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Abstract 18 

Background. A pangenome is the collection of all genes found in a set of related genomes. For 19 

microbes, these genomes are often different strains of the same species, and the pangenome 20 

offers a means to compare gene content variation with differences in phenotypes, ecology, and 21 

phylogenetic relatedness. Though most frequently applied to bacteria, there is growing interest 22 

in adapting pangenome analysis to bacteriophages. However, working with phage genomes 23 

presents new challenges. First, most phage families are under-sampled, and homologous 24 

genes in related viruses can be difficult to identify. Second, homing endonucleases and intron-25 

like sequences may be present, resulting in fragmented gene calls. Each of these issues can 26 

reduce the accuracy of standard pangenome analysis tools. 27 

Methods. We developed an R pipeline called Rephine.r that takes as input the gene clusters 28 

produced by an initial pangenomics workflow. Rephine.r then proceeds in two primary steps. 29 

First, it identifies three common causes of fragmented gene calls: 1) indels creating early stop 30 

codons and new start codons; 2) interruption by a selfish genetic element; and 3) splitting at the 31 

ends of the reported genome. Fragmented genes are then fused to create new sequence 32 
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alignments. In tandem, Rephine.r searches for distant homologs separated into different gene 33 

families using Hidden Markov Models. Significant hits are used to merge families into larger 34 

clusters. A final round of fragment identification is then run, and results may be used to infer 35 

single-copy core genomes and phylogenetic trees. 36 

Results. We applied Rephine.r to three well-studied phage groups: the Tevenvirinae (e.g. T4), 37 

the Studiervirinae (e.g. T7), and the Pbunaviruses (e.g. PB1). In each case, Rephine.r 38 

recovered additional members of the single-copy core genome and increased the overall 39 

bootstrap support of the phylogeny. The Rephine.r pipeline is provided through GitHub 40 

(https://www.github.com/coevoeco/Rephine.r) as a single script for automated analysis and with 41 

utility functions and a walkthrough for researchers with specific use cases for each type of 42 

correction. 43 

 44 

Introduction 45 

A pangenome is the collection of all genes found in a set of related genomes (Tettelin et al., 46 

2005; Vernikos et al., 2015). These genomes might be different strains of the same species or 47 

taken from the same genus or higher taxonomic level. Pangenomes are useful, because they 48 

allow one to compare gene content variation to differences in phenotypes, ecology, and 49 

evolutionary history. For instance, by mapping gene content of potential pathogens onto a 50 

phylogeny and contrasting clade-specific genes with differences in reported strain virulence, the 51 

pangenome can help reveal how these genes relate to pathogenicity while placing them in an 52 

evolutionary context (e.g. (Hurtado et al., 2018; Wyres et al., 2019)). Pangenomes have also 53 

been used to describe which functions are conserved among members of bacterial taxa in 54 

different environments (e.g. (Zhang & Sievert, 2014)). 55 

 Pangenome analysis is most commonly applied to bacteria. Due to the explosion of data 56 

from metagenomes and microbiome studies, many bacterial taxa are well-sampled and can be 57 

associated with large sets of ecological or health-related metadata. Additionally, multiple 58 

software packages are available that facilitate automated inference of bacterial pangenomes, 59 

such as Anvi’o (Eren et al., 2015) and Roary (Page et al., 2015).  60 

A typical pangenome analysis pipeline starts with two main steps: gene prediction and 61 

gene clustering. Often, workflows also include subsequent steps for function prediction, 62 

sequence alignment, and core gene identification. The accuracy of the two primary steps of 63 

inferring a pangenome is paramount. If a gene caller ignores an open reading frame (ORF) or 64 

inaccurately returns the end position of the ORF, genes may be truncated or merged. Errors in 65 

clustering—the process of placing related sequences into gene families—can include grouping 66 
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unrelated genes or failing to place homologs in the same cluster. Together, these errors in gene 67 

calling and clustering may significantly impact identification of the “single-copy core genome” 68 

(SCG). The SCG is commonly used as the basis for phylogenetic inference, and excluding 69 

genes can mean missing important sequence variation and building less informative trees. 70 

There is growing interest in applying pangenomic and phylogenomic workflows to 71 

bacteriophages (e.g. (Edwards et al., 2019; Bellas et al., 2020)). Just as the deluge of 72 

metagenomic data has expanded bacterial comparative genomics, thousands of phage 73 

genomes are now published every year (Roux et al., 2019; Dion, Oechslin & Moineau, 2020). 74 

Because no single gene is conserved among all phage genomes, gene content profiles and 75 

gene sharing networks have become standard tools in virus taxonomy for identifying and 76 

comparing related viruses (Bolduc et al., 2017; Shapiro & Putonti, 2018). In the process, 77 

pangenomics has become an intrinsic component of phage bioinformatics.  78 

Many of the potential sources of error for bacterial pangenome analysis are amplified 79 

when studying phages. First, phages are under-sampled despite regular publication of new 80 

genomes and identification of prophages within bacterial genomes (Dion, Oechslin & Moineau, 81 

2020). Isolation, even of better-sampled groups through dedicated programs like SEA-PHAGES 82 

continues to discover novel viruses with genes lacking obvious homology to any known 83 

sequence (Pope et al., 2015). As a result, we often try to compare virus genomes that are more 84 

distantly related than expected for most pangenomic workflows. This can make it difficult to 85 

recognize homologs between phage genomes that have low sequence identity. Further, many 86 

phages include intron-like sequences and homing endonucleases (Belfort, 1990; Stoddard, 87 

2005). These selfish genetic elements interrupt genes and cause fragmented gene calls during 88 

annotation. Thus, the two main tasks of a pangenome analysis—gene identification and gene 89 

clustering—are more error-prone with phages than with bacteria.  90 

Here, we describe a pipeline implemented in R, Rephine.r, for identifying and correcting 91 

common errors in the initial gene clusters and gene calls returned by pangenomic workflows. 92 

Given the results from a traditional pangenome analysis, Rephine.r: 1) merges gene clusters 93 

using Hidden Markov Models (HMMs) and 2) identifies fragmented gene calls to avoid the 94 

overprediction of paralogs and to improve sequence alignments. Each of the steps in Rephine.r 95 

can also be run separately for individual use cases that require only cluster merging or 96 

defragmentation. We demonstrate the value of Rephine.r using three phage taxa: the 97 

Tevenvirinae (e.g. T4), the Studiervirinae (e.g. T7), and the Pbunaviruses (e.g. PB1). These 98 

virus groups represent a range of genome sizes and sampling depth, and each has at least 30 99 

members with a RefSeq assembly. We show that correcting errors in gene cluster and gene 100 
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fragmentation increases the size of the SCG in each case and enables inference of better-101 

supported phylogenies. The tool is available through GitHub as a command line R script 102 

(https://www.github.com/coevoeco/Rephine.r) and includes utility scripts for returning the single-103 

copy core genes and classifying the causes of gene fragmentation events. 104 

 105 

Materials & Methods 106 

Overview of the pipeline 107 

The Rephine.r pipeline (summarized in Fig. 1) assumes the researcher has already completed a 108 

workflow for predicting gene clusters in a pangenome, such as the combination of blastp 109 

(Altschul et al., 1990) and MCL (Enright, Van Dongen & Ouzounis, 2002) implemented by Anvi’o 110 

(Eren et al., 2015) and other programs (e.g. vConTACT (Bolduc et al., 2017) and Roary (Page 111 

et al., 2015)). In what follows, we use Anvi’o as the basis for initial pangenomes, as Anvi’o is 112 

both a popular tool for bacterial pangenomes and includes several useful commands for 113 

facilitating our corrections. Future updates will expand Rephine.r’s compatibility with other tools. 114 

Following initial gene clustering, the Rephine.r pipeline: 1) identifies and merges gene 115 

clusters containing distantly related homologs using HMMs, and 2) identifies fragmented gene 116 

calls that can be fused for the purpose of SCG inference and generating phylogenies. By 117 

default, Rephine.r will first run the cluster merging and defragmentation steps in tandem, 118 

produce a set of new clusters that combine the results of these corrections, and will then run a 119 

second round of defragmentation to identify any new cases that emerge due to the prior steps. 120 

Command line options are also offered for users that wish to run the HMM merging or fragment 121 

fusion steps individually. In addition to the main pipeline, we include two complementary scripts: 122 

getSCG.r, returns the single-copy core genes and a concatenated alignment file for 123 

phylogenetics; fragclass.r categorizes the likely events that led to fragmented gene calls. 124 

 125 

Merging gene families with HMMs 126 

Gene clustering based on sequence similarity relies on threshold criteria for defining when two 127 

sequences are related and for clustering related sequences into groups. In Anvi’o, the default 128 

identity heuristic is defined by the “minbit” score, the ratio of the BLAST bit score between two 129 

sequences and the minimum bit score from blasting each sequence against itself. This metric 130 

generally performs well, and for bacteria, where homologs are typically over 50% identical, it is 131 

especially successful. For phages, however, this approach can miss more distant homologs. 132 

Even using a 35% amino acid identity threshold (Cresawn et al., 2011; Shapiro & Putonti, 2018),  133 
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Figure 1. Flowchart of the Rephine.r pipeline.  134 

we may miss cases that only appear related when viewing alignments or comparing phage 135 

genes by structure or synteny. Unfortunately, it is not as simple as specifying a lower minbit 136 

threshold, since doing so will also increase the number of unrelated genes that are clustered 137 

together erroneously. 138 

 Given the initial gene clusters returned by Anvi’o, Rephine.r builds separate HMM 139 

profiles for each cluster using the hmmbuild function from HMMER (Eddy, 1998) and converts 140 

the concatenated HMM profiles into a database with hmmpress. The script then uses hmmscan 141 

to compare every original gene call against each HMM profile. This step is expected to be more 142 

sensitive for recognizing distant homologs than the initial blastp, as the HMM profiles make use 143 

of variation from multiple members of the same cluster. Significant hits are then defined as 144 

follows: for each original gene cluster, the “minimum self-bit” (or “selfbit”) score is recorded as 145 

the minimum of the bit scores for each of the gene calls that was initially assigned to that cluster 146 

by MCL. This selfbit score then serves as a profile-specific significance threshold. Any gene call 147 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.26.441508doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441508
http://creativecommons.org/licenses/by-nc/4.0/


6 
 

that was originally assigned to another cluster but has a bit score greater than this value is then 148 

used to establish a putative connection between gene clusters. We also include the option of 149 

specifying an absolute minimum bit score as an additional criterion. These connections are 150 

recorded in the form of a network edgelist linking gene calls to gene clusters. Next, this edgelist 151 

is relabeled to define edges between the original gene clusters that share putative homologs. 152 

Finally, this edgelist is used to generate a network with the R (R Core Team, 2013) package 153 

igraph (Csardi, Nepusz & Others, 2006), and the connected components are returned with the 154 

function components(). The result defines sets of the original gene clusters that are suitable for 155 

merging into a single, larger cluster. 156 

 157 

Identifying fragmented gene calls 158 

To find fragmented genes, Rephine.r first identifies every gene cluster that includes at least two 159 

sequences from the same genome. These sequences may represent true duplicates or 160 

paralogs, or they may be separate pieces of the same original sequence that have been split by 161 

one of several processes, including: a frameshift due to an indel, insertion of a selfish genetic 162 

element, or being artificially split across the ends of the genome when it was reported to 163 

GenBank. This third case may also arise as an artifact of the two other mechanisms. For any of 164 

these scenarios, the two pieces of the gene will be notable in two ways: 1) they will align with 165 

separate parts of the gene in a multiple sequence alignment, with one piece corresponding to 166 

an N-terminal fragment, and the other to the C-terminus; 2) they should have lower sequence 167 

similarity to each other than to the average comparison with other sequences in the multiple 168 

sequence alignment. Fig. 2a illustrates how a fragmented gene may appear in an alignment. 169 

 Given clusters with potential fragments, every gene call within an affected cluster is 170 

compared using blastp to every other gene call in the same cluster. For the two focal gene calls 171 

from a potential fragmented gene, the bit score from their blast alignment is compared to the 172 

mean bit score for other blast results within the gene cluster. We defined the ratio of this 173 

pairwise blast to the cluster average as the “relative bit” (or “relbit”). Mathematically, for potential 174 

fragments A and B within a gene cluster G, this is defined as: 175 

 176 

𝑟𝑒𝑙𝑏𝑖𝑡(𝐴, 𝐵) =
𝑏𝑖𝑡(𝐴, 𝐵)

𝑏𝑖𝑡̅̅ ̅̅ (𝐴, 𝐺)
 , 𝑟𝑒𝑙𝑏𝑖𝑡(𝐵, 𝐴) =

𝑏𝑖𝑡(𝐵, 𝐴)

𝑏𝑖𝑡̅̅ ̅̅ (𝐵, 𝐺)
                    𝐸𝑞𝑛. 1 177 

 178 

 179 

 180 
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Figure 2. Fragmented gene calls can be identified from alignments. (A) An original multiple sequence 181 

alignment where the gene from NC_041902 has been split into two fragments by an indel. (B) The 182 

corrected alignment following Rephine.r. Highlighted colors are used to indicate regions of each fragment 183 

and where they correspond within an intact homolog. 184 

where the overbar refers to the mean. The maximum of these relbit values is then used as a 185 

criterion for judging similarity between A and B. If this value is below a chosen threshold, the 186 

ORFs are considered to be sufficiently dissimilar. 187 

Rephine.r also compares the extent of overlap within the alignment space between each 188 

potential paralog. This step is needed, because dissimilar gene fragments may still have 189 

overlaps in the alignment due to alignment errors or if the original fragmentation event was 190 

caused by a short duplication. To quantify this overlap, the “percent overlap” is calculated as the 191 

size of the ORFs’ intersection within the alignment divided by the number of unique, aligned 192 

positions between the two sequences. In mathematical terms, for a gene with potential 193 

fragments A and B, we define: 194 

 195 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
                                                                       𝐸𝑞𝑛. 2 196 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.26.441508doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441508
http://creativecommons.org/licenses/by-nc/4.0/


8 
 

 197 

where the size terms are based solely on the aligned positions within the multiple sequence 198 

alignment. 199 

Ultimately, sequence pairs with low relative bit scores (“relbit”) and low percent overlaps 200 

(“percoverlap”) are the likeliest to fit our expectations of a fragmented gene call. In practice, we 201 

implemented default parameters for these criteria of 0.25 for “relbit” and 0.25 for “percoverlap.” 202 

These choices are based on plotting values of each parameter (Supplemental Fig. 1) from the 203 

test cases described below and identifying a set of points that weakly cluster together in the 204 

graph. When checked manually, each of these genes appeared to correspond to fragmented 205 

calls, whereas nearby points in the graph included potential errors. These parameters can be 206 

adjusted at the command line, and we would encourage others to visually inspect their 207 

alignments. 208 

 Once fragmented genes are identified, a new FASTA file is created in which the original 209 

pieces of the full-length gene are artificially spliced (or “fused”) into a single gene call. To 210 

preserve the original event that separated the sequences, the script inserts an “X” between the 211 

two pieces of the gene. New alignments are then made with MUSCLE (Edgar, 2004) for each 212 

affected gene cluster, with these X’s imposing a gap in the alignment (see Fig. 2b for an 213 

illustration of this step). If desired, the user can then use the additional script, getSCG.r, to 214 

return a list of the single-copy core gene clusters, along with a concatenated alignment file that 215 

is suitable for phylogenetics. The script, fragclass.r, can also be used to obtain a table 216 

summarizing predicted causes for each type of fragment based on the separation between the 217 

original gene calls. 218 

 219 

Virus genomic data 220 

Phages in the subfamily Studiervirinae (family Autographiviridae), the subfamily Tevenvirinae 221 

(family Myoviridae), and the genus Pbunavirus (family Myoviridae) were chosen as well-studied 222 

examples for testing Rephine.r. We downloaded all available RefSeq genomes from each of 223 

these taxa from the National Center for Biotechnology Information’s (NCBI) genome browser (as 224 

of February 2021). This data set included 145 Studierviruses, 127 Tevenviruses, and 38 225 

Pbunaviruses (a full list of accessions is included in Supplemental Table 1). The Studiervirinae 226 

(e.g. phages T3 and T7) and the Tevenvirinae (e.g. phage T4) are among the best-studied 227 

phage subfamilies and include characterized examples of introns and homing endonucleases 228 

(Chu et al., 1986; Belle, Landthaler & Shub, 2002; Bonocora & Shub, 2004; Petrov, Ratnayaka 229 

& Karam, 2010). These features made these two subfamilies ideal for testing methods for 230 
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identifying distant homologs and fragmented gene calls. The Pbunaviruses were chosen due to 231 

the relatively large number of available genomes at the genus level, offering a less diverse 232 

contrast to the other phage groups. 233 

 234 

Initial pangenome workflow with Anvi’o 235 

We built an initial pangenome for each phage group using Anvi’o v6.2 (Eren et al., 2015) 236 

following the standard pangenomics workflow (https://merenlab.org/2016/11/08/pangenomics-237 

v2/) with the “--use-ncbi-blast” flag for the anvi-pan-genome command. Due to the large genetic 238 

diversity of phages, we set the minbit threshold to 0.35, based on prior work (Cresawn et al., 239 

2011; Shapiro & Putonti, 2018).  240 

 241 

Phylogenetics 242 

Maximum likelihood phylogenies were estimated using IQTREE v2.0.3 (Nguyen et al., 2015) 243 

with ModelFinder (Kalyaanamoorthy et al., 2017) to automate choosing the optimal substitution 244 

model for each tree. For each of the three virus groups, trees were built based on concatenated 245 

alignments for the original SCGs and again following Rephine.r using the expanded SCGs. Tree 246 

summary statistics were computed in R using the ape package (Paradis, Claude & Strimmer, 247 

2004) and drawn using ggtree (Yu et al., 2017).  248 

 249 

Code Availability 250 

All code for this work is provided on GitHub (https://github.com/coevoeco/Rephine.r).The code 251 

includes a walkthrough for running Rephine.r following a standard Anvi’o workflow, as well as 252 

utility scripts, getSCG.r and fragclass.r, that provide additional output of the SCG genes and 253 

predicted causes of fragmentation events. 254 

 255 

Results 256 

To test the Rephine.r pipeline, we downloaded all available RefSeq genomes for the 257 

Studiervirinae, Tevenvirinae, and Pbunaviruses from NCBI. We then followed the standard 258 

pangenomic workflow for Anvi’o to facilitate initial MCL clustering based on blastp scores. 259 

Results and basic information about these taxa are summarized in Table 1. Across all 260 

Studierviruses, there were only 12 core genes, of which three were single-copy. Tevenviruses 261 

included 27 core genes (13 single-copy), and the Pbunaviruses had 28 core genes (19 single-262 

copy). 263 
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Table 1: Summary of results of running Rephine.r for each phage group 264 

 265 

 Studiervirinae Tevenvirinae Pbunaviruses 

Number of genomes 145 127 30 

Mean genome size 39696 174775 66068 

Initial gene calls 6956 35436 3540 

Initial gene clusters 558 4067 195 

Initial core genes 12 27 28 

Initial SCG size 3 13 19 

New clusters after merging 16 64 2 

Clusters involved in a merger 63 270 5 

Biggest merger 7 30 3 

Core genes after merging 14 37 28 

SCG size after merging 3 13 19 

Gene clusters with a fusion 14 99 17 

SCG size after fusion and merge 8 22 26 

Additional fusions after merge 1 7 1 

New core genes after final fusion 0 0 0 

Total SCG gain 5 9 7 

Mean tree support before 77.14 87.24 63.6 

Mean tree support after 90.55 93.44 69.57 

 266 

We ran Rephine.r with default settings, which first predicts fragmented gene calls within 267 

each gene cluster. In tandem, it identifies related gene clusters using HMMs. It then combines 268 

the results from these steps to produce new merged clusters with corrections for fragmented 269 

genes. Last, it runs a second defragmentation step to identify instances where fragmented gene 270 

calls were originally split into separate gene clusters. We examined results to see how the core 271 

genome changed after each step and how the final SCG affected phylogenetic inference. 272 

The initial HMM merging step resulted in two additional core genes for Studierviruses 273 

and 10 additional core genes for Tevenviruses but no new single-copy core genes for any of the 274 

virus groups. Notably, several mergers involved more than two gene clusters. In one case for 275 

the Tevenvirinae, 30 separate gene clusters were merged, corresponding to the phage tail fiber. 276 

Defragmenting gene calls expanded the SCG for each taxon, increasing the Studiervirinae SCG 277 

to 8 genes, the Tevenvirinae to 22 genes, and the Pbunaviruses to 26 genes (all but two of the 278 

Pbunavirus core genes). The final round of defragmentation identified additional fragmented 279 

genes but no additional core genes. 280 

 We then built phylogenies for each taxon with the original SCGs and with expanded 281 

SCGs following Rephine.r. With only three single-copy core genes, the initial Studiervirinae tree 282 

contained multiple unresolved polytomies and branches with poor support (Fig. 3a). The 283 
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 284 

Figure 3. Studiervirinae phylogeny before (A) and after (B) using Rephine.r to correct the SCG. 285 

Bootstrap support is shown by coloring branches preceding nodes, with low support (from 0 to 286 

70) ranging from white to red. Increasing the size of the SCG reduced the number of low-287 

support branches. 288 

updated tree based on eight genes had improved overall bootstrap support and displayed 289 

greater resolution of closely related genomes (Fig. 3b). Trees for the Tevenvirinae and 290 

Pbunaviruses (Supplemental Fig. 2) also had improved bootstrap support. In the case of the 291 

Pbunaviruses, the tree remains poorly resolved with very short branches, despite being built 292 

from the most genes, as there was insufficient variation among the viruses from this genus. 293 

 Last, we checked the results from gene call defragmentation for known instances of 294 

introns and homing endonucleases in the Studiervirinae and Tevenvirinae. These include 295 

interruptions to DNA polymerase in members of Studiervirinae (Bonocora & Shub, 2004) and 296 

Tevenvirinae (Petrov, Ratnayaka & Karam, 2010) and thymidylate synthase in T4 (Chu et al., 297 

1986). After running Rephine.r, we identified a single-copy core gene that corresponded to each 298 

gene of interest. In each case, inclusion in the SCG was only possible after fragment 299 

identification.  300 

 301 

Discussion 302 

We describe Rephine.r, a pipeline for improving results of phage pangenome analysis by 303 
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merging gene clusters containing distant homologs and correcting gene calls that have been 304 

fragmented or interrupted by selfish genetic elements. Using the Tevenvirinae, Studiervirinae,  305 

and Pbunaviruses as test cases, we show how this process expands the putative SCG for each 306 

group, enabling more accurate estimates of gene conservation. For the Tevenvirinae and 307 

Studiervirinae, this also improved the quality of the phylogenies, whereas for Pbunaviruses 308 

there was still insufficient variation among the genomes to produce a reliable tree. 309 

 The present work provides a first step for expanding the usage of phylogenetics with 310 

diverse phage genomes. A key concept that we include (which we took advantage of using 311 

manual corrections previously (Shapiro & Putonti, 2020)) is the use of artificially spliced 312 

sequences following the identification of interrupted genes. This type of correction is 313 

unsurprising when working with eukaryotic exons, but it is generally ignored with microbes, 314 

because we often fail to appreciate that intron-like sequences are common features of many 315 

phages. Biologically, it is uncertain how often these interrupted genes remain functional or if the 316 

separated ORFs correspond to separate functions. However, several studies report fully 317 

functional, single protein products for phage genes separated by introns (Belfort, 1990) or 318 

inteins (Kelley et al., 2016), as well as at least one case where a gene split by a homing 319 

endonuclease remains active (Friedrich et al., 2007). Though these ORFs may be interrupted by 320 

over 1000 nucleotides, these interruptions likely correspond to a single mutational event, and 321 

the ORFs should still be treated as a single gene when reconstructing the SCG and an 322 

associated phylogeny. In both the Studiervirinae and the Tevenvirinae, our approach accurately 323 

recognized known homing endonucleases and introns. How these interrupted genes are 324 

interpreted in functional genomics studies is an important question, and these fragmented 325 

genes should be treated with additional care when reporting the functional repertoire of 326 

genomes. 327 

 It is important to note that we have focused our application of Rephine.r on test cases 328 

involving single-contig, RefSeq assemblies. In the case of draft genome assemblies comprised 329 

of multiple contigs (less common for phages under 100 kb), we expect to observe instances 330 

where a gene call is separated into different ORFs on different contigs. These errors will result 331 

in overestimating gene content and incorrect predictions of paralogous sequences. Similar 332 

issues have been noted to cause errors in the analysis of gene content evolution in eukaryotes 333 

(Denton et al., 2014). The current implementation of gene defragmentation in Rephine.r should 334 

successfully resolve many of these mistakes, and it may offer a future approach for 335 

consolidating contigs in assemblies. For instance, suppose a gene is split by a transposase that 336 

includes short palindromic repeats. These regions are difficult to assemble with short reads and 337 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.26.441508doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441508
http://creativecommons.org/licenses/by-nc/4.0/


13 
 

may lead to one contig ending with half of the original gene, while a second contig starts with 338 

the transposase and the remainder of the gene. Scaffolding these contigs can be challenging, 339 

but by recognizing gene fragments, it may be possible to resolve the assembly. 340 

Last, bacterial pangenome workflows typically do not account for specific issues that 341 

may arise for prophage regions, such as errors in clustering and gene fragmentation that we 342 

observe in the genomes of phage isolates. Our expectation is that these same errors will affect 343 

prophages, and future work will need to consider how these issues may impact the accuracy of 344 

bacterial pangenomes. Moreover, bacterial genes themselves can be interrupted by mobile 345 

genetic elements (in addition to prophages), and Rephine.r should offer a novel approach for 346 

identifying these events.  347 

 348 

Conclusions 349 

The Rephine.r pipeline offers an efficient means to identify and correct errors in phage 350 

pangenomes caused by incomplete gene clustering and fragmented gene calls. Correcting 351 

these errors, in particular for cases of genes interrupted by selfish genetic elements, increases 352 

the size of the SCG in each of our test cases. These corrections provide more genetic variation 353 

for improved phylogenetic inference and are especially useful for large, diverse phage groups 354 

where standard methods produce limited core genomes and poorly resolved phylogenies. 355 
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 362 

Supplemental Figure Captions 363 

Supplemental Figure 1. Relationship between pairwise overlap of aligned positions and 364 

relative bit scores of potential paralogs. Red dots correspond to cases with both low overlap and 365 

low sequence identity, indicating the likeliest fragmented gene calls. 366 

Supplemental Figure 2. Phylogenies of Pbunaviruses (A, B) and Tevenvirinae (C, D) before 367 

and after Rephine.r. (A) and (C) are before Rephine.r; (B) and (D) after. Note: an outlier genome 368 
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(NC_009015) was dropped from the Pbunavirus trees to enable visualization of the extremely 369 

short branches. Bootstrap support is shown by coloring branches preceding nodes, with low 370 

support (from 0 to 70) ranging from white to red. 371 

 372 
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