and unilateral tasks. 

 

2.0 Method – Experiment one 

 

2.1 Participants 

 

Thirty participants were recruited for experiment one (20 female, mean age = 20.33 years, SD 

= 2.25). Participants in all experiments were self-reportedly right-handed, with normal or 

corrected-to-normal vision, and no apparent or known auditory impairments, neurological 

conditions, or injuries which may have affected their performance in the experiment. The 
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study was approved by Curtin University’s local human research ethics committee and all 

participants provided informed, written consent before starting the experiment.  

 

2.2 Procedures  

 

Participants were seated on a height-adjustable chair with each hand and forearm secured in 

custom-made manipulanda, each housing a six degree of freedom force/torque sensor (JR3 

45E15A-I63-A 400N60S, Woodland, CA; see de Rugy et al. (2012)). The forearm was 

secured in a semi-supinated position with the palms facing inward, and elbows flexed at an 

approximately 90° angle. Both hands and forearms of each participant were secured snugly in 

the device to prevent time delays between muscle activation and the recording of force. 

Participants were seated at a distance of approximately 0.8 m in front of a 24.5-inch monitor 

(Asus ROG Swift PG258Q, 120 Hz refresh rate, 1920x1080 resolution) which presented 

visual stimuli during the task. Both visual and auditory stimuli were presented using 

Psychtoolbox (v3.0.11) running in MATLAB 2015b. 

Prior to the experimental trials, each participant completed a MVC procedure of wrist 

flexion in both the left and right hand (see Selvanayagam et al., 2016). In this procedure, 

force feedback was provided to subjects via a cursor in two-dimensional space (x = 

flexion/extension, y = abduction/adduction) such that 10 Newtons (N) was required to move 

the cursor 32 pixels on the computer monitor. Subjects produced three isometric MVCs for 

three seconds toward a target corresponding to the direction of wrist flexion, and the peak 

force was measured. The mean peak force of the three contractions for each hand was 

recorded as the MVC for the relevant hand. These data were used to determine the level of 

force required to reach targets during the experiment.  

The experimental task required participants to perform a discrete ballistic wrist 

flexion movement of the right hand in response to an imperative cue. There were four 

contraction conditions during the experiment and these were each randomised across 

participants to one of four blocks of trials during the experiment. The contraction condition of 

the block determined the amount of force which was required to be sustained with the left 

hand during preparation of the right hand response. These force levels were 0%, 5%, 10%, 

and 20% of the participant’s left wrist flexor’s MVC. In one block, referred to as the “no 

contraction” condition, participants kept their left hand relaxed while they prepared and 

executed a ballistic flexion movement of the right hand, aiming to produce a brief force pulse 

of 20% of the right wrist flexor’s MVC. The 20% of MVC flexion ballistic response was 
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chosen as we have previously shown that this muscle and force level is particularly prone to 

the beneficial effects of a LAS on motor output (McInnes, Corti, et al., 2020). In the three 

remaining contraction conditions, the left hand maintained an isometric flexion contraction at 

either 5%, 10%, or 20% of the left wrist flexor’s MVC, during preparation for the ballistic 

right-hand response. See Figure 1 for the sequence of events during the experiment. Prior to 

experimental trials, participants completed a block of 12 practice trials, which consisted of 

three trials of each condition in the experiment. Participants were given verbal feedback 

regarding their performance, and practice trials were repeated until participants were able to 

accurately initiate movements within 250 ms after the presentation of the imperative stimulus 

(IS). One-hundred and sixty-four experimental trials were then completed, split into four 

blocks of 41 trials each.  

Each trial began with the word “relax” presented on-screen, indicating for the 

participant to keep their hands relaxed and stationary for the start of the trial. Next, a cursor 

that responded to forces with the left hand, and a contraction target, consisting of two arcs on 

the right side of the screen were presented. Participants moved their left hand so that the 

cursor was positioned within the contraction target, and held their hand in this position for the 

duration of the trial. The amount of force required to reach the contraction target changed 

each block, depending on the contraction condition (0%, 5%, 10%, or 20% of MVC 

contraction level). Trials would not proceed until the participant had maintained a contraction 

of the appropriate force level within a tolerance of ±7.5% of the target, to accommodate 

minor deviations from the contraction force. Once the participant had maintained this 

contraction for two seconds, a cursor which could be controlled by the right hand and a 

warning cue appeared, indicating the impending presentation of the IS. This warning cue 

appeared as a red circle on the left side of the screen. Participants were instructed to prepare 

to respond with the right hand during this period. After 500 ms, the contraction target and 

cursor indicating the position of the left hand was removed from the screen, so that 

participants would be encouraged to direct their attention to the warning cue and impending 

IS and prepare responses appropriately. If the participant unknowingly moved their left hand 

outside of the contraction target during this preparatory foreperiod, the left hand cursor and 

contraction target would reappear on screen, requiring the participant to return their left hand 

within the contraction target before the trial would proceed. The warning cue was presented 

for two seconds (± 200 ms jitter), after which the IS, a yellow circle in place of the warning 

cue, was presented. Twenty percent of trials occurred as probe trials in which a LAS was 

presented as an accessory stimulus simultaneously with the IS. The order of trials was 
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pseudo-randomised so that the LAS would not be presented in two consecutive trials. When 

the IS was presented, participants reacted by moving their right hand in a ballistic wrist 

flexion. They were instructed to aim to touch the target and stop the cursor movement once 

the target had been reached. To encourage participants to respond with the appropriate 

amount of force required to reach the target, the yellow IS target flashed green when 

intersected with the cursor. At the end of the trial, feedback regarding RT was presented to 

encourage quick responses throughout the experiment. In probe trials, this feedback was not 

presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Sequence of events during the experiment requiring a left-hand contraction during 

preparation for a ballistic right hand response to the IS.  

 

 

2.3 Loud Acoustic Stimulus 

 

In probe trials, a LAS generated by the onboard audio of the computer used to run 

experiments was presented through high-fidelity stereophonic active noise cancelling 

headphones (Bose QC25). The peak amplitude of the stimulus was measured at 105 dBa 

using a Bruel and Kjaer sound level meter (Type 2205, A weighted; Brüel & Kjaer Sound 
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and Vibration Measurement, Naerum, Denmark). The LAS was presented for a duration of 50 

ms and with a rise and fall time < 1.5 ms.  

  

2.4 Statistical analyses 

 

For each trial, the time series of force data were collected from the load cell with a sampling 

rate of 2 kHz using a National Instruments data acquisition device (NI USB-6229). 

Movement onsets were estimated from the force time series data using Teasdale et al.’s 

(1993) algorithm, and RT was determined by subtracting the time of IS presentation from the 

time of movement onset. The vigour of the ballistic response was determined by measuring 

the derivative of the torque data with respect to time, referred to as the rate of force 

development (Newtons per second; N/s). Peak rate of force development and peak force were 

determined as the maximum values of the force/force derivative time-series data reached over 

the course of a trial. Statistical analyses were run using R software (v3.6.0; R Core Team, 

2019).  

 Prior to analysis, trials with a RT < 60 ms or > 1000 ms were removed on the basis 

that these were error responses made as a result of premature response initiation due to 

anticipation of the IS, or delayed responses due to insufficient movement preparation 

(Whelan, 2008). This resulted in the exclusion of 100 trials (2.03% of all trials) in experiment 

one. We further used cumulative distribution functions (CDFs) to analyse mean RTs at each 

percentile of the entire RT distribution to assess whether preparatory contraction conditions 

resulted in movements being more or less prone to triggering delays. We have outlined the 

method of analysing data using CDFs in a StartReact context in more detail previously 

(McInnes, Castellote, et al., 2020).  

 We used the lmer function from the lmerTest package (v3.1; Kuznetsova, Brockhoff, 

& Christensen, 2017) to conduct a series of linear mixed-effects models. All trials were fed 

into the linear models with participants set as a random factor. In Experiment one, trial type 

(control, LAS) and contraction level (no contraction, 5%, 10%, 20% contractions) were fixed 

factors in the model. To determine the extent of facilitation for RT, peak force, and peak rate 

of force development that occurred as a result of the LAS, we calculated differences in RT 

and ratios of peak force and peak rate of force development. We analysed both raw values 

and differences/ratios as raw values provided a demonstration of the potential sustained 

contraction effects on voluntary responses in control trials, while differences/ratios illustrated 

how the magnitude of the StartReact effect may be impacted by the contractions sustained 
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during preparation. For RT differences, the median RT of control trials was calculated for 

each contraction condition, and each LAS trial was subtracted from the median of control 

trials to determine a RT difference for each probe trial. A similar procedure was conducted 

with peak force and peak rate of force development by dividing probe trials by the median of 

control trials. For all models, degrees of freedom were approximated using the Kenward-

Roger procedure. R2 values, calculated using the r2beta function (r2glmm package, v0.1.2) 

are also reported to estimate effect sizes of all main effects and interactions tested using the 

linear mixed models. Post-hoc tests were conducted for significant main effects and 

interactions of the linear mixed models using the emmeans function (emmeans package, 

v1.3.0) with the correction of multiple comparisons using the false discovery rate method 

(Benjamini & Hochberg, 1995). 

 

3.0 Results – Experiment 1 

 

3.1 Shortening of response initiation 

 

RT was significantly shortened in LAS probe trials (M = 158.69 ms, SD = 85.37) in 

comparison to control trials (M = 221.74 ms, SD = 99.86), with a statistically significant main 

effect of trial type for RT, F(1, 4783.1) = 639.84, p < .001, R2 = .118. The main effect of 

contraction level was also statistically significant for RT, F(3, 4783.2) = 9.50, p < .001, R2 = 

.006. The interaction of trial type with contraction level was not statistically significant, F(3, 

4783.1)  = 0.22, p = .886, R2 < .001. Analysis of the difference in RT between probe trials and 

the median of control trials for each condition did not indicate a statistically significant main 

effect of contraction level, F(3, 887.49) = 0.65, p = .583, R2 = .002. Mean RTs across each 

condition are shown in Figure 2. 

 We further examined each participant’s mean RT at each percentile, across the four 

contraction level conditions. A linear mixed-effects model indicated a significant main effect 

of contraction level, F(3, 1131) = 24.10, p < .001, R2 = .060. In comparison to the no contraction 

condition (M = 206.21 ms, SD = 70.40), the 10% contraction condition showed significantly 

shorter RTs across the CDF curve (M = 198.76 ms, SD = 57.25; p = .003), while the 20% 

contraction condition had significantly longer RTs (M = 217.18 ms, SD = 73.51; p < .001). 

RTs across the CDF curve for the 5% contraction condition (M = 201.87 ms, SD = 65.48) 

were not significantly different from the no contraction condition (p = .083), nor the 10% 
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contraction condition (p = .180). The interaction of percentile with contraction level was not 

statistically significant, F(27, 1131) = 1.28, p = .153, R2 = .030. 

 

 

 

Figure 2. A). Mean reaction time over control and probe trials for each contraction level. B). 

Mean of the difference in RT between all probe trials and the median of control trials for each 

condition. C). Mean RT across each participant for each percentile of RT. Error bars 

represent standard error of the mean. 

 

3.2 Enhancement of peak force and vigour 

 

Peak force showed an enhancement in probe trials (M = 36 N, SD = 16.60) compared to 

control trials (M = 31.95 N, SD = 13.31), as shown by the main effect of trial type which was 

statistically significant, F(1, 4783) = 127.09, p < .001, R2 = .026. The main effect of contraction 

level was also statistically significant, F(3, 4783) = 10.59, p < .001, R2 = .007. Furthermore, the 

interaction of trial type and contraction level was statistically significant for peak force, F(3, 

4783) = 6.83, p < .001, R2 = .004. Analysis of the ratios of peak force showed a statistically 

significant main effect of contraction level, F(3, 908.26) = 6.35, p < .001, R2 = .021. Post hoc 

tests indicated that in comparison to the no contraction condition (M = 1.11, SD = 0.39), 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.26.441558doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441558
http://creativecommons.org/licenses/by/4.0/


ratios of peak force between control trials and probe trials were significantly greater in the 

10% contraction condition (M = 1.19, SD = 0.33; p = .016), but not in the 5% (M = 1.17, SD 

= 0.40; p = .059) or 20% contraction conditions (M = 1.07, SD = 0.36; p = .417).  

 Similarly to peak force, our analysis showed a statistically significant main effect of 

trial type for peak rate of force development, F(1, 4783) = 252.01, p < .001, R2 = .050, with 

greater peak rate of force development observed on average for LAS probe trials (M = 492.13 

N/s, SD = 251.70) in comparison to control trials (M = 410.50 N/s, SD = 185.05). The main 

effect of contraction level, F(3, 4783) = 4.56, p = .003, R2 = .003, and the interaction of trial type 

with contraction level, F(3, 4783) = 5.43, p = .001, R2 = .003, were statistically significant. The 

main effect of contraction level for ratios of peak rate of force development was also 

statistically significant, F(3, 908.25) = 5.46, p = .001, R2 = .018. In comparison to the no 

contraction condition (M = 1.17, SD = 0.52), post hoc tests indicated ratios of peak rate of 

force development were significantly greater for the 5% (M = 1.25, SD = 0.44; p = .042) and 

10% (M = 1.29, SD = 0.42; p = .006) contraction conditions but not for the 20% contraction 

condition (M = 1.16, SD = 0.45; p = .817). The mean peak force and vigour for each 

experimental condition are presented in Figure 3. 
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Figure 3. A). Mean peak force for control and probe trials over each contraction level. B). 

Mean peak force ratios over each contraction level. C). Mean peak rate of force development 

over control and probe trials at each contraction level. D). Mean peak rate of force 

development ratios for each contraction level. Error bars represent standard error of the mean.  

 

 

6.0 Method – Experiment two 

 

6.1 Participants 

 

A second sample of 25 participants (16 female; mean age = 20.28 years, SD = 1.65) was 

recruited for experiment two. The same recruitment criteria as experiment one was used for 

experiment two.  
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6.2 Procedures 

 

In experiment two, we used a forewarned RT task similar to experiment one, in a unilateral 

task. In this task, isometric contractions were maintained during preparation for the response 

to the IS with the same (right) hand. Responses to the IS were again ballistic flexion 

movements of the right hand at 20% of MVC of the right wrist flexor. The right (responding) 

hand either remained relaxed during preparation for the response to the IS, or maintained a 

contraction in either flexion or extension, at 10% of the relevant muscle’s MVC. Both flexion 

and extension contractions were examined in order to assess whether the potential observable 

effects were muscle specific. Flexion and extension contractions were employed as these are 

an agonist/antagonist pair and have also been suggested to differ in the strength of their 

efferent contributions from the corticospinal and reticulospinal tracts (Cheney & Fetz, 1980; 

Clough et al., 1968; de Noordhout et al., 1999; Fetz & Cheney, 1980; Godfrey et al., 2013; 

Koganemaru et al., 2010; McInnes, Castellote, et al., 2020; McMillan et al., 2004; Palmer & 

Ashby, 1992; Park & Li, 2013; Quinn et al., 2018; Vallence et al., 2012). Contractions were 

maintained during preparation at 10% of the muscle’s MVC as this force level appeared to 

provide the most benefit in experiment one. The ballistic response always required additional 

responsive activation of the flexor muscle at 20% of MVC beyond the contraction position. 

For example, during the isometric flexion contraction, the target was set so that from the 10% 

of MVC contraction position, an additional force of 20% of flexion MVC would be required 

to meet the target (i.e. the final position of the ballistic response was 30% of flexion MVC). 

During the isometric extension contraction, the ballistic flexion response of 20% of MVC 

was required, measured from the point at which the extensor muscle was at rest (i.e. the final 

force target required force away from 10% extension MVC and toward 20% flexion MVC). 

We determined this to be the most feasibly equivalent between the flexion and extension 

contraction conditions of the unilateral task in terms of the amount of force beyond the 

sustained contraction force which would be required to generate the final ballistic response. 

Trials were again excluded from analysis on the basis of 60 ms < RT > 1000 ms. This 

resulted in the exclusion of 98 trials from experiment two in total (1.96% of all trials). In 

addition, we calculated the variability of force 250 ms prior to the presentation of the IS by 

calculating the standard deviation of force at this time point. This analysis was conducted for 

this experiment as differences in the variability of force during the sustained contraction prior 

to the ballistic force may have impacted detection of force onset for the ballistic response 

during the unilateral task. As a result, this potential systematic influence of movement onset 
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detection may have impacted our analysis of RT in this experiment. Therefore, we fed force 

variability into a linear mixed model to examine whether force variability prior to the IS 

systematically differed as a function of the contraction condition.  

 

7.0 Results - Experiment two 

 

7.1 Shortening of response initiation 

 

RTs were significantly shorter in probe trials (M = 159.98 ms, SD = 101.61) in comparison to 

control trials (M = 238.25 ms, SD = 140.42), with a statistically significant main effect of trial 

type for RT, F(1, 3648) = 406.13, p < .001, R2 = .100. The main effect of contraction type was 

also statistically significant for RT, F(2, 3648.1) = 10.97, p < .001, R2 = .006. Responses on 

average showed shorter RTs in the no contraction condition (M = 209.65 ms, SD = 107.1) in 

comparison to when contractions were maintained in both flexion (M = 223.97 ms, SD = 

123.41; p = .012) and extension (M = 233.58 ms, SD = 111.75; p < .001) during preparation. 

However, analysis of the variability of force 250 ms prior to the IS indicated a significant 

main effect of contraction type, F(2, 3648) = 34.88, p < .001, R2 = .021. This indicates this effect 

of contraction type on RT may be an artefact of more variable baseline force affecting the 

detection of movement onset in this experiment. Force variability 250 ms prior to the IS was 

significantly lower for the no contraction condition (M = 0.04, SD = 0.25) in comparison to 

both the flexion (M = 0.09, SD = 0.14; p < .001) and extension contraction conditions (M = 

0.08, SD = 0.09; p < .001). Contraction force variability was also significantly different 

between flexion and extension contractions (p = .032). The interaction of trial type with 

contraction type was not statistically significant, F(2, 3648)  = 0.21, p = .811, R2 = .002. Analysis 

of the difference in RT between probe trials and the median of control trials for each 

contraction condition did not indicate a statistically significant main effect of contraction 

type, F(2, 711.16) = 1.23, p = .293, R2 = .003.  

Each participant’s mean RT at each percentile contraction conditions was also 

analysed using a linear mixed-effects model. Analysis indicated a significant main effect of 

contraction type, F(2, 696) = 25.38, p < .001, R2 = .068. In comparison to the no contraction 

condition (M = 204.08 ms, SD = 89.27), the flexion contraction condition showed 

significantly longer RTs across the CDF curve (M = 219.82 ms, SD = 113.3; p < .001), as did 

the extension contraction condition (M = 230.83 ms, SD = 107.94; p < .001). RTs across the 

CDF curve were significantly longer for the extension contraction condition in comparison to 
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the flexion contraction condition (p = .003). The interaction of percentile with contraction 

type was not statistically significant, F(18, 696) = 1.17, p = .282, R2 = .029. Figure 4 shows the 

mean RTs for each condition along with mean RTs at each percentile within the CDF.  

 

 

 

Figure 4. A). Mean reaction time over control and probe trials for each contraction type. B). 

Mean difference in RT between control and probe trials for each contraction type. C). B). 

Mean RT across each participant for each percentile of RT. Error bars represent standard 

error of the mean.  

 

 

7.2 Facilitation of response force and vigour 

 

Peak force showed an enhancement in probe trials (M = 44.34 N, SD = 18.33) compared to 

control trials (M = 39.24 N, SD = 16.52), as shown by a statistically significant main effect of 

trial type, F(1, 3648) = 111.54, p < .001, R2 = .030. The main effect of contraction type was also 

statistically significant, F(2, 3648) = 66.22, p < .001, R2 = .035. The flexion (M = 37.46 N, SD = 

12.67) contraction condition showed significantly lower peak force on average in comparison 

to both the no contraction (M = 37.46 N, SD = 12.69; p < .001) and extension (M = 43.84 N, 
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SD = 15.38; p < .001) contraction conditions. Average peak force in the extension contraction 

condition was also significantly greater than the no contraction condition (p < .001). The 

interaction of trial type with contraction type was not statistically significant, F(2, 3648) = 0.23, 

p = .793, R2 = .000. The benefit of the acoustic stimulus on peak force did not appear to differ 

as a function of contraction type, as analysis of the ratios of peak force indicated the main 

effect of contraction type was not statistically significant, F(2, 711.14) = 1.02, p = .361, R2 = 

.003. 

 Peak rate of force development was also increased by the LAS (M = 567.93 N/s, SD = 

288.57) in comparison to control trials (M = 448.40 N/s, SD = 218.79), as indicated by a main 

effect of trial type, F(1, 3648) = 313.27, p < .001, R2 = .079. The main effect of contraction type 

was also statistically significant, F(2, 3648) = 39.12, p < .001, R2 = .021, however, the 

interaction of trial type with contraction type, F(2, 3648) = 1.30, p = .273, R2 = .001, was not 

significant. The main effect of contraction type for ratios of peak rate of force development 

was statistically significant, F(2, 711.15) = 5.83, p = .003, R2 = .016. Post hoc tests indicated 

peak rate of force development ratios in the flexion (M = 1.40, SD = 0.54; p = .002), but not 

the extension (M = 1.33, SD = 0.54; p = .088) contraction condition, were significantly 

greater than the no contraction condition (M = 1.26, SD = 0.49). The flexion contraction 

condition also showed significantly greater peak rate of force development ratios in 

comparison to the extension contraction condition (p = .088). Ratios and means of peak force 

and peak rate of force development are presented in Figure 5. 
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Figure 5. A). Mean peak force for control and probe trials for each contraction type. B). 

Mean peak force ratios for each contraction type. C). Mean peak rate of force development 

over control and probe trials at each contraction type. D). Mean peak rate of force 

development ratios for each contraction type. Error bars represent standard error of the mean. 

 

 

4.0 Method – Experiment three 

 

4.1 Participants 

 

In experiment three, a sample of 29 volunteers (different from those recruited in experiments 

one and two) were recruited (23 female, mean age = 20.72 years, SD = 3.18). Participants 
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were again required to be right-handed and free from any auditory impairments, neurological 

conditions, or injuries which may have impacted their performance in the experiment. 

 

4.2 Procedures 

 

Experiment three followed similar procedures to those of the bilateral task of experiment one, 

except contractions were made with the left hand in both directions of flexion and extension 

during preparation in an anticipatory timing task requiring a response from the right hand. 

The use of both flexion and extension contractions during preparation in the bimanual task 

again allowed us to examine whether the effects observed in experiment one were muscle 

specific. Alternatively, effects may be movement specific. For example, modulations of 

corticospinal excitability in M1 during ipsilateral movement have been suggested to be more 

strongly associated with whether the direction of movement is toward or away from the 

midline of the body, rather than the specific agonist muscle used in the movement (Duque et 

al., 2005). An anticipatory timing task was used in this experiment as the effects of the LAS 

on peak force and vigour were larger than those observed for the latency of movement onset 

in experiment one. Therefore, an anticipatory timing protocol allowed us to examine whether 

the effects of the LAS on movement execution become more or less pronounced when the 

stimulation is delivered closer in time to movement onset. We presented contraction feedback 

as an outer ring of a circle, with the contraction target at the 12 o’clock position of the circle. 

Rather than the presentation of a WS and IS, as in the previous experiments, the centre of the 

contraction feedback would fill in according to a clockwise motion, and participants were 

instructed to initiate their movement in synchrony with the time at which the circle was 

completely filled and the clock hand intersected at the 12 o’clock position. Contractions 

during preparation were set at one required force level – 10% of MVC, as this force level 

provided the most benefit in experiment one. As in the previous experiments, responses were 

made with the right hand at 20% of MVC. The LAS was presented in synchrony with the 

expected time of movement onset and, therefore, we did not anticipate a main effect of LAS 

on the temporal error of movement onset. In experiment three, responses to the IS with 

temporal error < -150 ms or > 150 ms were excluded from analysis. This resulted in the 

exclusion of 519 trials in experiment three (12.14% of all trials).  

 

5.0 Results - Experiment three 
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5.1 Temporal error of movement onset 

 

Mean temporal error of movement onset was earliest in the no contraction condition (M = -

24.83 ms, SD = 51.13), followed by that of the extension contraction (M = -16.68 ms, SD = 

50.50) and flexion contraction (M = -10.77 ms, SD = 50.18) conditions. Our analysis of 

temporal error of movement onset data in experiment three indicated a statistically significant 

main effect of contraction type (no contraction/flexion/extension), F(2, 3733.4) = 22.76, p < 

.001, R2 = .012. The time of movement initiation in the no contraction condition was 

significantly earlier than both the flexion (p < .001) and extension (p < .001) contraction 

conditions. The difference in temporal error between the flexion and extension contraction 

conditions was also statistically significant (p = .006). As expected given the timing of LAS 

presentation, the main effect of trial type (LAS/control) was not statistically significant, F(1, 

3732.5) = 2.59, p = .107, R2 = .001, nor was the interaction of trial type with contraction type, 

F(2, 3732.4) = 0.02, p = .977, R2 = .002. Mean temporal error for each condition is shown in 

Figure 6. 

 

 

 

Figure 6. Mean temporal error of movement onset for control and probe trials across 

contraction conditions. Error bars represent standard error of the mean.  
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5.2 Enhancement of response force and vigour 

 

Peak force was enhanced by the LAS (M = 27.9 N, SD = 14.03) in comparison to control 

trials (M = 23.54 N, SD = 9.64). The main effect of trial type for peak force was statistically 

significant, F(1, 3732) = 197.77, p < .001, R2 = .050. The main effect of contraction type was 

not statistically significant, F(2, 3732) = 2.38, p = .092, R2 = .001. Furthermore, the interaction 

of trial type with contraction type failed to reach statistical significance, F(2, 3732) = 1.84, p = 

.159, R2 = .001. Ratios of peak force were largest in the flexion contraction condition (M = 

1.26, SD = 0.51), with smaller ratios of peak force being found for the no contraction (M = 

1.19, SD = 0.42) and extension contraction conditions (M = 1.18, SD = 0.47). A linear mixed 

model of peak force ratios indicated a significant main effect of contraction type, F(2, 725.52) = 

3.34, p = .036, R2 = .009. Post hoc tests indicated a significant difference in peak force ratios 

between the flexion contraction condition and the no contraction condition (p = .049), 

between the flexion contraction condition and the extension contraction condition (p = .049), 

but not between the no contraction and extension contraction conditions (p = .872).   

On average, peak rate of force development was also increased by the LAS (M = 

347.98 N/s, SD = 225.50) in comparison to control trials (M = 258.41 N/s, SD = 121.88). 

Linear mixed-effects models of peak rate of force development indicated a significant main 

effect of trial type, F(1, 3732) = 435.27, p < .001, R2 = .104. The main effect of contraction type, 

F(2, 3732) = 4.44, p = .012, R2 = .002, as well as the interaction of trial type with contraction 

type, F(2, 3732) = 7.90, p < .001, R2 = .004, were statistically significant. Analysis of the ratios 

of probe trials over control trials for peak rate of force development indicated a significant 

main effect of contraction type, F(2, 725.39) = 7.22, p < .001, R2 = .020, with larger ratios of 

peak rate of force development occurring in the flexion contraction (M = 1.49, SD = 0.80, p < 

.001) and extension contraction (M =1.41, SD = 0.72, p = .032) conditions in comparison to 

the no contraction condition (M = 1.29, SD = 0.63). The difference between the flexion 

contraction and extension contraction conditions was not statistically significant (p = .150). 

The means and ratios of peak force and peak rate of force development are shown in Figure 

7. 
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Figure 7. A). Mean peak force for control and probe trials for each contraction type. B). 

Mean peak force ratios for each contraction type. C). Mean peak rate of force development 

over control and probe trials at each contraction type. D). Mean peak rate of force 

development ratios for each contraction type. Error bars represent standard error of the mean. 

 

 

8.0 Discussion 

 

Intense sounds have paradoxical effects on the motor system, depending on the evolving state 

of the central nervous system during preparation. During maintenance of a stable low-force 

muscle contraction, a LAS has inhibitory effects on the corticospinal tract (Fisher et al., 2004; 

Furubayashi et al., 2000; Kuhn et al., 2004). In contrast, during preparation for a discrete 

movement, a LAS has an excitatory effect on the corticospinal pathway (Marinovic, 

Tresilian, et al., 2014). Facilitation of movement via intense sound (the StartReact effect) is 

observed when a LAS is delivered whilst the central nervous system is in a high state of 

preparation (close to movement initiation time ~ 200 ms). As such, this excitatory effect of 

sound during preparation may provide a neurophysiological means by which motor 
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performance can be enhanced in the StartReact effect (Marinovic, Tresilian, et al., 2014; 

Marinovic & Tresilian, 2016). Observations of paradoxical effects of sound on corticospinal 

excitability which are contingent on the motor system’s state of preparation raise the question 

of whether combined muscle contraction and motor preparation enhance, or diminish, the 

StartReact effect. Therefore, here we investigated how the combined maintenance of a 

muscle contraction during preparation for action impacts the facilitation of motor output 

induced by a LAS. Raw RTs of movements executed in the bilateral task of experiment one 

provided no evidence that preparatory contractions of different force levels impact the degree 

to which a LAS can shorten RT. However, analysis of the entire RT distribution using CDFs 

indicated some overall benefit of a 10% MVC preparatory contraction on RT, and an overall 

delay of RT when a 20% of MVC contraction was maintained during preparation. 

Consideration should also be given to a potential RT floor effect which may have resulted in 

RTs being already close to the limits of the central nervous system and therefore limiting the 

facilitation of actions by the LAS in terms of their initiation.  

 In experiment two, our CDF analysis indicated that sustained flexion contractions at 

10% of MVC, which produced the most benefit on RT in the bilateral task of experiment one, 

resulted in a delay of movement initiation across the RT spectrum when performed in the 

unilateral task prior to initiation of the ballistic movement. A similar delay was also produced 

by the sustained extension contraction during the unilateral task. Attention has previously 

been shown to modulate intracortical inhibitory circuits of M1 (Bell et al., 2018; Binkofski et 

al., 2002; Kuhn et al., 2017), with external focus of attention, as opposed to an internal one, 

increasing short-interval intracortical inhibition (SICI) during sustained contraction (Kuhn et 

al., 2017). The authors suggest that this serves to regulate the amount of M1 outflow and 

subsequently increase the time taken for muscle fatigue to occur. This may be applicable to 

our data, as participants were provided with visual feedback regarding their hand position so 

that the correct amount of force would be exerted during the sustained contraction. However, 

we removed this visual feedback prior to LAS presentation and movement onset. Therefore, 

preparation of the ballistic response may have produced a similar modulation of SICI – either 

through a shift of attention toward the impending IS presentation, or by the process of motor 

preparation itself. As such, these attentional-dependent effects may have been induced within 

the cortical hemisphere that was engaged for the prepared response in the unilateral task but 

not the bilateral one. This increase of SICI within intracortical circuits might explain why this 

delay of RT for both contraction directions was observed during the unilateral task but not 

during the bilateral task.  
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  Similar to the apparent benefit on RT that was produced by the 10% MVC 

contraction in the bilateral task (experiment one), the LAS provided a larger facilitatory effect 

on peak force and vigour when a contraction 10% of MVC was maintained contralateral to 

the hand engaged in preparation. Interestingly, the contralateral sustained flexion contraction 

during preparation in experiment three replicated this magnification of the LAS effect on 

peak force, however, the contralateral extension contraction did not. Rather, the LAS effects 

on peak force of the ballistic response were no more beneficial than the simple unilateral 

response when an extension contraction was maintained contralaterally. Given the flexion 

sustained contraction enhanced the StartReact effect but the extension one did not, this may 

suggest that the magnification of the StartReact by such sustained contractions can be muscle 

(or directionally) specific. During bilateral movements, interhemispheric inhibition has been 

found to be greater during isometric contraction of homologous muscles (i.e. flexion-flexion 

and extension-extension), whereas this inhibition is decreased during contraction of non-

homologous muscles (i.e flexion-extension) (Perez et al., 2014). This decrement of 

interhemispheric inhibition only during asymmetrical movement appears to be incompatible 

with the findings we present here of an increased StartReact effect during the bilateral task 

when the limbs are moving congruently, but not when they are moving incongruently. 

However, it is difficult to directly compare these findings, given the multitude of evidence 

which suggests that the modulation of M1 excitability is particularly sensitive to the 

background state of motor circuits and the dynamics of the movements which are being 

executed (Carson, 1995; Chen et al., 2016; Cheney & Fetz, 1980; Dettmers et al., 1996; 

Marinovic et al., 2014). As such, given Perez et al. (2014) employed bilateral isometric 

contractions whereas we used a task engaging isometric contraction of one limb during active 

preparation for a ballistic response of the contralateral limb, this may contribute to the 

incompatibility of our findings.  

 These data demonstrate that the inhibitory effects on motor pathways that are induced 

by acoustic stimulation during the maintenance of a muscle contraction can be reversed if 

motor preparation coincides with certain types of contractions. The engagement of a 

contralateral muscle contraction may engage a wider and more distributed neural network 

during preparation which can subsequently be more easily recruited by the LAS and add to 

the accumulation of preparatory neural activity which summates to produce the final 

magnitude of motor output (McInnes, Corti, et al., 2020). Similar suggestions have been 

made to describe previous observations that the facilitation of movement triggering via the 

StartReact effect can vary between different movement types of the same muscle, depending 
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on the task functionality of the movement employed (e.g. Honeycutt et al.’s (2013) finger 

pinch versus grip task, see Marinovic, de Rugy, et al., 2014). The finding that at least in terms 

of peak force, a contralateral flexion contraction increases the benefit of the LAS could be a 

result of the efferent connectivity of the flexor muscle. For example, it has been suggested 

that flexor muscles receive greater functional contributions from the corticospinal tract in 

comparison to extensors (Godfrey et al., 2013; Koganemaru et al., 2010; McInnes, Corti, et 

al., 2020; McMillan et al., 2004; Park & Li, 2013; Vallence et al., 2012), which may allow a 

greater facilitation of force due to the correspondence of force generation with primary motor 

cortex (M1) activity (Ashe, 1997). Alternatively, these effects may be due to the congruency 

of the sustained contraction with the ballistic response. 

 We also observed a greater benefit of the LAS on force and vigour of the ballistic 

response for sustained contractions at lower force levels – particularly at 10% of MVC – than 

for the higher force contraction (20% of MVC). The direction of this effect is opposite to our 

prediction of an increase of the StartReact effect which is proportional to the strength of the 

contraction maintained during preparation. The use of positron emission tomography has 

identified that at lower force levels, there is a rapid increase of M1 activity as the amount of 

force produced is increased, but that the rate of this rise diminishes at higher force levels, 

producing a logarithmic relationship between force production and M1 activity (Dettmers et 

al., 1996). Single cell recordings have also suggested weak forces are primarily produced by 

corticomotoneurons (Maier et al., 1993), a finding which may reflect the use of weak forces 

in fine motor control such as precision grip (Oliveira et al., 2008; Quinn et al., 2018; Shim et 

al., 2007; Yu et al., 2010). Furthermore, it has been argued that the reticulospinal tract 

becomes increasingly important for the production of higher levels of force (Baker, 2011), 

given ipsilateral motor evoked potentials, which are likely mediated by the reticulospinal 

tract (Ziemann et al., 1999), can be more easily elicited during strong background muscle 

activity (Alagona et al., 2001). Therefore, the heightened use of the corticospinal tract at 

lower forces may have led to these force producing neurons to be more readily recruited by 

the LAS when engaged in a light muscle contraction during preparation, adding to the final 

motor output. However, this was only observed when the sustained contraction was 

performed contralaterally to the ballistic response, and not when it was performed 

ipsilaterally. Therefore, any potential interaction of both facilitatory and inhibitory effects 

which act during ipsilateral contraction and preparation should be considered  — such as a 

potential modulation of SICI induced in the hemisphere that is engaged in preparation, as 

discussed earlier. 
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 Finally, the sustained contractions appeared to be more beneficial to motor output 

when they were maintained during preparation of the contralateral limb, rather than the 

ipsilateral one. There are a number of neurophysiological mechanisms which may underpin 

this finding. For example, tonic contraction of one limb can increase activity in ipsilateral M1 

(Carson et al., 2004; Kawashima et al., 1998; Liepert et al., 2001; Muellbacher et al., 2000), 

which may be mediated by interhemispheric modulations of excitability via the corpus 

callosum (Carson et al., 2004; Di Lazzaro et al., 1999; Perez et al., 2014). This increased 

activity in M1 may then be recruited by the LAS when triggering a movement that is 

prepared in those related circuits, which subsequently adds to the final output of the response. 

Alternatively, engagement of the motor pathways contralateral to the side that is engaging in 

preparation may allow activation of ipsilateral descending pathways by the LAS which may 

contribute to the motor output. One such descending pathway is the cortico-reticulo-

propriospinal pathway, a descending tract which has been suggested to be important in 

functional recovery after stroke (Bradnam et al., 2013). The ipsilateral hemisphere may also 

contribute to motor output through the small number of corticofugal fibres which project to 

ipsilateral spinal motoneurons, rather than crossing at the pyramidal decussation (Phillips & 

Porter, 1964). These explanations assume that the input provided by the LAS is of cortical 

origin. A cortical origin of the descending LAS-induced activity is supported by the fact that 

the descending pathways which innervate primarily contralateral muscles (i.e. the 

corticospinal and rubrospinal tracts) receive significant projections from the cortex (Lemon, 

2008). The subcortical dorsolateral pathways, in contrast, project bilaterally (Lemon, 2008) 

and transmission via these pathways would likely be evident regardless of whether the task 

was unimanual or bimanual. Alternatively, facilitation of a bilaterally projecting pathway in 

the bilateral task may explain why we observed facilitatory effects induced by the LAS in the 

bilateral task but not the unilateral one. However, we believe this explanation seems less 

likely based on the multiple lines of evidence we have already discussed, suggesting a 

potential role of the cortex in the facilitation provided by a LAS. For example, if facilitation 

of a bilateral pathway (i.e. the reticulospinal tract) underlies the effects we observed, then 

magnification of the StartReact effect would be expected to be greatest at higher force levels 

due to a potentially greater involvement of reticulospinal circuits at higher force levels 

(Baker, 2011). It is also possible that the engagement of a muscle contraction during 

preparation may simply raise the level of preparatory activity to a higher state and thereby 

enhance the magnitude of the StartReact effect. However, we deem this to be unlikely, given 

the modulation of gains introduced to the ballistic response by the LAS were dependent on 
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the force and muscle of the sustained contraction, and the effect was far more pronounced in 

the bilateral tasks rather than in the unilateral one. Regardless of the specific mechanisms 

underpinning the greater facilitation of motor output provided by the LAS in the presence of 

a sustained contralateral muscle contraction during preparation, this finding may have 

important practical implications for using the StartReact effect as a rehabilitative tool. 

Engagement of the contralesional side can be used to increase the benefits of acoustic 

stimulation and further aid in the functional recovery of movement after neurological 

conditions such as stroke. This is particularly promising given the ipsilateral cortex has been 

suggested to be capable of compensating for contralateral cortex deficits after stroke (Serrien 

et al., 2004; Strens et al., 2003). Furthermore, given contralateral muscle activity during 

preparation was shown to modulate the StartReact effect at even moderately low force levels, 

it may be an important consideration for researchers studying the StartReact effect to observe 

participants during experimental sessions to ensure they are not unknowingly activating task-

irrelevant muscles.  
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