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Abstract 

Alternative RNA isoforms are defined by promoter choice, alternative splicing, 

and polyA site selection. Although differential isoform expression is known to play a 

large regulatory role in eukaryotes, it has proved challenging to study with standard 

short-read RNA-seq because of the uncertainties it leaves about the full-length structure 

and precise termini of transcripts. The rise in throughput and quality of long-read 

sequencing now makes it possible, in principle, to unambiguously identify most 

transcript isoforms from beginning to end. However, its application to single-cell RNA-
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seq has been limited by throughput and expense. Here, we develop and characterize 

long-read Split-seq (LR-Split-seq), which uses a combinatorial barcoding-based method 

for sequencing single cells and nuclei with long reads. We show that LR-Split-seq can 

associate isoforms with cell types with relative economy and design flexibility. We 

characterize LR-Split-seq for whole cells and nuclei by using the well-studied mouse 

C2C12 system in which mononucleated myoblast cells differentiate and fuse into 

multinucleated myotubes. We show that the overall results are reproducible when 

comparing long- and short-read data from the same cell or nucleus. We find substantial 

evidence of differential isoform expression during differentiation including alternative 

transcription start site (TSS) usage. We integrate the resulting isoform expression 

dynamics with snATAC-seq chromatin accessibility to validate TSS-driven isoform 

choices. LR-Split-seq provides an affordable method for identifying cluster-specific 

isoforms in single cells that can be further quantified with companion deep short-read 

scRNA-seq from the same cell populations.  

 

Introduction 

 Alternative transcript isoform expression is a major regulatory process in 

eukaryotes that includes differential TSS (transcription start site) selection, RNA 

splicing, and TES (transcription end site) selection. These differential choices sculpt the 

transcriptome and its resulting proteome during development, across cell types and in 

disease states. However, it has proved challenging to fully capture and quantify isoform 

regulation by standard short-read RNA-seq because of the ambiguity it leaves in 
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mapping the transcript termini and full-length exon connectivity that define each mature 

isoform.  

 

In recent years, long-read RNA sequencing technologies have emerged as a 

powerful alternative for transcript-level identification and quantification by going beyond 

the level of exon-usage to simultaneously identify novel isoforms with alternative TSSs, 

TESs, and exon combinations. Furthermore, long-read RNA-seq has been adapted to 

single-cell sequencing using high-throughput microfluidics-based methods (1, 2, 3, 4). 

Some of these studies sequenced the same cells with both PacBio and Illumina 

technologies and relied on short-read gene quantification to cluster and characterize cell 

types, while using the long reads to identify full-length isoforms (2, 4). However, these 

prior approaches used expensive equipment, such as microfluidics platforms, and/or 

applied very high amounts of long-read sequencing whose expense limits routine and 

extensive application.  

 

Differential RNA isoforms discriminate cell types within complex tissues and, 

within cell types such as neurons, can further distinguish functionally distinct cell sub-

populations (5, 6). Isoform choice can even distinguish individual neurons of the same 

"type" from each other (7, 8). Transcript isoforms also discriminate developmental 

stages and disease states (9). In vertebrate systems, differential isoform regulation 

through development has long been appreciated, and in some disease states such as 

type 1 myotonic dystrophy, fetal or neonatal stage isoforms of Tnnt2, Atp2a1 (Serca1), 

and Ldb3 (Zasp) are inappropriately expressed (10, 11, 12). In addition, several studies 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.26.441522doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441522
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

have characterized the diversity of gene expression within the population of nuclei from 

myotubes (13, 14). This prior work on skeletal muscle provides known instances of 

isoform choices that we can use to benchmark new methods for transcriptome profiling, 

while at the same time posing unanswered questions that require single- cell or single-

nucleus long-read data such as nuclear specialization within myotubes.  

 

In vitro differentiation of the myogenic C2C12 cell line from proliferating, 

mononucleated myoblasts to multinucleated myotubes is a widely used model of 

myogenesis due to transcriptional and morphological similarities to the in vivo process 

(15). A subset of cells under differentiation promoting conditions remain mononucleated 

and are called MNCs (16, 17). In adult muscle tissue, satellite cells are mononucleated 

muscle stem cells that can be stimulated to proliferate and differentiate to drive muscle 

repair (18). Expression of the satellite cell marker gene Pax7 decreases as satellite cells 

are activated into proliferating myoblasts, while expression of myogenic regulatory 

factors (MRFs) such as Myod1 and Myog increase and promote myogenesis (18). 

Satellite cells undergo asymmetric divisions to produce future Pax7 negative, MRF 

positive myoblasts and to self-renew Pax7 positive, MRF-negative satellites (19). In 

addition to major transcriptional changes during myogenesis, C2C12 differentiation 

exhibits substantial changes, both qualitative and quantitative, in splice isoforms (20). 

For example, Pkm undergoes an isoform switch during C2C12 differentiation that 

results in two distinct isozymes of the gene, PMK2 and PKM1 (21). Proliferating 

C2C12s express both isoforms of beta-tropomyosin (Tpm2), including exon 6a or exon 

6b, but expression of the 6b isoform increases substantially during differentiation (21).  
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Here, we combine combinatorial barcoding of individual C2C12 cells and nuclei 

using the Split-seq strategy (22) with long-read sequencing (LR-Split-seq) to investigate 

isoform changes during differentiation. We first examined the technical differences 

between LR-Split-seq random hexamer and oligo-dT priming strategies as well between 

single-cell and single-nucleus. We compared the performance of LR-Split-seq to bulk 

long-read RNA-seq, and further compared the clusters recovered from LR-Split-seq to 

those from short-read sequencing for the same cells, as well as a companion dataset of 

37,000 cells to show that long-read single-cell transcriptomes produce similar results to 

short-read that can be readily integrated. We then leveraged LR-Split-seq results to 

identify and quantify TSSs in order to perform differential TSS testing and examine TSS 

usage between single-cell clusters. Finally, we integrated the resulting TSS expression 

from LR-Split-seq with matching single-cell ATAC-seq to quantify the extent of 

coordinated single-cell chromatin accessibility.  

 

Results 

Comparing oligo-dT versus random hexamer primed long-read data  

 Split-seq uses a combination of oligo-dT and random hexamer primers in order to 

decrease the 3’ bias that dominates other single cell RNA-seq methods that prime only 

with oligo-dT (22). These methods are designed to perform 3’ end counting for 

sequenced genes but they give little or no information about the rest of the transcript. In 

contrast, when Split-seq is conventionally performed with short reads, the random 

priming feature should, in the ideal instance, provide comprehensive information about 
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the entire body of the transcript. However, this benefit in the short-read format is 

expected to impinge differently and not entirely favorably on long-read data. The extent 

and character of effects from internal priming will depend on multiple protocol variables 

(e.g. relative amounts of oligo-dT versus random hexamers, substrate RNA integrity) 

and on filtering steps in the subsequent informatic pipeline. We therefore began by 

testing the impact of priming strategy on the LR-Split-seq data. We collected 

proliferating C2C12 myoblasts (0hr) as both whole cells and nuclei, then differentiated 

the remainder into myotubes over 3 days to recover 72hr differentiated nuclei 

(Methods). We labeled a total of approximately 37,000 cells/nuclei from the three 

samples using the Split-seq combinatorial barcoding strategy. We then built a sub-

library of 1,000 cells for sequencing by PacBio as well as Illumina (Fig. 1A). The LR-

Split-seq data was first debarcoded and demultiplexed using our LR-splitpipe pipeline 

(Methods). We then analyzed the reads with TALON (23), which is designed to assign 

long reads to their transcripts of origin and to identify new transcripts (Fig. S1A-C) 

(Methods). TALON’s long-read RNA-seq annotation then assigns each read to a 

category that specifies whether the read matches a known transcript in the reference 

transcriptome GTF file, or if it represents a novel transcript (23, 24). Random hexamer 

priming is expected to start within the body of a transcript rather than the 3’ polyA tail 

where oligo-dT primers hybridize, though intronic A-rich runs are known to serve as 

additional start points for oligo-dT priming (25). This mixed priming strategy, as it is 

currently implemented in the Split-seq commercial platform, produced remarkably little 

difference in the final LR-Split-seq read length distribution from the two primer types 

(Fig. 1B, 1C). The distribution of reads per TALON category showed a slightly higher 
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proportion of incomplete splice match (ISM) reads per cell from the random hexamer 

priming strategy versus the oligo-dT priming strategy (Fig. 1C). We speculate that the 

high fraction of oligo-dT primed reads per cell that begin at internal sites (~60%) 

accounts for the overall similarity of random hexamer primed reads in length profiles 

and genes detected.  
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Fig.1: Technical comparisons in LR-Split-seq and bulk long-read RNA-seq. a, 
Schematic diagram of experimental design. Single cell/nucleus LR-Split-seq, bulk long-
read RNA-seq, and single nucleus ATAC-seq were performed on C2C12 0hr myoblasts 
and 72hr differentiating cells. The same single-cell/UMI-barcoded cDNA was used in 
both short-read and long-read sequencing. b, Kernel density estimation (KDE) of read 
length distribution of oligo-dT primed reads (blue) compared to random hexamer primed 
reads (orange). c, Proportion of oligo-dT/random hexamer reads in each cell for each 
novelty category. d, Comparison of number of reads and e, genes detected between 
short and long reads. Cells are labeled by sample type (0hr cells in pink, 0hr nuclei in 
blue, and 72hr nuclei in green) and marginals on the top and right indicate their 
distributions. f, KDE read length distribution of 0hr cells (pink) compared to 0hr nuclei 
(blue) reads, not including genomic reads. g, Proportion of 0hr cell (pink)/nuclei (blue) 
reads per cell/nucleus per novelty category. h, KDE read length distribution of bulk long 
reads (yellow) compared to single-cell long reads (magenta), not including genomic 
reads. i, Unfiltered reads per novelty category in bulk long-read data and j, LR-Split-seq 
data. k, Filtered isoforms per novelty category across all cells in LR-Split-seq data.   
 

Single nuclei compared with single cells for LR-split-seq 

We compared single-cell versus single-nucleus LR-split-seq. Overall, more reads 

and genes were recovered from whole cells versus nuclei for both long- and short-read 

data, which is expected because cytoplasmic transcripts are left behind during nuclear 

extraction, making the nuclear determinations less sensitive on a per cell basis (Fig. 1D, 

1E). When comparing only 0hr cells with companion nuclei, we observe shorter read 

lengths in the nuclei (Fig. 1F). And as expected, we also see a larger proportion of 

genomic reads per cell/nucleus in nuclei compared to cells (Fig. 1G). These nuclear 

genomic reads could result from the enrichment of intronic RNA in the nucleus which 

would explain the lack of splice junctions.  

 

Comparing LR-Split-seq of whole cells with bulk long-read RNA-seq for 

myoblasts, we found that the LR-Split-Seq is modestly shorter than bulk long-read data 

(Fig. 1H, Table S1). Bulk reads have an average mean length of 2,274 bp and a peak 
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from the kernel density estimate (KDE) distribution of 1,875 bp, versus an average 

mean length of 1,735 bp and a KDE peak of 1,791 bp for LR-Split-seq non-genomic 

reads from whole cells (Fig. 1H, Table S1). The LR-Split-seq reads also had more 

genomic and incomplete splice match (ISM) reads than the bulk data (Fig. 1I, 1J). 

These differences are in line with expectations, given other differences in details of the 

bulk protocol (Methods). Nevertheless, after filtering our novel transcripts with TALON, 

the majority of transcript models we recover are annotated in GENCODE which we call 

known (Methods). This filtering resulted in 40,983 isoforms distributed across seven 

novelty categories (Fig. S1D, Fig. 1K). The observed read length differences between 

LR-Split-seq and bulk is reflected in the genes and transcripts that are uniquely 

detected in the bulk or LR-Split-seq. Transcripts detected only in bulk transcriptomes 

were likely to be longer, whereas transcripts detected only in LR-Split-seq data were 

enriched for shorter length (Fig. S1E, S1F). Due to overall longer read length in bulk 

long reads, these data were more likely to have multiple exons than LR-Split-seq (Fig. 

S1G). We conclude that the read length profile of known reads in single-cell LR-Split-

seq is quite similar to bulk long reads, given protocol differences. This suggests to us 

that the overall shorter lengths in single-nucleus versus whole cell LR-split-seq are of 

biological origin, likely driven by underlying differences between cytosolic RNA, which is 

rich in mature mRNA versus nuclear RNA, which contains mature mRNA but in lower 

proportions.  
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Fig. 2: LR-Split-seq in C2C12 0hr and 72hr samples recapitulates results from 
companion bulk and standard short-read Split-seq. a, Upset plots of known genes 
found in bulk compared to LR-Split-seq data across all samples. Bars on the left 
indicate set size, circles indicate combinations of samples, and bars on top indicate the 
number of genes found in each combination (first 20 combinations shown). Outline 
colors indicate technology (bulk in yellow, single-cell or single-nucleus in magenta) and 
fill colors indicate sample type (72hr nuclei in green, 0hr nuclei in blue, and 0hr cells in 
pink for single-cell data; 72hr in green, 0hr in pink for bulk data). Box plots above 
indicate gene length distribution for each intersection. Venn diagrams below summarize 
the overlaps between bulk (left) and single-cell or single-nucleus (right), for each sample 
type. Sample type is indicated by outline color. b, Upset plot and Venn diagrams of 
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known transcripts found in bulk data and LR-Split-seq data (first 20 combinations 
shown). c, UMAP of 464 short-read Split-seq cells/nuclei labeled by 7 Leiden clusters 
(S) and breakdown of cell type per cluster: 110 0hr cells (pink), 145 0hr nuclei (blue), 
and 209 72hr nuclei (Pax7hi in green and Myoghi in dark green). d, UMAP of 464 LR-
Split-seq cells/nuclei using gene-level data labeled by 7 Leiden clusters (L) and e, 
Leiden cluster ID of matching short-read data (S) shown in c, as well as long-read 
cluster makeup of each short-read cluster. f, Expression of marker genes, dark blue = 
lowly expressed, yellow = highly expressed.    
 

LR-Split-seq and bulk long-read RNA-seq detect similar gene sets 

Despite differences in transcript length and novelty classification between bulk 

long-read RNA-seq and LR-Split-seq, we detected 9,584 known genes in both bulk and 

single-cell LR-Split-seq, with 5,195 of these shared across all assays and sample 

combinations (Fig. 2A). These results demonstrate the gene detection sensitivity of LR-

Split-seq. The next largest intersections contain >1,500 genes recovered in all but the 

single-nucleus data which is likely due to the relative loss of cytoplasmic transcripts 

from the nuclear preparation. Genes detected in LR-Split-seq but not in the companion 

bulk RNA-seq tend to be short and are enriched for short RNA biotypes such as 

snoRNAs and miRNAs, while genes detected solely in bulk data are enriched for protein 

coding genes (Table S2). A plausible explanation is that Split-seq’s random hexamer 

priming captured these transcript types whereas the bulk method, which uses oligo-dT 

priming exclusively, preferentially captured polyadenylated transcripts. We also 

examined the overlap between filtered novel transcript models from the NIC and NNC 

novelty categories in bulk and LR-Split-seq. While the vast majority of novel transcript 

models were only reproducible between bulk replicates, 251 NIC transcripts and 61 

NNC transcripts were reproducible in at least one bulk and one LR-Split-seq sample 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.26.441522doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441522
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

(Fig. S1H, S1I). These represent isoforms that are most likely to be real, though not 

previously annotated. 

 

LR-Split-seq recapitulates cell classifications recovered from short-read Split-seq  

Overall, we recovered 110 0hr myoblast cells, 145 0hr myoblast nuclei, and 209 

72hr differentiating nuclei (464 cells total) that passed short-read QC thresholds as well 

as an additional requirement of ≥500 long reads per cell in the 1,000-cell library 

(Methods) (Fig. S2A-E). Leiden clustering based on short-read sequencing of the 464 

cells/nuclei yielded 7 clusters (S1-S7). We observed mixed populations of 0hr myoblast 

cells and nuclei in clusters S1-S3, while the 72hr differentiating nuclei clustered in S4-

S7. This overall structure is consistent with differentiation playing a dominant role in the 

UMAP structure, while differences between nuclei versus whole cells from the 0hr 

samples were minor by comparison (Fig. 2C). Additional patterns in the dataset that 

agree with known biology in the system include expression of the satellite cell marker 

gene Pax7, which is expressed mainly in 72hr clusters S4 and S5, while the key 

myogenic transcription factor Myog (myogenin) is expressed mainly in 72hr clusters S6 

and S7 (Fig. S2F). An independent Leiden clustering performed using the LR-Split-seq 

data for the same 464 cells proved very similar to the companion short-read clustering 

with 7 clusters (L1-L7) in which the myoblast progenitor cells/nuclei are in clusters L1-L3 

while the differentiating sample gives rise to clusters L4-L7 (Fig. 2D). This UMAP again 

separates the latter group into Pax7hi (L4, L5) and contrasting Myoghi sets (L6, L7), with 

the latter expressing additional downstream markers of myocyte differentiation. Color-

coding cells in the long-read UMAP according to the cluster identity from the companion 
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short-read data showed high concordance of clusters L4-L7 with S4-S7 (Fig. 2E). The 

myoblast progenitor clusters S1-S3 and L1-L3 also agree, although the short-read 

clusters were more mixed between 0hr cells and nuclei. We investigated gene 

expression patterns for additional known marker genes across the cells and nuclei 

between the short-read and long-read clusters (Fig. 2F). Most notably, Mybph, Myh3, 

and Mef2c are highly expressed in a subset of 72hr nuclei that make up cluster L7, 

whereas Myog is expressed in both clusters L6 and L7 of 72hr nuclei (Fig. 2F, Fig. 

S2F). Similar to the short-read data, Pax7 is present in both 0hr and 72hr clusters, but it 

is most highly expressed in clusters L4 and L5 (Fig. 2F). We also capture similar 

expression patterns in short-read and long-read Pax7hi 72hr subclusters as indicated by 

Igfbp5, Col3a1, and Col1a1 (Fig. 2F, Fig. S2F). Due to the consistent expression 

patterns of known marker genes across both technologies, we postulate that Myoghi 

clusters S6, S7, L6, and L7 are mainly nuclei originating from fused, multinucleated 

myotubes or mononucleated myocytes on their way toward fusion, while the Pax7hi 

clusters S4, S5, L4, and L5 are nuclei distinct from both myoblasts and the 72hr Myoghi 

nuclei.  

 

 To harness the full-length capacity of LR-Split-seq, we performed isoform 

switching tests with a corrected p-value cutoff from a chi-squared test of 0.05 and a 

change in percent isoform usage cutoff of ≥10% (4) (Methods). We performed this 

pairwise test across three identified groups of clusters: 0hr myoblast (MB) cells (L1-L3), 

72hr Pax7hi nuclei (L4-L5), and 72hr Myoghi nuclei (L6-L7). We recovered statistically 

significant isoform switching genes that have been previously observed in differentiating 
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C2C12s, such as Tpm2 (Adj. P = 2.02x10-5 MB vs. 72hr Myoghi) and Pkm (Adj. P = 

4.75x10-11 MB vs. 72hr Pax7hi; Adj. P = 5.69x10-7 MB vs. 72hr Myoghi). The Tpm2 locus 

specifically shows an increase in expression of and preference for isoforms containing 

exon 6b in the differentiated nuclei as previously characterized in C2C12s as visualized 

with Swan (Fig. S2G) (21, 26). We found 21 significant isoform-switching genes 

between MB nuclei and 72hr Pax7hi nuclei as well as 13 significant isoform-switching 

genes between MB nuclei and 72hr Myoghi nuclei (Table S3, S4). 

 

 

Fig. 3: Short-read Split-seq analysis. a, UMAP of 36,869 short-read Split-seq 
cells/nuclei labeled by 20 Leiden clusters (R) with RNA velocity field trajectories and 
breakdown of cell type per cluster with number of cells per cluster: 7,797 0hr myoblast 
cells (pink), 10,194 0hr myoblast nuclei (blue), 18,878 72hr nuclei (Pax7hi in green and 
Myoghi in dark green). b, UMAP of short-read Split-seq cells/nuclei with the 464 cells 
with matching long reads in color corresponding to R1-R20. c, Histogram of the number 
of the 464 cells/nuclei per R1-R20. d, Distribution of expression of marker genes; dark 
blue = lowly expressed, yellow = highly expressed. e, Visualization of transcripts in 
mononucleated cells and myotubes at the 72hr differentiation timepoint. Blue = DAPI, 
pink = Myh3, green = Col1a1, yellow = Itm2a. Scale bar: 50 μm. 
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C2C12s have distinct Pax7hi subpopulations following differentiation 

We confirmed the presence of distinct Pax7hi and Myoghi clusters by short-read 

sequencing of an extended set of cells and nuclei from the same labeled pool, 

comprised of six additional 9,000-cell sub-libraries on top of the 1,000-cell sub-library 

with matching long reads (Methods). After filtering, we recovered 36,869 total 

cells/nuclei from all seven sub-libraries, including the 464 cells/nuclei with both short 

and long reads (Fig. S2A-E). The 7,797 myoblast cells, 10,194 myoblast nuclei, and the 

18,878 differentiating condition nuclei clustered primarily by differentiation state (Fig. 

3A). The progenitor states formed one main group in UMAP space that slightly 

separates cells and nuclei, while the differentiating nuclei extend outward in a spectrum 

with several smaller groups (Fig. 3A). Of the 20 clusters identified by Leiden clustering, 

7 consist mostly of myoblast cells/nuclei while 13 are mainly differentiating nuclei (Fig. 

3A) (Methods). Out of the 13 72hr clusters, 8 are Pax7hi and the other 5 are Myoghi, 

which is consistent with results from the 464 cells alone (Fig. 3A). Accordingly, cells 

from each of the 20 clusters are represented by both short and long reads in the 464-

cell subset (Fig. 3B, 3C). We assign these clusters to the cells we recovered with long 

reads to better inform the cellular identities with high resolution (Fig. S2H). For example, 

a small subset of 12 cells out of 105 total cells in cluster S5 belong to cluster R12, which 

is distinguished by high expression of Col1a1 (Fig. 3D). Genes critical for cell cycle 

phases G1 and S such as Cdk2 and Pcna are highly expressed in MB cluster R1, while 

G2 and M phase marker gene Top2a is highly expressed in MB clusters R2 (made up of 

mostly cells) and R3 (made up of mostly nuclei) as well as Pax7hi cluster R9 (Fig. S2I) 

(27, 28, 29). Myog and myogenic marker gene Mybph are highly expressed in clusters 
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R16, R17, R18, and R20, indicating that these nuclei most likely belong to committed 

myocytes and myotubes (Fig. 3D). RNA velocity analysis, which uses the ratio of 

intronic (unspliced) and exonic (spliced) reads to predict the transcriptional trajectory of 

cells, reveals a lineage from clusters R17 and R18 toward clusters R19 and R20. R19 

and R20 express terminal myogenic marker genes such as Myh3, Mef2c, Tnnt2, and 

Neb (Fig. 3D, Fig. S3A) (Methods). Of the 8 co-adjacent Pax7hi clusters (R8, R9, R10, 

R11, R12, R13, R14, and R15), some also express cluster-discriminating genes such as 

Igfbp5 (cluster R11), Col1a1 (cluster R12), and Itm2a (cluster R14) (Fig. 3D, Fig. S3A). 

We validated differential cluster-specificity of marker genes using spatial transcriptomic 

profiling of Col1a1 (cluster R12), Itm2a (cluster R14) and Myh3 (cluster R20), which 

showed patterns fully consistent with the Split-seq data (Fig. 3E). Imaging also 

confirmed that Pax7hi subcluster marker genes are expressed in MNCs rather than in 

the multinucleated myotubes that they surround (Fig. 3E). Myh3 is expressed 

throughout multinucleated myotubes but less so in mononucleated cells. Pax7hi MNCs 

appear to either express Col1a1 or Itm2a, consistent with their mutually exclusive 

marking of clusters R12 and R14 (Fig. 3D, 3E). Myog is expressed throughout 

multinucleated myotubes as well as in some mononucleated cells that are likely to be 

pre-fusion myocytes (Fig. S3B).  

 

We observed heterogeneous populations of differentiating cells representing cell 

populations and states that are involved in adult muscle tissue repair. Clusters R10 and 

R11 express Igfbp5, which promotes muscle differentiation, and Nfix, which controls 

timing of regeneration by repressing myostatin (Fig. 3D, Fig. S3C, Table S5) (30, 31). 
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Cluster R12, marked by Col1a1, Fn1 (fibronectin), and a number of other collagen 

genes, may represent a population of previously defined MNCs that can transiently 

remodel their ECM, which is a process shown to regulate satellite cell numbers in vivo 

(Fig. 3D, Fig. S3A, Table S5) (32, 33). Cluster R13 expresses Lix1, a Pax7 target gene 

needed for activated satellite cell proliferation (Fig. S3A, Table S5) (34). Cluster R14, 

which expresses Itm2a and Pax7, may be analogous to activated satellite cells (Fig. 3D, 

Fig. S3A, Table S5) (35). Appropriately, the cluster R14 RNA trajectory tends toward 

cluster R15 which expresses Tead1 (Tef-1) and Myog, which are known to promote 

muscle differentiation (Fig. S3C, Table S5) (36).  
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Fig. 4: Identification of TSSs from LR-Split-seq and integration with snATAC-seq. 
a, UMAP of 23,525 snATAC-seq nuclei labeled by 18 Leiden clusters (A) and 
breakdown of cell type per cluster with number of cells per cluster on right: 10,508 0hr 
myoblast nuclei (pink) and 13,017 72hr nuclei (Pax7hi in green and Myoghi in dark 
green). b, Bubble plot of the number of distinct known splice isoforms per gene per cell 
compared to the number of distinct TSSs per gene per cell in LR-Split-seq. c, Track plot 
of alternative Tnnt2 TSS usage between 72hr differentiating cells and 0hr myoblasts. 
From top to bottom: clustered snATAC-seq pseudobulk peaks, merged psuedobulk 
peaks, TSS regions called from LR-Split-seq, ENCODE cCREs, clustered LR-Split-seq 
reads used to call TSSs, and comprehensive set of GENCODE vM21. d, Validation of 
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TSSs found in LR-Split-seq using four external datasets and snATAC-seq pseudobulk 
peaks (first 20 intersections shown). e, Left, proportion of TSS-assigned reads in LR-
Split-seq clusters from each identified Tnnt2 TSSs. Right, expression of each TALON 
filtered Tnnt2 isoform in LR-Split-seq clusters with corresponding transcript models 
associated with each Tnnt2 TSS. f, Comparison of log2 fold change (LFC) in expression 
and accessibility across identified TSSs: Myoghi (+LFC) compared to MB (-LFC), g, 
Pax7hi (+LFC) compared to MB (-LFC), and h, Myoghi (+LFC) compared to Pax7hi (-
LFC).  
 

Chromatin accessibility of myogenic marker genes distinguishes Myoghi and 

Pax7hi 72hr nuclei 

To assess chromatin accessibility in the groups of nuclei we identified with LR-

Split-seq, we performed snATAC-seq on matching timepoints. We recovered 23,525 

single nuclei from our snATAC-seq experiments following filtering and QC (Fig. S4A-B), 

resulting in 18 clusters from Leiden clustering: seven 0hr myoblast clusters and eleven 

72hr differentiating clusters (Fig. 4A) (Methods). Gene activity is a measure of 

chromatin accessibility of the gene body and 2kb upstream as a rough estimate of 

transcriptional activity (37). We saw that chromatin gene activity patterns in our 

snATAC-seq UMAP for Myog is somewhat similar to scRNA-seq expression patterns, 

where the Myog locus was highly accessible in a subset of differentiated clusters (A16, 

A17, and A18) (Fig. S4C). To investigate the agreement between expression and 

chromatin accessibility for the same time points, 0hr and 72hr, we integrated our short-

read Split-seq and snATAC single-cell measurements using Signac (Methods) (38). 

This integration mapped Split-seq cells on snATAC-seq nuclei, resulting in predicted 

snATAC-seq cell types. The predicted Split-seq time point (0hr or 72hr) was mostly 

accurate, with 96% (10,136 out of 10,508) of true snATAC 0hr nuclei predicted to be 0hr 

from the expression data and 79% (10,381 out of 13,017) of true snATAC 72hr nuclei 
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predicted as 72hr (Fig. S4D). When we mapped Split-seq cells grouped by MB (R1-R7), 

Pax7hi (R8-R15), and Myoghi (R16-R20) onto snATAC nuclei, we found that 48% (1,502 

out of 3,148) of nuclei with a Myog activity score > 0 were predicted to be Myoghi and 

that 27% (5,135 out of 18,542) of nuclei with a Pax7 activity score > 0 were predicted to 

be Pax7hi (Fig. S4D). Unlike our Split-seq RNA data, where we detected high 

expression of Pax7 in specific clusters, ATAC-based gene activity scores predicted that 

Pax7 would be equally active across all clusters (Fig. S4E). Taken at face value, this 

suggests that some differentially expressed genes do not exhibit corresponding 

changes in promoter chromatin state, as reflected by these activity scores. However 

there are several distal peaks ATAC peaks located downstream of Pax7 whose 

dynamics are coordinated with the RNA. This suggests, as a working model, that they 

are regulatory elements governing Pax7 expression. In contrast, Myog and Mybph 

illustrate expected coordinated changes in chromatin accessibility and RNA isoform 

expression during differentiation (clusters A16-A18) at the TSSs of these genes (Fig. 

S4F). For uniform terminology between RNA and DNA data, we label 72hr Myoglow 

snATAC clusters A8-A15 as Pax7hi. While snATAC can clearly capture changes in 

chromatin remodeling, the ATAC-only gene activity scores (at least as computed by 

Signac) do not reflect the Pax7 expression level changes that we measure in this 

system.  

 

 As expected, investigation of marker peaks for Myoghi clusters A16-A18, using a 

gene annotation method with gene ontology analysis, revealed significant terms such as 

muscle system process (P = 1.55 x 10-115), muscle structure development (P = 5.77 x 
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10-118), and striated muscle contraction (P = 3.87 x 10-96) (Methods, Fig. S3G, Table S6, 

Table S7). In comparison, MB clusters A1-A7 had broad significant terms such as 

regulation of anatomical structure morphogenesis (P = 1.69 x 10-19), cell-cell adhesion 

(P = 3.45 x 10-13), and cell motility (P = 3.89 x 10-14) (Table S6, Table S7). The 

significant terms for Pax7hi clusters A8-A15, in contrast to Myoghi clusters, were 

extracellular matrix organization (P = 1.23 x 10-9), extracellular structure organization (P 

= 1.35 x 10-9), and blood vessel morphogenesis (P = 3.92 x 10-9) (Table S6, Table S7). 

Most marker peaks defining the Myoghi clusters are specific to skeletal muscle 

myogenesis in myotubes while marker peaks for Pax7hi clusters indicate that they have 

a supportive role during development, such as by providing structural integrity to 

myotubes through ECM remodelling. 

 

LR-Split-seq identifies differential TSS choice  

We developed a peak calling script to identify TSSs and TESs from long-read 

data (Methods). For both bulk and single-cell data, reads filtered by known, NIC, NNC, 

and prefix ISMs for TSSs or suffix ISMs for TESs were scanned with a window of 50bp 

to call TSS and TES peaks. Each end was required to be supported by at least 2 long 

reads (Fig. S5A). We further filtered the ends at the level of each gene to achieve a 

refined set of TSSs and TESs for the bulk and LR-Split-seq data separately: 22,938 

TSSs in bulk (Fig. S5B, S5C), 23,996 TSSs in LR-Split-seq (Fig. 4B), 14,120 TESs in 

bulk (Fig. S5D, S5E), and 12,521 TESs in LR-Split-seq (Fig. S5F, S5G, Methods, 

Tables S8-11). Comparing the number of distinct ends to the number of distinct splice 

isoforms revealed that multiple TSSs are expressed per single splice isoform in both 
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bulk and single cells (Fig. 4B, S5B). Tnnt2 (troponin T2) has multiple known isoforms 

(39) and is differentially expressed between Myoghi and Pax7hi nuclei in the short-read 

data, so we decided to investigate chromatin accessibility and TSS usage at the Tnnt2 

locus (Fig. S3A, Table S5, Fig. 4C). We recovered four distinct TSSs for Tnnt2, three of 

which (Tnnt2_2, Tnnt2_3, and Tnnt2_4) overlap snATAC pseudobulk peaks, and all four 

of which overlap prior CAGE peaks found in C2C12 (40). Tnnt2_4 overlaps a known 

promoter cCRE and GENCODE vM21 transcript start site, while Tnnt2_2 overlaps a 

distal enhancer cCRE (Fig. 4C) (41). Tnnt2_4 has both higher expression in the LR-

Split-seq data and increased accessibility in snATAC Myoghi and Pax7hi clusters, while 

Tnnt2_2 and Tnnt2_3 are more highly expressed and accessible in MB clusters (Fig. 

S5H-J). Therefore, an isoform switch occurs in Tnnt2 where Myoghi and Pax7hi nuclei 

mainly use the known TSS belonging to the longer isoform, while the MB nuclei mainly 

use TSSs belonging to shorter isoforms. Genome-wide, we validated our TSS calls 

using an extended set of data: our snATAC pseudobulk peaks, GENCODE vM21 TSSs, 

ENCODE cCREs (promoter and proximal enhancer) from mm10, and C2C12 CAGE 

peaks, and found that the majority of the TSSs identified from LR-Split-seq are validated 

by at least one of these five other datasets (Methods, Fig. 4D).  

 

Using the same strategy we implemented to detect isoform switching genes, we 

performed differential TSS usage tests on our LR-Split-seq data (Methods). We again 

subset our LR-Split-seq data into 0hr MB nuclei, 72hr Pax7hi nuclei, and 72hr Myoghi 

nuclei, and performed pairwise tests. In the MB vs. Pax7hi comparison, we found 39 

genes with differential TSS usage (Table S12). In the MB vs. Myoghi comparison, we 
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found 40 genes with differential TSS usage. Consistent with our previous findings, this 

list includes Tnnt2, where the MB nuclei only express isoforms consistent with 

downstream TSSs (Tnnt2_1, Tnnt2_2, Tnnt2_3) (Table S13). Conversely, the Myoghi 

subset predominantly expresses isoforms using the upstream TSS (Tnnt2_4) (Fig. 4C, 

4E).  

 

Similarly, we found multiple distinct TESs per splice isoform in bulk and LR-Split-

seq data (Fig. S5D, S5F). We validated genome-wide TESs using GENCODE vM21 

TESs and polyA-seq peaks from C2C12 cells at days 0 and 4 of differentiation, which 

overlapped the majority of TESs found in bulk data but not in the LR-Split-seq data (Fig. 

S5E, S5G) (Methods). 

 

Coordination of chromatin accessibility with transcriptional output  

We calculated snATAC TSS chromatin accessibility across our refined set of 

TSSs to determine which TSSs are supported by both differential accessibility and 

expression (Methods). We compared the average log2 fold change (LFC) in both 

accessibility and expression between Myoghi and MB (Fig. 4F), Pax7hi and MB (Fig. 

4G), and Myoghi and Pax7hi (Fig. 4H). Between MB and Myoghi, 19 TSSs are specific to 

Myoghi with an average LFC greater than two standard deviations (indicated by dashed 

lines) in both datasets, and 70 TSSs are specific to MB with average LFC less than two 

standard deviations in both datasets (Fig. 4F, Table S14). Several of the genes with 

such TSSs are differentially expressed (Table S5, Table S14). Only 6 TSSs were 

Pax7hi-specific relative to MB, but one of these is Igfbp5, which is a gene that was highly 
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differentially expressed in the Pax7hi subset (Fig. 4G, Fig. S3A,Table S3, Table S14). 

Comparing MB and Pax7hi, 77 TSSs are MB-specific, 36 of which are also MB-specific 

when comparing Myoghi with MB. Of the 19 Myoghi-specific TSSs between Myoghi and 

MB, 15 were also Myoghi-specific when compared to Pax7hi (out of 53 total) (Fig. 4H, 

Table S14). Several of the 17 Pax7hi-specific TSSs (Fig. 4H) belong to differentially 

expressed genes, such as Pax7, Col4a1, Fn1, and Igfbp5 (Fig. S3A, Table S5, Table 

S14). From a biological perspective, Prox1 and Vgll4 are potentially interesting; 

although they were not differentially expressed in the short-read data, they are known to 

be involved in skeletal muscle regeneration (Fig. 4H, Table S14) (42, 43).  

 

Discussion 

The first goal of this work was to advance our capacity to directly map and 

quantify RNA isoforms in single cells. Using the C2C12 myogenic differentiation as a 

test system, we introduce long read-Split-seq (LR-Split-seq) and show that it can be as 

effective as standard short-read Split-seq for detecting cell clusters, based on data from 

the same number of cells or nuclei. This conclusion applied to nuclei as well as whole 

cells, although whole-cell data detected more genes per cell than companion LR-Split-

seq data from nuclei. For biological systems that do not permit uniform whole-cell 

disaggregation such as our multinucleated myotubes or brain tissue, the success shown 

here for nuclei is encouraging. We speculate that the remaining sensitivity differential 

between nuclei and whole cells is a consequence of the smaller starting number of 

transcripts in nuclei, and some of that could be further compensated by increasing the 

nuclear number sequenced and their depth of sequencing. We also suggest that 
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combining random hexamer primed long-reads with the oligo-dT primed long-read data 

helped to capture 5’ ends that are critical for inferring TSS use, although this adds 

incomplete PacBio reads to the overall dataset. We also illustrate that LR-Split-seq 

affords users the choice of analyzing the oligo-dT primed and hexamer primed read 

populations separately. A second motive for developing LR-Split-seq is that it will allow 

flexible study designs that can efficiently and more economically refine cell type 

identities by integrating additional standard short-read Split-seq data on the same 

samples. Results presented here showed that this strategy was effective in refining 

stem cell identities and states in the C2C12 system. Finally, we integrate results from 

LR-Split-seq with snATAC to gain insights into the dynamics of chromatin accessibility 

at the corresponding promoters with a longer term goal of building a fully integrated 

model of physically or genetically affiliated distal regulatory elements. 

 

 We were able to detect 79% of the genes and 53% of transcript isoforms 

detected in bulk myoblast long-read RNA-seq using LR-Split-seq in single cells. We 

expect these differences relative to bulk samples to be a function of the individual study 

design, including number and diversity of cells sequenced, depth of sequencing, fixation 

protocol and, for isoform detection, the contribution from internal hexamer priming. The 

largest sets of genes detected across the entire analysis included the LR-Split-seq 

assays, supporting the conclusion that it detects expressed genes reliably and 

reproducibly. The differences between known gene and transcript detection rates, 

relative to bulk data, were largely attributable to internally-primed Split-seq reads and 

their management in our computation pipeline. Specifically, we used TALON, which 
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leverages non-full-length reads for quantification and detection on the gene-level but not 

on the transcript-level. Consequently, we achieved high gene detection concordance 

but lower transcript detection concordance between long-read bulk and LR-Split-seq 

data.  

 

Gene-level clusters in LR-Split-seq are remarkably similar to the results in the 

equivalent standard short-read Split-seq. In both assays, clusters of differentiating cells 

were most homologous to each other and were distinct from the myoblast clusters. 

However, in LR-Split-seq, there was a greater tendency for the clusters to separate by 

assay format, as shown in the 0hr myoblast cells and nuclei. We captured expression 

dynamics of well-known myogenic marker genes in the differentiating clusters such as 

Pax7, Myog, Mybph, and Myh3 that are reproducible in the short-read data we 

sequenced from the same cells (18). The additional context from ~37,000 short-read 

single cells allowed us to investigate the Myoghi clusters in greater detail. We found that 

Myoghi clusters were very distinct from MB clusters, while Pax7hi clusters were in a 

spectrum of differentiation stages between MB and Myoghi clusters. Expression of 

additional marker genes in Pax7hi subclusters, RNA velocity trajectories, and validation 

with spatial transcriptomic profiling confirmed that these nuclei are from mononucleated 

cells in varying stages of differentiation.  

 

LR-Split-seq enabled us to investigate transcript-level differences between the 

various stages of differentiation in myogenesis. We found novel insights into the biology 

of the system by studying differential TSS usage and integrating our TSSs identified 
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from long reads and our snATAC-seq peaks. Our analysis revealed over 50 significant 

switches in TSS usage across clusters of undifferentiated versus differentiated stages, 

including a pronounced switch in Tnnt2, where the myoblasts primarily use TSSs that 

are novel to more recent GENCODE transcript annotations, while differentiated cells 

mainly express the known TSS that results in a longer isoform. This TSS switch was 

complemented by a corresponding increase in chromatin accessibility at the newly-

expressed TSS in Myoghi clusters.  

 

 Unlike previous long-read scRNA-seq methods that rely on sequencing of each 

cell using custom microfluidics equipment (2, 4), LR-Split-seq is immediately accessible 

with no cell/droplet handling instrumentation and it is tunable in both cell number and 

sequencing depth, depending on the complexity of the underlying sample's cellular 

composition. Additionally, it can be scaled up for long-read sequencing with additional 

sub-libraries and higher read depth. We believe that this technology and study design 

allow one to optimize the amount and character of information from short and long-read 

single-cell technologies when the costs of input cells, overall platform, and sequencing 

are all considered. While short-read Split-seq provides a broad survey of the 

transcriptional complexity of a biological system by sequencing up to 100,000 cells, 

corresponding LR-Split-seq can be applied to a targeted number of cells to provide 

higher-resolution isoform-level insights using a few million long reads from a few PacBio 

runs. In this way, LR-Split-seq promises affordable, simultaneous transcriptional 

profiling of a wide variety of tissues using short and long-read sequencing.  
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Data / code availability 

 

Data 

Description GEO accession ENCODE Accession 

Aggregate raw/processed short/long Split-
seq data 

GSE168776 --- 

Aggregate raw/processed snATAC-seq 
data 

GSE168776 --- 

Bulk 0hr C2C12 biosamples --- ENCBS824FPY, 
ENCBS649CMC 

Bulk 72hr C2C12 biosamples --- ENCBS373BHL, 
ENCBS606QKU 

Split-seq parent C2C12 biosample --- ENCBS570IED 

Split-seq 0hr C2C12 cells biosample --- ENCBS521YWL 

Split-seq 0hr C2C12 nuclei biosample --- ENCBS431NOZ 

Split-seq 72hr C2C12 nuclei biosample --- ENCBS978ZNQ 

snATAC-seq 0hr biosample --- ENCBS081AJF, 
ENCBS562OEW 

snATAC-seq 72hr biosample --- ENCBS779SXF, 
ENCBS143VME 

snATAC-seq 72hr biosample (filtered) --- ENCBS247OBN, 
ENCBS090IYH 

  

Code 

Code description Link 

Custom LR-Split-seq demultiplexer https://github.com/fairliereese/LR-splitpipe 

Figure generation code https://github.com/fairliereese/2021_c2c12/ 
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Additional resources 

Description Link 

Track hub for pseudobulk snATAC 
peaks per cluster, LR-Split-seq reads 

used for TSS calling per cluster, 
ENCODE cCREs, GENCODE vM21 

transcript models 

https://github.com/erebboah/c2c12_trackhub 

 

Supplementary Tables 

Table S1: LR-Split-seq TALON read annotation. 

Table S2: Bulk vs. single-cell long read gene type detection test results. 

Table S3: LR-Split-seq differential isoform test (MB vs. 72hr Pax7hi). 

Table S4: LR-Split-seq differential isoform test (MB vs. 72hr Myoghi). 

Table S5: Short-read Split-seq marker genes. 

Table S6: snATAC-seq marker peaks. 

Table S7: snATAC-seq GREAT results. 

Table S8: LR-Split-seq TSSs 

Table S9: LR-Split-seq TESs 

Table S10: Bulk long-read TSSs. 

Table S11: Bulk long-read TESs. 

Table S12: LR-Split-seq differential TSS test (MB vs. 72hr Pax7hi). 

Table S13: LR-Split-seq differential TSS test (MB vs. 72hr Myoghi). 

Table S14: Log2FC TSS expression and accessibility. 

 

Methods 

C2C12 culture and differentiation  
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C2C12 cells from the American Type Culture Collection (ATCC, CRL-1772) were 

cultured on 10 cm plates (Thermo Scientific, 172931) in 10 mL myoblast growth media: 

high-glucose DMEM with L-glutamine and without sodium pyruvate (HyClone, 

SH30022.FS), supplemented with 20% fetal bovine serum (Omega Scientific, FB-11), 

100 units/mL penicillin, and 100 ug/mL streptomycin (Gibco, 15140122). Cells were 

maintained at 20-50% confluency at 37°C with 5% CO2 and passaged at 1:3 or 1:4 

every 2 to 3 days. All cells used in experiments were passaged less than 10 times. To 

detach them from plates, cells were rinsed with 1X PBS (HyClone, SH30256.02) and 

incubated with 2 mL TrypLE-Express (Gibco, 12605010) for 5 minutes at 37°C, which 

was then neutralized with 8 mL myoblast growth media. To differentiate, cells at 90-

100% confluency were rinsed with 1X PBS and myoblast growth media was replaced 

with 10 mL differentiation media: high-glucose DMEM with L-glutamine and without 

sodium pyruvate (HyClone, SH30022.FS), supplemented with 2% donor horse serum 

(Gibco, 16050130), 100 units/mL penicillin, 100 ug/mL streptomycin (Gibco, 15140122), 

and freshly-added 1uM insulin (Sigma-Aldrich I6634). Differentiation media was 

replaced every 24 hours for 3 days. Cells were monitored under a microscope (EVOS 

FL Auto 2) to observe changes in morphology and confirm differentiation. 

 

Preparation of myoblast and myotube single-nucleus suspensions  

We followed the Bio-Rad SureCell WTA 3’ Library Prep protocol for preparation of 

nuclei samples (44). Myoblasts from one 10 cm plate (~1.5 million cells) and myotubes 

from one 10 cm plate (~5 million cells) with >90% viability were lifted as described 

above and pelleted in 15 mL polypropylene falcon tubes (VWR, 89039-670) by 
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centrifuging for 5 minutes at 1500 RPM. Cells were washed twice with cold 1X PBS + 

0.1% BSA (Sigma-Aldrich A9418) and 0hr myoblasts were filtered through a 40 μm 

strainer; due to their size, 72hr samples containing myotubes were not filtered. After 

centrifuging for 3 minutes at 300 x g, cells were resuspended in 1 mL cold lysis buffer: 

10 mM Tris-HCl pH 8 (Thermo Scientific, AM9855G), 10 mM NaCl (Fisher Scientific, 

S271), 3 mM MgCl2 (Sigma, M8266), 0.1% IGEPAL CA-630 (Thermo Scientific, 28324), 

0.2 U/μL SUPERase In RNase Inhibitor (Invitrogen, AM2694) and 10 mg/mL BSA in 

nuclease-free water (Ambion, AM9937). Cells were incubated in lysis buffer on ice for 

10 minutes, centrifuged at 4°C for 3 minutes at 300 x g, and washed with 1 ml of cold 

1X PBS + 1% DEPC water (Invitrogen, 750023). The lysis, spin, and wash steps were 

repeated two more times for the 72hr samples because myotube cell membranes are 

more difficult to fully lyse than mononucleated myoblasts. Nuclei were stained with 

Trypan Blue (Bio-Rad, 1450021), and cell membrane lysis was confirmed under a 

microscope and by percent viability (<10%). Nuclei were stored on ice in 1 mL nuclei 

storage buffer (lysis buffer without the addition of IGEPAL CA-630). 

 

Preparation of single-cell barcoded cDNA using Split-seq  

Single-cell barcoded cDNA and Illumina libraries were prepared using the Fixation Kit 

for Cells, Fixation Kit for Nuclei, and Single Cell Whole Transcriptome Kit (Parse 

Biosciences, SB2001) following the manufacturer’s protocols. Nuclei from the 0hr 

myoblast sample and 72hr sample in single-nucleus suspensions were counted on a 

TC20 Automated Cell Counter (Bio-Rad, 1450102), and ~4 million were filtered through 

a 40 μm strainer into 15 mL polypropylene falcon tubes. Nuclei were fixed for 10 
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minutes and permeabilized for 3 minutes on ice, then DMSO was added for storage 

overnight at -80°C in a Mr. Frosty. Myoblast cells were similarly counted and filtered 

through a 40 μm strainer, followed by fixation and permeabilization. DMSO was added 

and cells were stored overnight at -80°C in a Mr. Frosty. Before storage, single-cell and 

single-nucleus suspensions were confirmed under a microscope.  

To prepare barcoded cDNA, fixed and frozen cells and nuclei were thawed in a 37°C 

water bath and counted. Cells were added to the Round 1 reverse transcription 

barcoding plate at around ~15,000 cells/well, with A1-A12 containing 0hr cells, B1-B12 

containing 0hr nuclei, and C1-D12 containing 72hr nuclei (Fig. S2A), before in situ 

reverse transcription and annealing of barcode 1+linker on a thermocycler (Bio-Rad 

T100). After RT, cells were pooled using a multichannel pipette into a 15 mL tube, spun 

down at 4°C for 5 minutes at 1000 x g, and resuspended in 1 mL of Resuspension 

Buffer (Parse Biosciences, SB2001). Using a basin and multichannel pipette, cells were 

distributed in 96 wells of the Round 2 ligation barcoding plate for the in situ barcode 

2+linker ligation. Next, cells were pooled, filtered through a 40 μm strainer, and 

redistributed into 96 wells of the Round 3 ligation barcoding plate for the in situ barcode 

3+UMI+Illumina adapter ligation. After a final pooling and filtration through a 40 μm 

strainer, cells were counted using a hemocytometer and distributed into 7 sub-libraries: 

6 sub-libraries with 9,000 cells each, and 1 sub-library with 1,000 cells. The cells in 

each sub-library were lysed and libraries were cleaned with AMPure XP beads 

(Beckman Coulter, A63881), then the single-cell barcoded cDNA underwent template 

switching and amplification. Importantly, we increased the number of cycles for the 

1,0000-cell library to 20 cycles rather than 18 in order to increase the yield of single-cell 
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barcoded cDNA for use in Illumina library preparation (50 ng) while having enough 

leftover cDNA for PacBio library preparation (500 ng). The cDNA was cleaned using 

AMPure XP beads and quality checked using an Agilent Bioanalyzer before proceeding 

to Illumina and PacBio library preparation. 

 

Preparation of Illumina scRNA-seq libraries using Split-seq and sequencing  

All 7 sub-libraries were fragmented, size-selected using AMPure XP beads, and Illumina 

adapters were ligated. The cDNA fragments were cleaned again using beads and 

amplified, adding the fourth barcode and P5/P7 adapters, followed by a final bead-

based size selection and quality check with a Bioanalyzer. Libraries with 5% PhiX spike-

in were loaded at 2.1 pM and sequenced to an average depth of 51 million reads per 

9,000-cell library and 70 million reads for the 1,000 cell library using an Illumina 

NextSeq 500 with paired-end run configuration 74/86/6/0.  

 

Preparation of PacBio scRNA-seq library and sequencing 

The PacBio library was prepared using 500 ng of amplified, single-cell barcoded cDNA 

with the SMRTbell Template Prep Kit (PacBio, 100-938-900) according to the 

manufacturer’s protocol for sequencing on a Sequel II. The 1,000-cell library was 

sequenced using 2 SMRTcells (PacBio, 101-008-000) for a sequencing depth of 

5,764,421 full-length non-chimeric reads.  

 

Preparation of bulk PacBio libraries and sequencing 
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We extracted RNA from two replicates of C2C12 0hr samples and 72hr samples using 

the RNA-easy kit (Qiagen, 74104). cDNA synthesis and library preparation using the 

SMRTbell Template Prep Kit (PacBio, 100-938-900) were performed as described on 

the ENCODE portal (https://www.encodeproject.org/documents/77db752f-abf7-4c93-

a460-510464134f52). We sequenced one SMRT cell per replicate on the Sequel II 

platform. 

 

Preparation of snATAC-seq libraries using Bio-Rad technology and sequencing 

The single nucleus ATAC-seq experiment was performed using the SureCell ATAC-Seq 

Library Prep Kit (Bio-Rad, 17004620) following the manufacturer’s protocol for the 

OMNI-ATAC version (45). Cells at 0hr differentiation or 72hr differentiation timepoints in 

one 10 cm plate per biological replicate were lifted as previously described and washed 

twice in cold 1X PBS + 0.1% BSA. All 0hr replicates and some 72hr replicates were 

filtered through a 40 μm strainer (2 technical replicates, 1 biological replicate; 2 

technical replicates of 72hr samples were not filtered), then counted and assessed for 

viability. 300,000 cells with >90% viability per biological replicate were lysed with cold 

OMNI-ATAC lysis buffer on ice for 3 minutes and washed out with cold ATAC-Tween 

buffer, at which point non-filtered 72hr nuclei were filtered through a 40 μm strainer, 

then spun down at 500 RCF for 10 min at 4°C. Nuclei were resuspended, counted, and 

confirmed to be single-nucleus suspensions under a microscope, then 60,000 nuclei per 

biological replicate were tagmented at 37°C for 30 min in a ThermoMixer with 500 RPM 

mixing. The microfluidics-based ddSEQ Single-Cell Isolator was used to stream 

tagmented nuclei in an amplification reaction mix with barcoded beads to isolate single 
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nuclei in nanodroplets with one or more barcodes. Tagmented cDNA was barcoded and 

amplified, then nanodroplets were broken and libraries cleaned with AMPure XP beads 

before a second amplification of barcoded fragments and final bead-based cleanup. A 

Bioanalyzer was used to verify library quality before loading at 1.5 pM and sequencing 

to an average depth of 122 million reads per library using an Illumina NextSeq 500 with 

paired-end run configuration 118/40/8/0 and custom sequencing primer.  

 

Validation of transcript expression with RNAscope 

Myoblasts were grown to 90-100% confluency in flasks mounted on slides (Thermo 

Scientific, 170920) then differentiated over 3 days as previously described. The flasks 

were removed and slides were rinsed in 1X PBS, followed by fixation in 10% neutral 

buffered formalin (Sigma-Aldrich, HT501128) for 30 minutes at room temperature. 

Following the manufacturer’s protocol for cultured adherent cells, we rinsed the slides in 

1X PBS, then incubated in 50%, 70%, and 100% ethanol for 5 minutes each (46). Slides 

were stored submerged in 100% ethanol at -20°C in 50 mL falcon tubes. To rehydrate, 

slides were incubated in 70% and 50% ethanol for 2 minutes each, then in 1X PBS for 

10 minutes. A hydrophobic barrier was drawn around the edges of the slide (Vector 

Laboratories, H-4000), then the cells were permeabilized with 1:15 diluted protease III 

(ACDBio, 322340) for 10 minutes at room temperature in a humidity control tray 

(ACDBio, 310012). Following the manufacturer’s protocol for the RNAscope HiPlex12 

kit (ACDBio, 324100/324140), probes for genes of interest were mixed and hybridized 

for 2 hours at 40°C in a HybEZ II hybridization oven (ACDBio, 321710/321720), then the 

signal was amplified over 3 rounds of 30 minute incubations at 40°C in the oven (47). 
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We then proceeded to fluorophore hybridization and imaging over four rounds of three 

channels per round (GFP, RFP, and Cy5) plus DAPI (48). An EVOS FL Auto 2 with 

programmable stage was used to automatically image slides at 40X magnification.  

 

Preprocessing of LR-Split-seq data 

Raw PacBio reads were processed into circular consensus reads using the ccs software 

from the SMRT analysis software suite (parameters: --skip-polish --min-length=10 --

min-passes=3 --min-rq=0.9 --min-snr=2.5) 

(https://github.com/PacificBiosciences/ccs). The Split-seq adapters were identified and 

removed using Lima (v2.0.0) (parameters: --ccs --min-score 0 --min-end-score 0 --

min-signal-increase 0 --min-score-lead 0) 

(https://github.com/pacificbiosciences/barcoding/). Reads were then processed with 

IsoSeq3’s Refine (v3.4.0) to yield full-length non-chimeric reads 

(https://github.com/PacificBiosciences/IsoSeq). As around half of our reads are primed 

using random hexamer priming, polyA tails were not required nor removed for this step. 

Reads were then demultiplexed for their Split-seq barcodes using a custom script 

(https://github.com/fairliereese/LR-splitpipe) by first detecting the spacer sequences 

between barcodes and using these as start and end points for the barcodes. Barcodes 

were corrected to those that were within an edit distance of 3 of the predetermined list 

of barcodes used for each round of barcoding. The resultant reads were then filtered on 

which combinations of barcodes were also seen in the Illumina single cell/nucleus RNA-

seq data, which yielded 567 of the 568 cells that passed QC in the Illumina data (Fig. 

S2B). The reads were then trimmed of their barcodes to facilitate mapping, and cell 
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identity barcodes were recorded. The reads were mapped using Minimap2 (v2.17-r94) 

(-ax splice:hq -uf --MD) (49) and the mm10 reference mouse genome, corrected for 

long-read sequencing artifacts with TranscriptClean ( --canonOnly --primaryOnly) 

(50). We then used TALON (development branch on GitHub) (--cb) to annotate each 

read to its transcript or origin using the GENCODE vM21 reference (24). We filtered for 

reproducible novel NIC and NNC transcript models for those that were seen in 4 or 

more sub-cells (Fig. 1K, S1D). 

 

Comparing priming strategies and sample types in LR-Split-seq data 

The priming strategy of each read was determined by examining the barcode for the 

first round of Split-seq. Reads were separated out by priming strategy and by cell. For 

sample comparisons, the oligo-dT and random hexamer primed reads from each cell 

were merged to create the final cell, then separated out by sample.  

 

Comparing bulk long-read to long-read Split-seq 

To enable this comparison, we re-ran the bulk and single-cell data through TALON 

using the same database so that novel transcripts would have the same IDs across the 

bulk and the single-cell. For the bulk novel transcript models, filtering was done using 

talon_filter_trasncripts, requiring a novel transcript model to be reproducible in at least 2 

of the bulk replicates with at least 5 copies. For the single-cell, filtering was done that 

required novel transcript models to be reproducible in at least 4 sub-cells.  

 

Single-cell processing of LR-Split-seq data 
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Oligo-dT and random hexamer primed reads from each cell were merged to create the 

final cells. Gene-level cells and nuclei were further filtered for those that had ≥500 reads 

per cell/nucleus using Scanpy (v1.4.6) (51) and for those that, in the corresponding 

Illumina data, had <200,000 reads, <20% mitochondrial reads, and >500 genes (done in 

Seurat as detailed in the Processing of short read scRNA-seq data section) (all on a per 

cell/nucleus basis); yielding a final total of 464 single cells and nuclei. Dimensionality 

reduction, construction of the UMAP, and Leiden clustering were all performed using 

Scanpy, yielding 7 clusters (Fig. 2D). 

 

Isoform switching gene testing 

Testing for isoform switching in LR-Split-seq data was performed as in Joglekar et. al., 

2021 (4). Tests were performed on the LR-Split-seq Leiden clusters for MB nuclei vs. 

Myoghi nuclei (clusters L1-L2 vs. L6-L7) and for MB nuclei vs. Pax7hi (clusters L1-L2 vs. 

L4-L5). Genes with significant isoform switching were required to have a corrected p-val 

≤0.05 and a change in percent isoform usage per condition of ≥10, and a minimum 

number of reads per gene per tested condition of 10. 

 

Processing bulk long-read data 

Bulk PacBio data was processed following the ENCODE Long Read RNA-Seq Analysis 

Protocol for Mouse Samples (v.1.0) for CCS, Lima, refine and TranscriptClean steps 

(https://www.encodeproject.org/documents/a84b4146-9e2d-4121-8c0c-1b6957a13fbf). 

A TALON database was initialized using mm10 GENCODE v21 GTF with SIRV set 3 

and ERCCs included. Reads output from TranscriptClean were labeled with the 
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corresponding fasta reference. TALON was run (--cov 0.9 --identity 0.8). Filtering novel 

transcript models was done using TALON’s talon_filter_transcripts module, requiring a 

novel transcript model to be reproducible across biological replicates, and appear 5 

times in each replicate, as well as display a lack of internal priming evidence (--

minCount 5 --minDatasets 2 --maxFracA 0.5). Transcript abundances were 

determined using talon_abundance. 

 

Processing of short read Split-seq data 

After initial demultiplexing of the 7 sublibraries (6x 9,000-cell sublibraries and 1 1,000-

cell sublibrary), Parse Bioscience’s split-pipe v0.7.6 software was used to deconvolute 

reads into single cells, map to mm10 using STAR (v. 2.6.0c), annotate using 

GENCODE vM21, and filter using a UMI cutoff determined by knee plots (Fig.S2B, S2D) 

(52). The remaining cells were further filtered in Seurat (v. 3.2.2) by <20% mitochondrial 

reads, < 200,000 counts, and >500 genes per cell/nucleus (Fig. S2C, S2E) (53). The 

resulting 464 cells with both short and long reads and 36,405 cells with short-read data 

only were analyzed using Velocyto (v.0.1.17) (25). 55% of counts from 0hr cells, 46% of 

counts from 0hr nuclei, and 37% of counts from 72hr nuclei were spliced out of the total 

number of spliced and unspliced counts. After loading the loom file back into Seurat with 

the ReadVelocity function from the SeuratWrappers package, SCTransform (v. 0.3.1) 

was used to regress percent mitochondrial reads, number of genes, and sublibrary, 

followed by UMAP dimensionality reduction (54, 55). Clustering using the Leiden 

algorithm (v. 0.8.0) resulted in 20 clusters (56). Differentially expressed genes per 
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cluster were found using Seurat’s FindAllMarkers function (only.pos = TRUE, min.pct 

= 0.1, logfc.threshold = 0.1) then further filtered by FDR < 0.01.  

 

Processing of snATAC-seq data 

After demultiplexing the 8 snATAC-seq libraries (3 0hr, 5 72hr samples), Bio-Rad’s 

dockerized ATAC-seq analysis toolkit (v.1.0.0) was used to recover barcodes/UMIs, 

align reads with BWA, filter and deconvolute barcodes, perform quality control by UMI 

thresholding, and call peaks with MACS2 (Fig. S3A) (57, 58, 59). A custom script 

(https://github.com/fairliereese/lab_pipelines/tree/master/sc_atac_pipeline) that takes in 

the combined peaks file, QC-passing barcode list, and mapped reads was used to 

generate peaks-by-cells counts matrices as csv files for each library. In addition, the 

annotated bam files were converted to fragment files using scATAC-pro’s 

simply_bam2frags.pl script, which are bed-like matrices containing chromosome, start, 

stop, cell ID, and number of fragments contained in the region (60). Further QC cutoffs 

consisted of a TSS enrichment score > 6, > 5,000 counts, and < 20,000 counts per 

nucleus (Fig. S4B). TSS enrichment is calculated in Signac (v. 1.0.9004) following the 

definition by ENCODE (https://www.encodeproject.org/data-standards/terms/). Signac 

was used to normalize binarized peaks-by-cells counts matrices by term frequency 

inverse document frequency (TF-IDF) followed by singular value decomposition and 

UMAP dimensionality reduction (37). The Leiden algorithm (v. 0.8.0) was used to 

resolve 18 clusters (Fig. 4A). UCSC Genome Browser tracks were generated by 

splitting the snATAC bam file by cluster using the sinto package 

(https://github.com/timoast/sinto) and creating bigwig tracks using deeptools (61). 
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Differentially accessible peaks per cluster were found using Seurat’s FindAllMarkers 

function (only.pos = TRUE, min.pct = 0.1, logfc.threshold = 0.5) then further filtered 

by FDR < 0.05. The marker peaks were grouped by MB (A1-A7), Pax7hi (A8-A15), and 

Myoghi (A16-A17) and processed using GREAT with mm10 whole genome background 

and associating peaks with the single nearest gene within 50kb (62). P values for the 

binomial test are reported in the text. 

 

Integration of short-read Split-seq and snATAC-seq data 

Signac’s FindTransferAnchors function was implemented with all 36,869 Split-seq cells 

as the reference set and all 23,525 snATAC-seq nuclei as the query set, with canonical 

correlation analysis (CCA) used as the dimensional reduction method (38). The 

TransferData function was used to carry over Split-seq labels “0hr” or “72hr” in one 

analysis (Fig. S4D, left panel) and labels “MB”, “Pax7hi”, and “Myoghi” in another 

analysis (Fig. S4D, right panel). 

 

Identification of TSSs from long-read data 

For both LR-Split-seq and bulk separately, bam reads were filtered for those that were 

annotated by TALON as belonging to the known, novel in catalogue (NIC), novel not in 

catalogue (NNC), and prefix-ISM novelty categories as the starts of reads belonging to 

these novelty categories are more likely to come from a true 5’ end. TSSs were called 

on the filtered bams using the ENCODE PacBio TSS caller 

(https://github.com/ENCODE-AWG/tss-

annotation/blob/master/long_read/pacbio_to_tss.py) (--window-size=50 --raw-counts -
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-expression-threshold=0), yielding a bed entry for each TSS consisting of a wide 

peak, narrow peak, and a summit for each TSS. Resultant Split-seq TSSs were filtered 

first by requiring each one to be supported by at least 2 reads, and subsequently on the 

gene level, where each called TSS was required to have a number of reads >10% of the 

number of reads that supported the most highly expressed TSS for the same gene. Bulk 

TSSs were similarly filtered except using a threshold of >5%.  

 

Identification of TESs from long-read data 

Similarly, for both LR-Split-seq and bulk data separately, bam reads were filtered for 

those annotated as belonging to the known, novel in catalogue (NIC), novel not in 

catalogue (NNC), and suffix-ISM novelty categories as the ends of reads belonging to 

these novelty categories are more likely to come from a true 3’ end. TESs were called 

on the filtered bam using the same ENCODE PacBio TSS caller 

(https://github.com/ENCODE-AWG/tss-

annotation/blob/master/long_read/pacbio_to_tss.py) (--window-size=50 --raw-counts -

-expression-threshold=0 --tes), yielding a bed file the same format as the TSS file. 

The TESs were then filtered by requiring each to be supported by at least 2 reads and 

have a number of reads >80% of the number of reads that supported the most highly-

expressed TES for the same gene. 

 

Processing C2C12 CAGE data 

CAGE data was downloaded from GEO accession GSE21580 (40). Wig files 

corresponding to CAGE data from days 0 and 9 of C2C12 differentiation were converted 
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to bed format using bedops wig2bed (63) and lifted over from the mm9 genome to the 

mm10 genome using UCSC’s liftOver tool (-minMatch=0.95) (64). Resultant bed peaks 

were concatenated. 

 

Processing C2C12 PolyA-seq data 

PolyA-seq data was downloaded from GEO accession GSE62001 (65). Entries in the 

provided expression matrix were filtered for those belonging to the “C2C12.Pro” 

(proliferating C2C12) and “C2C12.Diff” (4-day differentiation C2C12) categories. The 

data was then converted into bed format using a custom script and lifted over from mm9 

to mm10 using the UCSC liftOver tool (-minMatch=0.95) (64).  

 

Intersecting TSSs with validation datasets 

A combined TSS validation bed file was made using the proximal enhancer and 

promoter ENCODE cCREs (41), GENCODE vM21 TSSs (66), our snATAC-seq 

pseudobulk peaks, and CAGE peaks (40). The filtered TSSs for both bulk (22,938) and 

LR-Split-seq (23,996) were intersected with the combination bed file using bedtools 

intersect with default parameters, meaning minimum of 1bp overlap between the TSSs 

and the combined validation set (2,057,291 regions) (67). 

 

Intersecting TESs with validation datasets 

A combined TES validation bed file was made using our snATAC-seq pseudobulk 

peaks and polyA-seq peaks (65). Similar to TSS validation, bedtools intersect with 

default overlap settings (1bp) was used to determine the number of overlaps between 
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our filtered TESs for both bulk (14,120) and LR-Split-seq (12,521) and the combined 

validation set (205,853 regions). 

 

snATAC-seq and TSS integration 

TSS regions identified in LR-Split-seq in bed format were used to calculate activity at 

each TSS through the Signac interface. Normalized expression values and normalized 

TSS activity values were averaged across the three groups of cells (MB, Pax7hi, and 

Myoghi) and a pseudocount of 1 was added to each TSS. Fold change in expression 

and activity separately was calculated by dividing the TSS values of one group by 

another group, such as Myoghi/MB. The log2 fold change for each TSS was then plotted 

for both expression (x-axis) and activity (y-axis), revealing TSSs with chromatin profiles 

and expression in agreement at the upper right and bottom left sectors. Twice the 

standard deviation of each dataset is indicated by black dashed lines. (Fig. 4F-4H).  

 

LR-Split-seq TSS quantification and differential TSS testing 

TSS expression was quantified from the LR-Split-seq data starting from the TALON 

read annotation file (Table S1), which tracks the start and end coordinates of every 

read. Read starts were converted to a read start bed file and expanded to include ±25 

bp from the true start. Finally, the read start bed was intersected using bedtools with the 

filtered LR-Split-seq TSSs (Table S8), requiring at least 1 bp of overlap. The number of 

reads per TSS was then computed by counting all of the reads assigned to each TSS. 

Testing on the TSS level for the LR-Split-seq data was performed as in Joglekar et. al., 

2021 (4). Tests were performed on the LR-Split-seq Leiden clusters for MB nuclei vs. 
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Myoghi nuclei (clusters L1-L2 vs. L6-L7) and for MB nuclei vs. Pax7hi (clusters L1-L2 vs. 

L4-L5). Genes with significant TSS switching were required to have a corrected p-val 

≤0.05 and a change in percent isoform usage per condition of ≥10, and a minimum 

number of reads per gene per tested condition of 10. 
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