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ABSTRACT

Several recent papers have studied the double descent phenomenon: a classic U-shaped empirical risk
curve when the number of parameters is smaller or equal to the number of data points, followed by a
decrease in empirical risk (referred to as “second descent”) as the number of features is increased
past the interpolation threshold (the minimum number of parameters needed to have 0 training error).
In a similar vein as several recent papers on double descent, we concentrate here on the special case
of over-parameterized linear regression, one of the simplest model classes that exhibit double descent,
with the aim of better understanding the nature of the solution in the second descent and how it relates
to solutions in the first descent. In this paper, we show that the final second-descent model (obtained
using all features) is equivalent to the model estimated using principal component (PC) regression
when all PCs of training data are included. It follows that many properties of double descent can be
understood through the relatively simple and well-characterized lens of PC regression. In particular,
we will identify a set of conditions that will guarantee final second-descent performance to be better
than the best first-descent performance: it is the scenario in which PC regression using all features
does not suffer from over-fitting and can be guaranteed to outperform any other first-descent model
(any linear regression model using no more features than training data points). We will also discuss
how this work relates to transfer learning, semi-supervised learning, few-shot learning, as well as
theoretical concepts in neuroscience.
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1 Introduction

Several recent papers (Belkin et al., 2019, 2020; Bartlett et al., 2020) have studied the double descent phenomenon: a
classical U shaped empirical risk curve when the number of parameters is smaller or equal to the number of data points,
followed by a decrease in empirical (referred to as “second descent”) as the number of features is increased past the
interpolation threshold (the minimum number of parameters needed to have training error equal to 0).

In the vein of several the other recent papers on double descent (Belkin et al., 2019; Bartlett et al., 2020), we concentrate
here on the special case of over-parameterized linear regression. This is one of the simplest model known to exhibit
the double-descent phenomenon, while its simplicity allows analytical examination. While other papers have tried to
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identical conditions under which the final second-descent model (including all features) can be expected to perform
well compared to first-descent variants (Bartlett et al., 2020; Belkin et al., 2020), we concentrate here on the exact
nature of the final second-descent solution. One interesting question is whether second descent finds a completely novel
kind of solution to the regression problem that generalizes especially well, or whether it is equivalent to a particular
first-descent solution.

As we will show in this paper, in the case of linear regression, the final second-descent model is exactly equivalent
to a first-descent regression algorithm that uses principal components (PCs) as predictor variables instead of the
original features, when all PCs of training data are included. A transformed regression model that uses PC features
are predictor variables is also known as PC regression or PCR (Hotelling, 1957; Kendall, 1957; Park, 1981). Due to
PCR being relatively simple and well understood, viewing double descent via PCR yields novel insight into the nature
and performance of linear regression in the second descent. In particular, we will identify a set of conditions that will
guarantee final second-descent performance to be better than first-descent performance using any combination or linear
transformation of the original features (including PC transformation).

Finally, we will discuss how this work relates to semi-supervised learning, transfer learning, few-shot learning, as well
as theoretical concepts in neuroscience.

2 Definitions and Notations

2.1 Linear Regression

We consider an ordinary linear regression problem with the standard linear-Gaussian setup: y = x · βββ + ε, where
ε ∼ N (0, σ2

ε ) is normally distributed i.i.d. noise. Given a data matrix X ∈ Rm×n, containing m data points of n
features, and a corresponding vector of observations y ∈ Rm, we wish to estimate the coefficients β̂ββ ∈ Rn as a function
of X and y. Without loss of generality, we assume y is centered and X has full row rank, i.e. rank(X)=m.

When m < n (first descent), there is generally no way to reduce training error to 0, i.e. finding an exact solution
for β̂ such that y = Xβ̂ββ. In this under-parameterized regime, the least-squares estimate, β̂ββ = argminβββ ||y −Xβββ||2,
minimizes the expected empirical risk (measured as squared error) on test data. This least-squares estimate is also the
maximum-likelihood estimate (MLE) under the linear-Gaussian generative assumptions.

When m = n, there is a unique solution to y = Xβ̂ββ and, as such, a unique solution for β̂ββ. m = n is known as
the interpolation threshold, being the smallest number of parameters necessary to reduce training error to 0 (i.e. the
estimated regression plane goes exactly through all the training data).

When m > n (second descent), there is an infinite number of solutions for β̂ββ that satisfy y = Xβ̂ββ (0 training error).
In this over-parameterized regime, one standard way of finding a unique solution is to minimize the L2 norm of the
parameter vector, ||β̂ββ||2, which previously has been shown to exhibit the double-descent phenomenon (Belkin et al.,
2019, 2020; Bartlett et al., 2020).

In all cases, β̂ββ = X†y, where X† denotes the Moore-Penrose pseudoinverse of X. The pseudoinverse can be obtained
from a singular value decomposition (SVD) of X = UΣVT, as X† = VΣ†UT, where Σ is a rectangular diagonal
matrix containing the singular values along the diagonal, and U and V are orthogonal matrices whose columns consist
of the left and right singular vectors, respectively.

2.2 Principal Component Regression

Principal component regression (PCR) is a regression technique based on principal component analysis (PCA), whereby
the projection of the data matrix X along the PCs are used as the predictor variables in the regression analysis. PCR
assumes the first k PC dimensions are retained for regression, where k ≤ m. If Vk ∈ Rn×k contains the first k right
singular vectors, then Zk = XVk is the representation of X projected onto the first k PCs. The linear regression
problem is then transformed into finding β̂ββ that minimizes ||y − Zkβ̂ββ||2 in the first descent, or minimizing ||β̂ββ||2 in the
second descent assuming ||y − Zkβ̂ββ||2 = 0.
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3 Results

3.1 Final Second Descent Equivalent to PC Regression with All PC Features

We first note that test data predictions are invariant under orthogonal transformation of the (potentially overcomplete)
basis. An important implications then follows: “final” second-descent predictions (using all features) on test data are
exactly equivalent to PCR using all PCs of training data X at the interpolation threshold, or Z = XV.

We start by showing that model predictions are invariant under orthogonal transformations of the (potentially overcom-
plete) basis.

Let X ∈ Rm×n be the training data matrix, y ∈ Rm be the corresponding responses, W ∈ Rn×n be an orthogonal
matrix, and X̃ = XW be the data matrix in the transformed representation. We will show that the predictions made
using the two representations are identical.

Let X′ denote the test data, and X̃′ = X′W denote the test data in the alternative representation. Then ˆ̃y′ = X̃′β̂̂β̂β =

X̃′X̃†y = X′W(XW)†y = X′WWTX†y = X′X†y = X′β̂̂β̂β = ŷ′. Note that because W is an orthogonal matrix,
W† = WT = W−1.

The above shows that the predictions for y′ are invariant with respect to orthogonal transformations of the original
feature representation X. Since V, containing the right singular vectors of X, is orthogonal, PCR using all training PCs
as predictor variables, or Z = XV, yields identical test predictions as the original feature representation. Since the
output equivalence holds for arbitrary test data X′, we can see that over-parameterized linear regression that minimizes
the L2-norm of the regression coefficient vector is exactly identical to PCR at the interpolation threshold using all PCs.

In other words, at least in the case of overparameterized linear regression, the final second-descent solution, independent
of the feature representation, is not a novel kind of regression solution, but exactly equivalent to the first-descent PC
regression that does not discard any PCs. An important implication is that we can analyze how final second-descent
performance can be expected to behave by appealing to what is known about PCR.

3.2 Insight into Second Descent via PCR

In this section, we appeal to known properties of PCR to identify conditions under which the final second-descent
solution can be expected to outperform the best first-descent solution (i.e. the best under-parameterized regression
model) on test data.

Let σi be the i-th largest singular value of the data matrix X, i.e. the sample standard deviation of the i-th PC component,
and σy be the (unknown) standard deviation of the Gaussian noise ε on y. Suppose we wanted to find the best first-
descent linear regression model for (X,y) in the sense of minimizing expected MSE on test data, E[(y − ŷ2], by
allowing a linear transformation of X and restricting to k ≤ m features. Park (1981) showed that if only k features are
allowed in the linear regression, then the best such linear transformation is PC projection using the k largest PCs, i.e.

ΛX = XVk, where Vk consists of the first k right singular vectors. Furthermore, if one wants to optimize for k in terms
of minimizing MSE on test data, Park (1981) showed that the i-th largest PC should be dropped if and only if:

σ2
i <

σ2
y

||βββ||2/m
, (1)

where βββ is the true (unknown) parameter vector, σ is the (unknown) noise standard deviation, and m is the number
of PCs. In other words, if the spread of the training data along the i-th PC direction is below some threshold, then
this PC feature, along with all subsequent PC features (as well as all subsequent PCs, whose projected variances are
even smaller), should not be included in the regression problem. According to the right side of the inequality, this
threshold is larger (one should be more willing to drop PCs) if the noise is y is larger; conversely, this threshold is
smaller (one should be less willing to drop PCs) if the average expected magnitude of the beta coefficients are larger.
Both dependencies make intuitive sense: the magnitude of the quantity to be estimated (true magnitude of beta’s)
increases the signal-to-noise ratio, while noise in observations decrease it.

Interestingly, this also sets up the condition under which none of the PCs should be dropped in PCR, i.e. the smallest
PC should be kept if and only if:

σ2
m ≥

σ2
y

||βββ||2
. (2)

In other words, when the smallest singular value is large enough, PCR including all the training PCs can be expected to
outperform PCR with any proper subset of PCs, as well as any other possible linearly transformed representation of
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X. In particular, when the above inequality is satisfied, it follows that the test RMSE curve will not blow up like most
first-descent models do (i.e. it does not over-fit or suffer from a classical bias-variance trade-off) as the interpolation
threshold is reached, but instead monotonically decreases in a graceful manner.

Given the equivalence between PCR with all PCs included, and final second-descent performance, the above inequality
being satisfied also implies that final-second descent performance can be expected to outperform first-descent models
regardless of the data representation (up to a linear transformation of the original features).

The above relationship requires knowledge of the true noise variance σ2
y and the true parameter vector βββ, which is

unrealistic. Park (1981) recommends that they be respectively replaced by the MSE on training data, σ̂y, and the
estimated regression coefficient vector with a correction for a tendency to inflate the magnitude of estimated β, especially
when the spread of x is small or the noise in y is large, i.e.

γ̂2 = β̂ββ
T
β̂ββ − σ̂2

y

m∑
i=1

1

σ2
i

(3)

3.3 The Nested Nature of PCR Models

The previous section showed that the final second-descent regression solution, independent of the initial feature
representation for the data X, is equivalent to PCR using all training data PCs. But we can leverage the orthogonality of
PCs to gain further insight into the nature of PCR including all PCs, and thus also the nature of the final second-descent
solution. In particular, we will show that the PCR models are nested, in the sense that the first i estimated regression
coefficients remain the same, for all PCR models that utilize k ≥ i PC features.

Given the training data and its SVD decomposition X = UΣVT , the representation of X in the PC representation
is X = UΣVTV = UΣ, and the estimated parameter vector is β̂ββ = VTVΣ†UTy = Σ†UTy. For any k ≤ n, let
Xk = UkΣkV

T
k be the SVD decomposition of X using only the first k ≤ n features, where Uk and Vk contain the

first k left and right singular vectors, respectively, and Σk is a diagonal matrix consisting of the first k singular values
on the diagonal. Then, the first k regression coefficients obtained by using only the first k PC features remain identical
if all n PC features are included in the model, β̂̂β̂βkk = Σ†kU

T
k y = (Σ†UT)k = β̂̂β̂βk

n. In fact, it is obvious that β̂̂β̂βkk = β̂̂β̂βkh
for any h ≥ k, i.e. PCR models are nested.

4 Discussion

In this work, we identified the equivalence between overparameterized linear regression with PC regression using all PC
features. In particular, when the smallest singular value of the data matrix exceeds a well-characterized threshold, PCR
is guaranteed to have the smallest MSE by including all PC features, and thus the final second-descent performance
can be expected to be better than or no worse than any first-descent model that has no more features than training data
points (e.g. either PCR using some subset of PCs, or any other linear transformation of the predictor variables). In this
regime, PCR tells us that all features should be included because the signal-to-noise ratio is high enough for even the
last PC (smallest projected standard deviation), such that its regression coefficient can be estimated well enough to
make a positive contribution over all. Interestingly, when PCR’s empirical risk curve is monotonically non-increasing,
it implies that PCR using all PC features does not blow up at the interpolation threshold as most models do. This marks
out PCR as a nice exception to the general finding that MSE peaks at the interpolation threshold (Belkin et al., 2020).

Although obviously restricted to the linear regression domain, this work has interesting relevance to theoretical
neuroscience and broader implications for several topical areas within machine learning. While modern machine
learning has achieved incredible performance in some areas (He et al., 2015; Silver et al., 2016), relative to the
human brain, it still falls short on several important respects. For example, while deep neural networks perform
impressively on many perceptual classification tasks (He et al., 2015, 2016), it is extremely labeled-data intensive and
computation-intensive (Krizhevsky et al., 2012; Thompson et al., 2020). In contrast, the developing brain receives
a great deal of unlabeled data but only a very small amount of labeled data, i.e. putting it more in the regime of
semi-supervised learning than supervised learning. It also completes a large variety of visual perception tasks with
high accuracy and computational efficiency (Lake et al., 2017, 2019). Related to this, deep neural networks typically
generalizes poorly in terms of transfer learning (Recht et al., 2018, 2019) and few-shot learning (Oreshkin et al., 2018).
But the human brain appears capable of effortlessly and accurately generalizing to completely novel perceptual tasks.
The current work suggests that one way to tackle this problem may be to have a massive over-parameterized feature
representation that is largely learned in an unsupervised manner, and then train another decoding layer as needed
for a novel supervised learning task (e.g. regression). The results (final second-descent) can be guaranteed to be as
good as or better than any specialized model that does feature selection for each supervised learning task, based on
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the results we described here. Interestingly, it has been shown that across species and sensory modalities, the brain
tends to massively expand the feature representation from the initial sensory receptor level (Olshausen and Field, 1997;
Dasgupta et al., 2018). Previously, it was suggested that such feature expansion may serve some appealing goals
within unsupervised learning, such as reducing energetic needs in the brain (sparsification) or preserving semantic
similarity among sensory input. However, our result suggests that this feature expansion in the brain may instead serve
as a powerful universal representation that can readily support future unspecified supervised learning needs with high
accuracy and sample-efficiency.

At a technical level, what we have shown are some sufficient conditions for guaranteeing the final second-descent
performance to exceed that of any first-descent model (up to linear transformation of the predictor variables), which is a
particular lower bound on the smallest singular value of the predictor data matrix. However, if the smallest singular
value falls short of the inclusion threshold, it does not necessarily mean that final second descent performance would
not be better than best first-descent performance. It only implies that final second-descent performance would be worse
than eliminating one or more of the smallest PCs in PCR. If on-line PCA of training data is not possible for some reason,
then final second-descent performance might still out-perform the best first-descent model. How the two compare
depends both on how small the smallest singular values are (those that fall below the inclusion threshold), and how far
the feature representation is from training data PC representation. An arbitrary linear transformation (away from the
PC representation) can lead to arbitrarily small smallest singular values, which can in turn lead to large empirical risk
on test data. For example, in the case of the brain, if most of the unsupervised learning in the visual cortex is done
beforehand (e.g. during a critical period during development (Reh et al., 2020)), and very limited additional neural
plasticity is available later on when encountering novel supervised learning tasks, then it is unreasonable to assume that
the visual cortex can reorganize itself to obtain a PC representation of new training data.

This work can be developed in multiple fruitful future directions. For example, it is worthwhile to examine how the
results presented here generalize to other supervised learning tasks (e.g. classification), or relate to more complex
multi-level architecture (instead of only single-level linear regression). Another interesting direction is to identify more
precisely the general feature representational settings under which final second-descent can be expected to out-perform
best first-descent. Yet another direction is to examine how things generalize with a different norm for minimization in
the second descent. For example, in theoretical neuroscience, L1 norm (sparsification) has received more attention than
L2 norm minimization in overcomplete representations (Olshausen and Field, 1997); an interesting question is which
first-descetn solution L1 norm minimization might be equivalent to, and, more generally, how one should choose the
norm to minimize in the second descent.
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