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Abstract

Goal-oriented navigation is widely understood to depend critically upon internal maps. Although this may
be the case in many settings, many animals, such as humans, tend to rely on vision when the environ-
ment is complex or unfamiliar. The nature of gaze during visually-guided navigation remains unknown. To
study this, we tasked humans to navigate to transiently visible goals in virtual mazes of varying complexity,
observing that they achieved near-optimal path lengths in all arenas. By analyzing subjects’ eye move-
ments, we gained insights into the principles of active sensing and prospection that would not have been
gleaned from observing navigational behavior alone. The spatial distribution of fixations revealed that en-
vironmental complexity mediated a striking trade-off in the extent to which attention was directed towards
two complimentary aspects of the world model: the reward location and task-relevant transitions. Further-
more, the temporal evolution of gaze revealed rapid, sequential prospection of the future path, evocative of
neural ’preplay’. These findings suggest that the spatiotemporal characteristics of eye movements during
navigation are significantly shaped by the unique cognitive computations underlying real-world, sequential
decision making.
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Introduction

“The eye, the window of the soul, is the chief means whereby the [central sense] can most fully and abun-
dantly appreciate the infinite works of Nature.” – Leonardo da Vinci ca. 1500

By swiftly parsing a large, complex scene on a millisecond timescale, the eyes actively interrogate and
efficiently gather information to facilitate complex computations [1, 2]. At the same time, eye movements re-
veal the contents of internal deliberation and the prioritization of goals in real-time [3–6]. Thus, eye tracking
lends itself as a valuable tool for investigating both sensing and cognition [7–9]. However, gaze dynamics
is seldom studied in the context of sequential decision making tasks such as goal-directed navigation.

Over the past few decades, research on eye movements has led to a growing consensus that the oculo-
motor system has evolved to prioritize top-down, cognitive guidance over image salience [10–12]. During
routine activities such as making tea, we tend to foveate specifically on objects relevant to the task being
performed (e.g. boiling water), while ignoring salient distractors [11, 13]. The strategy of orienting the sen-
sory apparatus to reduce uncertainty about task variables in the service of decision making is known as
active sensing [3]. Computational modeling studies on active sensing have shown that human eye move-
ments during visual search [14–16], categorization [17], pattern matching [18], and instrumental sampling
[19–21] are near-optimal with respect to the task structure. In contrast to the search and binary decision
making tasks listed above (e.g. deciding whether a pattern belongs to a cheetah or a zebra), navigation
entails deciding upon and carrying out a sequence of actions to achieve a goal, thereby introducing unique
cognitive demands that must be addressed during the study of gathering information. Specifically, knowl-
edge about the structure of an environment —– whether transiently encoded in working memory [22], or
solidified in the form of a cognitive map [23–25] –— is a crucial ingredient that allows navigators to efficiently
plan favorable trajectories to their goals [26]. However, neural representations of the environment are noisy
and rarely accurate. Furthermore, environmental volatility would render learned representations unreliable
[27–29]. The precise advantage that active visual sampling confers upon navigational planning in structured
environments, and the extent to which humans exploit it, are unclear.

A candidate framework to formalize this hypothesis and extend current insights on the role of active sensing
to the more naturalistic domain of navigation is Reinforcement Learning (RL), whereby the goal of behavior
is cast in terms of maximizing total long-term reward [30]. For example, this framework has been previously
used to provide a principled account of why neuronal responses in the hippocampal formation depend upon
behavioral policies and environmental geometries [31, 32]. Incidentally, RL provides a formal interpretation
of active sensing, which can be understood as exploratory actions taken with the purpose of improving
knowledge about the environment, allowing for better planning and ultimately greater long-term reward
[3]. Here, we address this gap in the role of active sensing in navigation by using the RL framework to
mathematically predict the precise spatial locations toward which eye movements should be directed, given
the objective of navigating from a given starting position to a goal. We hypothesized that eye movements
during navigation would reduce uncertainty about the model of relationships between spatial positions in
the world, allowing subjects to learn the transitions available to them. Our results illustrate that artificial
agents who sample information in accordance with these predictions outperform agents who use undirected
strategies or simple heuristics, successfully overcoming model uncertainty to achieve near-optimal path
lengths. To test this observation experimentally, we designed a virtual reality navigation task in which human
subjects navigated to transiently visible targets using a joystick in unfamiliar arenas of various degrees of
complexity. We found that human subjects balanced foveating the hidden reward location with viewing
highly task-consequential transitions both prior to and during active navigation.

In addition to ascertaining the model via sensing, planning — the process of simulating future steps prior
to taking action [33] — is a crucial component of model-based sequential decision making tasks like goal-
oriented navigation. In rodents, a neural signature of such an ordered list of steps during navigation occurs
in the form of the sequential activation of hippocampal neurons along trajectories prior to movement, a
phenomenon termed ‘preplay’ [34–38]. Inspired by this well-documented phenomenon, we sought to utilize
gaze to better understand mechanisms of human navigational prospection, hypothesizing that subjects’ eye
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movements would faithfully manifest their trajectory plans. Our experiment revealed that subjects’ gaze
indeed swept along the trajectory which they subsequently embarked upon. Furthermore, subjects seemed
to decompose convoluted trajectories by focusing on one turn at a time until they reached their goal. Taken
together, our results suggest that during naturalistic navigation, the spatiotemporal dynamics of gaze are
significantly shaped by active sensing and planning, thus reflecting the unique cognitive demands of real-
world sequential decision making.
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Results

Humans use vision to efficiently navigate to hidden goals in virtual arenas

To study human eye movements during naturalistic navigation, we designed a virtual reality (VR) task in
which subjects navigated to hidden goals in hexagonal arenas. As we desired to elicit the most naturally
occurring eye movements, we used a head-mounted VR system with a built-in eye tracker to provide a full
immersion navigation experience with few artificial constraints. Subjects freely rotated in a swivel chair and
used an analog joystick to control their forward and backward motion along the direction in which they were
facing (Figure 1a — left). The environment was viewed from a first-person perspective through an HTC Vive
Pro headset with a wide field of view, and several eye movement parameters were recorded using built-in
software.
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Figure 1: Subjects exhibit near-optimal navigation performance across multiple environments. A. Left: Human subjects wore
a VR headset and executed turns by rotating in a swivel chair, while translating forwards or backwards using an analog joystick.
Right: A screenshot of the first-person view of the display. The headset conferred an immersive field of view of 110°. B. Aerial view
showing the layout of the arenas. C. Arenas ranged in mean state closeness centrality, with a lower centrality value corresponding
to a more complex arena. Error bars denote ±1 SE across states. D. Heatmap showing the value function corresponding to an
arbitrary goal state (closed circle) in one of the arenas. For each goal location, the value of each state directly corresponded to the
geodesic distance between that state and the goal. Dashed line denotes the optimal trajectory from an example starting state (open
circle). E. Trajectories from an example trial in each arena, executed by one human subject. The optimal trajectory is superimposed
in black (dashed line). Time is color-coded. F. Comparison of the empirical path length against the path length predicted by the
optimal policy. The gray shaded region denotes the width of the outer reward zone (two states wide; see Figure S1a). Top: Data
points are colored in accordance to the colors of each arena as depicted in B. Bottom: Unrewarded trials (red) vs. rewarded trials
(green) had similar path lengths. For both plots, all trials for all subjects and all arenas are superimposed. G. The mean closeness
centrality metric predicts the fraction of rewarded trials in each arena. However, the average ratio of observed vs. optimal (predicted)
trajectory lengths is consistently around 1 in all arenas. H. The search epoch was defined as the period between goal stimulus
(banana) appearance and goal stimulus foveation. A threshold applied on the filtered joystick input (movement velocity) was used to
delineate the pre-movement and movement epochs. I. The average duration of the pre-movement (orange) and movement epochs
(blue; colored according to the scheme in H) decreased with arena centrality. J. The relative planning time, calculated as the ratio of
pre-movement to total trial time after goal foveation, was higher for more complex arenas. For G, I, and J, error bars denote ±1 SEM.

Facilitating quantitative analyses, we designed arenas with a hidden underlying triangular tessellation,
where each triangular unit (covering 0.67% of the total area) constituted a state in a discrete state space
(Figure S1a). A fraction of the edges of the tessellation was chosen to be impassable barriers, defined as
obstacles. Subjects could take actions to achieve transitions between adjacent states which were not
separated by obstacles. As subjects were free to rotate and/or translate, the space of possible actions was
continuous such that subjects did not report knowledge about the tessellation. Furthermore, subjects expe-
rienced a relatively high vantage point and were able to gaze over the tops of all of the obstacles (Figure 1a
— right). On each trial, subjects were tasked to collect a reward by navigating to a random goal location
drawn uniformly from all states in the arena. The goal was a realistic banana which the subjects had to
locate and foveate in order to unlock the joystick. The banana disappeared 200 ms after foveation, and
participants were instructed to press a button when they believed that they have arrived at the remembered
goal location. Then, feedback was immediately displayed on the screen, showing subjects that they had
received either two points for stopping within the goal state, one point for stopping in a state neighboring
the goal state, or zero points for stopping in any other state. While subjects viewed the feedback, a new
goal for the next trial was spawned without breaking the continuity of the task. In separate blocks, subjects
navigated to fifty goals in each of five different arenas (Figure 1b). All five arenas were designed by defining
the obstacle configurations such that the arenas varied in the average path length between two states, as
quantified by the average state closeness centrality (Methods — Eq 2; Figure 1c) [39]. Lower centralities
correspond to more complex arenas. One of the blocks involved an open arena that contained only a few
obstacles at the perimeter, such that on most trials, subjects could travel in straight lines to all goal loca-
tions (Figure 1b — leftmost). On the other extreme was a maze arena in which most pairs of states were
connected by only one viable path (Figure 1b — rightmost).

To quantify behavioral performance, we first computed the optimal trajectory for each trial using dynamic
programming (Figure S1b). This technique uses two pieces of information — the goal location (reward
function) and the obstacle configuration (transition structure) — to calculate an optimal value function
over all states such that the value of each state is equal to the (negative) length of the shortest path between
that state and the goal state (Figure 1d). The optimal policy requires that subjects select actions to climb
the value function along the direction of steepest ascent, which would naturally bring them to the goal
state while minimizing the total distance traveled. Figure 1e shows optimal (dashed) as well as behavioral
(colored) trajectories from an example trial in each arena. Behavioral path lengths were computed by
integrating changes in the subjects’ position in each trial. Subjects took near-optimal paths (i.e. optimal
to within the width of the reward zone) on most trials (Figure 1f), scoring 74±5% of the points across all
arenas and stopping within the reward zone on 86±4% of all trials (Figure S1c). However, participants
occasionally took a suboptimal route (Figure 1e — second from right), or sometimes misremembered the
goal location and took a near-optimal trajectory to a different location (Figure 1e — rightmost). The latter
type constituted a majority (68±13%) of the unrewarded trials — most of the unrewarded trajectories would
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have been near-optimal if the subjects’ stopping location was deemed to be the goal state (Figure S1d —
left), which suggests that remembering the goal location was not straightforward. We quantified the degree
of optimality by computing the ratio of observed vs. optimal path lengths to the subjects’ stopping location.
Across all trials (rewarded and unrewarded), this ratio was close to unity (median = 1.06, interquartile range
= 0.14), suggesting that subjects were able to navigate efficiently in all arenas (Figure 1g, gray). This was
the case even in unrewarded trials, where the observed path lengths were within 3% of the optimal path
length to the subjects’ stopping location (Figure S1d — right). Navigational performance was near-optimal
from the beginning, such that there was no visible improvement with experience (Figure S1e). However, the
fraction of rewarded trials decreased with increasing arena complexity (r = 0.70, p = 9.3 x10−8), suggesting
that the ability to remember the goal location is compromised in challenging environments (Figures 1g, light
green).

In order to understand how subjects tackled the computational demands of the task, it is critical to break
down each trial into three main epochs: search — when subjects sought to locate the goal, pre-movement
— when subjects surveyed their route prior to utilizing the joystick, and movement — when subjects actively
navigated to the remembered goal location (Figure 1h). On some trials, participants did not end the trial via
button press immediately after stopping, but this post-movement period constituted a negligible proportion
of the total trial time.

We compared the fraction of time spent in different epochs. Although subjects spent a major portion of
each trial navigating to the target, the relative duration of other epochs was not negligible (mean fraction
± SD — search: 0.26±0.03, pre-movement: 0.11±0.04, movement: 0.63±0.05; Figure S1f). There was
considerable variability across subjects in the fraction of time spent in the pre-movement phase (coefficient
of variation (CV) — search: 0.11, pre-movement: 0.38, movement: 0.07), although this did not translate
to a significant difference in navigational precision (Figure S1g). One possible explanation is that some
participants were simply more efficient planners or were more skilled at planning on the move. Because
we are interested in principles that are conserved across subjects, we pooled subjects for all subsequent
analyses. While the duration of the search epoch was similar across arenas, the movement epoch duration
increased drastically with increasing arena complexity (Figure 1i). This was understandable as the more
complex arenas posed, on average, longer trajectories and more winding paths by virtue of their lower cen-
trality. Notably, the pre-movement duration was also higher in more complex arenas, reflecting the subject’s
commitment to meet the increased planning demands in those arenas (Figures 1j, S1h). Nonetheless, the
relative pre-movement duration did not correlate with the probability of reward, and was similar for rewarded
and unrewarded trials (Figures S1h, S1h). This suggests that the participants’ performance is limited by
their success in remembering the reward location, rather than in meeting planning demands. Overall, these
results suggest that in the presence of unambiguous visual information, humans are capable of adapting
their behavior to efficiently solve navigation problems in relatively complex, unfamiliar environments.

A computational analysis supports that human eye movements are task relevant

Aiming to gain insights from subjects’ eye movements, we begin by examining the spatial distribution of
gaze positions during different trial epochs (Figure 2a). Within each trial, the spatial spread of the gaze
position was much larger during visual search than during the other epochs (mean spread ± SD — search:
6.3±2.4 m, pre-movement: 1.9±0.6 m, movement: 3.0±0.6 m; Figure 2b — left). This pattern was reversed
when examining the spatial spread across trials (mean spread ± SD — search: 5.4±2.4 m, pre-movement:
6.7±1.2 m, movement: 6.5±0.6 m; Figure 2b — right). This suggests that subjects’ eye movements during
pre-movement and movement were chiefly dictated by trial-to-trial fluctuations in task demands.

How did the task demands constrain human eye movements? Studies have shown that reward circuitry
tends to orient the eyes toward the most valuable locations in space [40, 41]. Moreover, when the goal is
hidden, it has been argued that fixating the hidden reward zone may allow for the oculomotor circuitry to
carry the burden of remembering the latent goal location [42, 43]. Consistent with this, subjects spent a large
fraction of time looking at the reward zone (pre-movement: 67±3%, movement: 53±6%). However, this
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Figure 2: Eye movements are modulated by goal location and environment complexity. A. Eye positions on a representative
trial for one subject during the three main trial epochs. Each datapoint corresponds to one frame. An open black circle denotes the
start location, while a closed black circle denotes the goal. B. Left: The median spatial spread of gaze within trial epochs (averaged
across trials and arenas) was higher during search than during pre-movement and movement. Right: In contrast, the median spread
of the average gaze positions across trials was higher during the pre-movement and movement epochs. Individual subject data are
overlaid on top of the bars. C. Top: The fraction of time for which subjects’ gaze was within 2 m of the center of the goal state
for each arena. Bottom: Average distance between the gaze position and the goal state for each arena. Epochs are colored in
accordance to the color scheme in A. D. Top: Across all subjects and all trials, the greater the number of turns remaining in the
subjects’ trajectory, the lower the fraction of time that subjects looked within 2 m of the goal location. Bottom: The greater the number
of turns remaining, the greater was the average distance of the point of gaze from the goal location. All error bars denote ±1 SEM.

fraction decreased with arena complexity (Figures 2c — top) resulting in a larger mean distance between
the gaze and the goal in more complex arenas (Figure 2c — bottom). This effect could not be attributed to
subjects forgetting the goal location in more complex arenas, as we found a similar trend when analyzing
gaze in relation to the eventual stopping location (believed goal location; Figure S2). A more plausible
explanation is that constantly looking at the goal may not enable subjects to efficiently learn the task-
relevant transition structure of the environment, as the transition structure is both more instrumental to
solving the task and harder to comprehend in more challenging arenas. If central vision is attracted to
the remembered goal location only when planning demands are low, this tendency should become more
prevalent as subjects approach the target. Indeed, subjects spend significantly more time looking at the
goal when there is a straight path to the goal than when the obstacle configuration requires that they make
at least one turn prior to arriving upon such a straight path (Figure 2d). As mentioned earlier, computing
the optimal trajectory requires precisely knowing both the reward function as well as the transition structure.
While examining the proximity of gaze to goal allows for the study of the extent to which eye movements
are dedicated to encoding the reward function, how may we assess the effectiveness with which subjects
interrogate the transition structure of the environment to solve the task of navigating from point A to point
B? This is the paramount challenge that we address in the remainder of this section by constructing a novel
theoretical measure to guide data analysis.

In the case that a subject has a precise model of the transition structure of the environment, they would
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be theoretically capable of planning trajectories to the remembered goal location without vision. However,
in this experiment, the arena configurations were unfamiliar to the subjects, such that they would be quite
uncertain about the transition structure. The finding that subjects achieved near-optimal performance on
even the first few trials in each arena (Figure S1e) indicates that humans are capable of using vision to
rapidly reduce their uncertainty about the aspects of the model needed to solve the task. Motivating the
quantitative characterization of the task relevance of visual samples, we show an illustration of the con-
sequence of mistaken beliefs about the passability of specific transitions on the subjective value function.
Transition toggling can be defined as the act of removing an obstacle between two states if an obstacle
was previously present, or adding an obstacle at that location if one was previously absent. In alignment
with intuition, some transitions are more important to veridically represent (Figure 3a — middle), as toggling
them results in a dramatic change to the value function (which is essential to computing the optimal set of
actions to reach the goal), while toggling some other transitions causes a relatively minimal change (Figure
3a — right).
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Figure 3: Simulations validate the utility of precisely knowing the status of theoretically important transitions. A. Value
functions corresponding to an arbitrary goal location (closed circle) in an example arena (left) and in the arenas resulting from blocking
either a bottleneck transition (center) or a transition that was not a bottleneck (right). B. Theoretical relevance of all transitions (circles)
for the example arena for four different pairs of start (open black circle) and goal (closed black circle) states. C. The mean normalized
relevance of non-obstacle transitions was positively correlated with betweenness centrality values (taken to be the average of the
two states on either side of each transition). For this analysis, transitions within 1 m from the goal state were excluded due to their
chance of having spuriously high relevance values. Middle: The mean normalized relevance of obstacles was negatively correlated
with the eccentricity of each obstacle from the straight line connecting the current state to the goal state. Right: Transitions that fell
on the optimal trajectory had greater relevance than those that fell outside of it. D. Simulation results of an agent instantiated with
a perfect transition model (orange), and four agents with imperfect transition models, three of whom were endowed with the ability
to correct their model according to different rules (see text). Those three agents were allowed to make eight ’saccades’, each of
which could update one transition. Left: Cumulative distributions (CDFs) of the path lengths of various agents (100 trials each from
25 different arenas; see Methods). Right: Median of trial-averaged path lengths across all simulated arenas; data points denote
trial-averaged path lengths in individual arenas. E. Results of simulations similar to D but with a variable budget of ’saccades’.
Each line denotes the average path length (across arenas) of one agent as a function of the number of ’saccades’. For each trial,
path lengths of different agents were normalized by the optimal path length before trial-averaging. Error bars denote ±1 SEM.

We leveraged this insight and defined a novel metric to quantify the task-relevance of each transition by
computing the magnitude of the change in value of the subject’s current state, for a given goal location, if
the status of the transition was toggled:

Ωk(s0, sG) = [V (s0|Tk = 1)− V (s0|Tk = 0)]2 (1)

where Ωk(s0, sG) denotes the relevance of the kth transition for navigating from state s0 to the goal state
sG, Tk denotes the status of that transition (1 if it is passable and 0 if it is an obstacle), and V (s0|Tk = 1)
denotes the value of state s0 computed with respect to the goal state sG by setting Tk to 1. It turns out
that this measure of relevance is directly related to the magnitude of expected change in subjective value
of the current state when looking at the kth transition, provided that the transitions are stationary and
the subject’s uncertainty is uniform across transitions (Supplementary Notes). Thus, maximally relevant
transitions identified by Equation 1 are precisely those which may engender the greatest changes of mind
about the utility of staying put. In the supplementary notes, we derive a generalization of this relevance
measure for settings in which the transition structure is stochastic (e.g. in volatile environments) and the
subjective uncertainty is heterogeneous (i.e. the subject is more certain about some transitions than others).

We found that the transitions with the highest relevance on each trial strikingly correspond to bottleneck
transitions that bridge clusters of interconnected states (Figures 3b, 3c — left). Betweenness centrality is
a metric describing the degree to which states are connected to other states (see Methods). The mean
relevance of a transition strongly correlates with the betweenness centrality averaged across two states on
either side of the transition. At the same time, the relevance was also high for obstacles that precluded
a straight path to the goal (Figure 3c — center), as well as for transitions along the optimal trajectory
(3c — right). By defining relevance of transitions according to Equation 1, we can thus capture multiple
task-relevant attributes in a succinct manner. Theoretically investigating whether looking at task-relevant
transitions improves navigational efficiency, we simulated artificial agents performing the same task that
we imposed upon our human subjects. One agent (“perfect”) had a veridical subjective model of the en-
vironment, and thus was capable of computing the optimal trajectory (Figure S4). Its antithesis (“blind”)
had an incorrect subjective model where half of the obstacle positions were ’misremembered’ (toggled),
but this agent was incapable of using vision to correct their model prior to taking actions according to their
subjectively computed value functions. Performance at these two extremes was compared against the per-
formance of three agents that were allocated a fixed budget of ’saccades’ to rectify their incorrect models.
These agents either randomly interrogated transitions (“random”), preferentially sampled transitions along
the direction connecting the agent’s starting location to the goal location (“goalward”), or chose the most
task-relevant transitions as defined by the relevance metric in Eq 1 (“smart”).

While all three agents showed an improvement over the "blind" agent, the agent with knowledge about the
most task-relevant transitions resulted in much shorter average path lengths than agents looking at tran-
sitions along the general direction of the goal or looking at random transitions (mean path length ± SE
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— perfect: 3.9±0.1, blind: 9.6±0.7, random: 8.9±0.6, goalward: 8.6±0.7, smart: 5.8±0.3; Figure 3d).
Moreover, the performance of the smart sampling agent quickly approached optimality as the number of
sampled transitions increased (Figure 3e). The rate of performance improvement was substantially slower
for the goalward and random samplers (linear rather than exponential). These results were robust to the pre-
cise algorithm used to compute the value function in Eq 1. In particular, the successor representation (SR)
has been proposed as a computationally efficient, biologically plausible alternative to pure model-based
algorithms like value iteration for responding to changing goal locations [27, 32]. We found that estimating
the task-relevance of transitions using values implied by SR resulted in a similar performance improvement
(Figure S5). Nevertheless, we emphasize that our objective was to use the relevance metric simply as a
means to probe whether humans preferentially looked at task-relevant transitions. Understanding how the
brain might compute such metrics is outside the scope of this study.

To apply the above theoretical insights to the assessment of subjects’ eye movements, we quantified the
usefulness of subjects’ eye position on each frame as the relevance of the transition closest to the point of
gaze, normalized by that of the most relevant transition in the entire arena for each trial. This resulted in
frame-by-frame gaze relevance values that ranged between zero (least relevant) and one (most relevant).
Then, we constructed a distribution of shuffled relevances by analyzing gaze with respect to a random goal
location. Figure 4a shows the resulting cumulative distributions across trials for the average subject during
the three epochs in an example arena. As expected, the relevance of subjects’ gaze was not significantly
different from chance during the search epoch, as the subject had not yet determined the goal location.
However, relevance values were significantly greater than chance both during pre-movement and movement
(median relevance {and interquartile range} for the most complex arena, pre-movement — true: 0.21{0.06},
shuffled: 0.06{0.04}; movement — true: 0.21{0.07}, shuffled: 0.11{0.05}). Results were qualitatively similar
in other arenas (Figure S6, Table S2).

To concisely describe subjects’ tendency to orient their gaze toward relevant transitions in a scale-free man-
ner, we constructed receiver operating characteristic (ROC) curves by plotting the cumulative probability of
shuffled gaze relevances against the cumulative probability of true relevances (Figure 4a — rightmost).
An area under the ROC curve (AUC) greater (less) than 0.5 would indicate that the gaze relevance was
significantly above (below) what is expected from a random gaze strategy. Across all arenas, the AUC
was highest during the pre-movement epoch (Figures 4b; mean AUC ± SD — search: 0.52±0.03, pre-
movement: 0.76±0.04, movement: 0.71±0.06). This suggests that subjects were most likely to attend to
relevant transitions when contemplating potential actions before embarking upon the trajectory.

As the most relevant transitions can sometimes be found near the goal (e.g. Figure 3b — left), it is natural
to wonder whether our evaluation of gaze relevance was confounded by the observation that subjects spent
a considerable amount of time looking at the goal location (Figure 2c). Therefore, we first quantified the
tendency to look at the goal location in a manner analogous to the analysis of gaze relevance (Figures 4a-b)
by computing the area under the ROC curves (AUC) constructed using the true vs. shuffled distributions of
the fraction of the duration spent foveating the goal in each epoch (Figure 4c-d). Across all arenas, AUCs
were high during the pre-movement and movement epochs, confirming that there was a strong tendency
for subjects to look at the goal location (Figure 4e). When we excluded gaze positions that fell within
the reward zone while computing relevance, we found that the degree to which subjects looked at task-
relevant transitions outside of the reward zone increased with arena complexity: the tendency to look at
relevant transitions was greater in more complex arenas, falling to chance for the easiest arena (Figure 4e;
Pearson’s r — pre-movement: -0.95, movement: -0.87). In contrast, the tendency to look at the goal location
followed the opposite trend: it was greater in easier arenas (Figure 4f; Pearson’s r — pre-movement: 0.95,
movement: 0.88). These analyses reveal a striking trade-off in the allocation of gaze between encoding the
reward function and transition structure that closely mirrors the cognitive requirements of this task.
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Figure 4: Eye movements reveal a cognitive trade-off between reward and transition encoding. A. Left: Cumulative dis-
tribution (computed by pooling trials from all subjects) of average log (normalized) relevance values (pink) and the correspond-
ing shuffled distribution (gray) during search (left), pre-movement (center), and movement (right) epochs (data for the most com-
plex arena is shown). Shaded regions denote 95% confidence bounds computed using Greenwood’s Formula. Rightmost: ROC
curves characterizing the gaze relevance during the three epochs. B. Area under the ROC curves (AUC) for different epochs,
colored according to the color scheme in A. C-D: Similar plots as A-B, but for the distributions of the log fraction of the du-
ration in each epoch spent gazing within two meters of the eventual stopping position (which was assumed to be the sub-
jects’ believed goal location). E. AUC values of gaze relevance computed for the distributions of trial-averaged relevances, af-
ter excluding fixations within the reward zone, during the pre-movement (orange) and movement (blue) epochs. F. Similar to
E, but showing the AUC values of gaze durations within the reward zone. All error bars were computed using bootstrapping.

The temporal evolution of gaze includes distinct periods of sequential prospection

So far, we have shown that the spatial distribution of eye movements adapts to trial-by-trial fluctuations
in task demands induced by changing the goal location and/or the environment. However, planning and
executing optimal actions in this task requires dynamic cognitive computations within each trial. To gain
insights into this process, we examined the temporal dynamics of gaze. Figure 5a (top) shows a participant’s
gaze in an example trial which has been broken down into nine epochs (pre-movement: I-VI, movement:
VII-IX) for illustrative purposes. The participant initially foveated the goal location (epoch I), and their gaze
subsequently traced a trajectory backwards from the goal state towards their starting position (II) roughly
along a path which they subsequently traversed on that trial (dotted line). This sequential gaze pattern
was repeated shortly thereafter (IV), interspersed by periods of non-sequential eye movements (III and V).
Just before embarking on their trajectory, the gaze traced the trajectory, now in the forward direction until
the end of the first turn (VI). Upon reaching the first turning point in their trajectory (VII), they executed a
similar pattern of sequential gaze from their current position toward the goal (VIII), tracing out the path which
they navigated thereafter (IX). We refer to the sequential eye movements along the future trajectory in the
backwards and forwards direction as backward sweeps and forward sweeps, respectively. During such
sweeps, subjects seemed to rapidly navigate their future paths with their eyes, and all subjects exhibited
sweeping eye movements without being explicitly instructed to plan their trajectories prior to navigating.
The fraction of time that subjects looked near the trajectories which they subsequently embarked upon
increased with arena difficulty (Figure S7a). To algorithmically detect periods of sweeps, gaze positions
on each trial were projected onto the trajectory taken by the participant by locating the positions along the
trajectory closest to the point of gaze on each frame (Methods). On each frame, the geodesic length of the
trajectory up until the point of the gaze projection was divided by the total trajectory length, and this ratio
was defined as the "fraction of trajectory". We used the increase/decrease of this variable to automatically
determine the start and end times of periods when the gaze traveled sequentially along the trajectory in the
forward/backward directions (sweeps) for longer than chance (Figure 5a — bottom; see Methods).
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Figure 5: Gaze traveled forwards and backwards along the intended trajectory. A. Top: Spatial locations of gaze positions
(the arrow of relative time within each window increases from violet to orange) and subject positions (violet to blue) during in-
dividual time windows demarcated in the bottom panel. Panels in the bottom row correspond to time periods corresponding to
sweeps. The subject’s trajectory from the starting location (open black circle) to the goal (closed black circle) is denoted by a
black dashed line. Bottom: Time-series of the points on the trajectory that were closest to the subject’s gaze on each frame, ex-
pressed in percentiles (0: start of trajectory, 1: end of trajectory) during one example trial. Only frames during which the gaze
position fell within 2 m of the trajectory are plotted. The gray trace shows the movement velocity of the subject during this trial.
Red and green shaded regions highlight time windows during which the sweep classification algorithm detected backward and for-
ward sweeps, respectively. In this trial, there were two backward sweeps before movement, and one forward sweep each before
and during movement. B. Across all subjects, the fraction of time spent sweeping in the forward and backward directions within
each epoch reveals an antiparallel effect: more time was spent sweeping forwards during movement than during pre-movement (top),
whereas more time was spent sweeping backwards during pre-movement than during movement (bottom). Error bars denote ±1 SEM.

The complexity of the transition structure exerted a strong influence on the probability of sweeping: the
fraction of trials in which this phenomenon occurred was significantly correlated with arena centrality scores
(Pearson’s r = -0.95, p = 0.01; Figures S7b). This suggests that sweeping eye movements could be integral
to trajectory planning. It turns out that aside from gazing upon the target or the trajectory on each trial,
roughly 20% of eye movements were made to other locations in space (Figure S7c), and this percentage
did not vary across arenas nor epochs. Furthermore, on average, backward sweeps occupied a greater
fraction of time during pre-movement than during movement, but forward sweeps predominantly occurred
during movement (backward sweeps — pre-movement: 6.0±1.2%, movement: 2.0±0.2%; forward sweeps
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— pre-movement: 5.5±0.6%, movement: 10.2±1.5%; Figure 5b). This suggests that the initial planning
is primarily carried out by sweeping backwards from the goal. The mean speed of backward sweeps was
greater than the speed of forward sweeps across all arenas (backward sweeps: 11.3±0.9 m/s, forward
sweeps: 6.7±0.2 m/s; Figure S7d). Notably, sweep velocities were 3-4 times greater than the maximum
movement velocity (2.26 m/s) and more than fivefold greater than the average subject velocity during the
movement epoch (1.47±0.08). This is reminiscent of the hippocampal replay or preplay of trajectories
through space, as such sequential neural events are also known to be compressed in time (around 2-20x the
speed of neural sequence activation during navigation) [44, 45]. Both sweep speeds and durations slightly
increased with arena complexity (Figures S7d). Furthermore, sweeps were comprised of increasingly more
saccades as arenas became complex, and saccade rates were higher during sweeps than at other times
after goal detection (Figure S7e). An explanation for this finding requires first recognizing that peripheral
vision processing must lead the control of central vision to allow for sequential eye movements to trace a
viable path [46, 47]. In more complex arenas such as the maze where the search tree is narrow and deep,
the obstacle configuration is more structured and presents numerous constraints, and thus path tracing
computations might occur more quickly. However, due to the lengthier trajectories in those arenas, the gaze
must cover greater distances, resulting in sweeps which last longer.

If the first sweep on a trial occurred during pre-movement, the direction of the sweep was more likely to
be backwards, while if the first sweep occurred during movement, it was more likely to be in the forwards
direction (Figure S7f). The latency between goal detection and the first sweep increased with arena dif-
ficulty (Figure S7g), suggesting that sweep initiation is preceded by brief processing of the arena. While
the sequential nature of eye movements could constitute a swift and efficient way to perform instrumen-
tal sampling, we emphasize that task-relevant eye movements were not necessarily sequential. When we
reanalyzed the spatial distribution of gaze positions by removing periods of gazing upon the trajectory on
each trial, the resulting relevance values remained significantly greater than chance (Figure S7h).

What task conditions promote sequential eye movements? To find out, we computed the probability that the
subjects engaged in sweeping behavior as a function of time and position, during the pre-movement and
movement epochs respectively, and focusing on the dominant type of sweep during those periods (back-
ward and forward sweeps respectively; Figure 5b). During pre-movement, we found that the probability
of sweeping gradually increased over time, suggesting that backward sweeps during the initial stages of
planning are separated from the time of target foveation by a brief pause, during which subjects may be
gathering some preliminary information about the environment (Figure 6a — left). During movement, on the
other hand, it turns out that the probability of sweeping is heavily influenced by whether subjects are execut-
ing a turn in their trajectory. Obstacles often preclude a straight path to the remembered goal location, and
thus participants typically find themselves making multiple turns while actively navigating. Consequently,
a trajectory may be broken down into a series of straight segments separated by brief periods of elevated
angular velocity. We isolated such periods by applying a threshold on angular velocity, designating the pe-
riods of turns as subgoals, and aligned all trials with respect to subgoals. The likelihood of sweeping the
trajectory in the forward direction tended to spike precisely when subjects reached a subgoal (Figure 6a —
right). There was a concomitant decrease in the average distance of the point of gaze from the goal loca-
tion in a step-like manner with each subgoal achieved (Figure 6b — right). In contrast to backward sweeps,
which were made predominantly to the most proximal subgoal prior to navigating (Figure 6c — left), forward
sweeps that occurred during movement were not regularly directed toward one particular location. Instead,
in a strikingly precise and stereotyped manner, subjects appeared to lock their gaze upon the upcoming
subgoal when rounding each bend in the trajectory (Figure 6c — right). This suggests that subjects likely
represented their plan by decomposing it into a series of subgoals, focusing on one subgoal at a time until
they reached the final goal location.

To summarize, we found subjects made sequential eye movements sweeping forward and/or backward
along the intended trajectory, and the likelihood of sweeping increased with environmental complexity. Dur-
ing the pre-movement phase, participants typically traced the trajectory backwards from the goal to the first
subgoal (Figure 6d — orange). While moving through the arena, they tended to lock their gaze upon the
upcoming subgoal until they reached it, thereafter sweeping their gaze forward to the next subgoal (Figure
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Figure 6: Timing of sweeps reveals task decomposition. Trials across all arenas and all subjects were aligned and scaled
for the purpose of trial-averaging. This process was carried out separately for pre-movement and movement epochs. A. Left:
Prior to movement, the probability of (backward) sweeps increased with time. Right: During movement, the probability of (for-
ward) sweeps transiently increased at the precise moments when subjects reached each subgoal. Subject position is defined
in relation to the location of subgoals. Subgoals are designated as numbers starting from the goal (subgoal 0) and counting
backwards along the trajectory (subgoals 1, 2, 3 etc.) such that greater values correspond to more proximal subgoals. B. Left:
Gaze traveled away from the goal location prior to movement. Right: The average distance of gaze from the target decreased
in steps, with steps occurring at each subgoal. C. Distance of gaze from individual subgoals (most proximal in yellow, most dis-
tal in cyan). Left: Gaze traveled towards the most proximal subgoal prior to movement, consistent with the increased probability
of backward sweeps during this epoch. Right: The average distance of gaze to each individual subgoal (colored lines) was min-
imized precisely when subjects approached that subgoal. D. A graphical summary of the spatiotemporal dynamics of eye move-
ments in this task. Subgoals are depicted in the same color scheme used in C. E. Diagram of a standard Markov Decision Pro-
cess, augmented with an additional pathway for agent-environment interaction through eye movements (colored arrows). Dashed
arrows denote sweeps, and possible paths throughout the arena are depicted in gray. Darker bounds in A-C denote ±1 SEM.

6d — blue). Via eye movements, navigators could perform active sensing and construct better-informed
plans to refine their policies such that the sequence of actions that they choose would most efficiently lead
to rewards (Figure 6e).
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Discussion

In this study, we highlight the critical role of eye movements for model-based computations in spatial
sequential-decision making tasks such as navigation in fully-observable environments. We found that hu-
mans took near-optimal trajectories when navigating to the goal, regardless of the environmental complexity.
Participants divided their gaze between task-relevant transitions and the hidden reward location, with the
tipping point of this balance depending upon the complexity of the environment. This compromise allowed
subjects to dedicate more time to surveying the task-relevant structure in complex environments and likely
underlies their ability to take near-optimal paths in all environments, albeit at the cost of an increased ten-
dency to forget the precise goal location in complex environments. In the temporal domain, subjects often
traced trajectories to and from the goal (sweeping), and subsequently concentrated on one subgoal at a
time until the goal was reached. All the while, the gaze was attracted to the hidden goal location either
extensively or transiently depending on the relative environmental complexity. Therefore, the neural cir-
cuitry governing the oculomotor system optimally schedules and allocates resources to tackle the diverse
cognitive demands of navigation, producing efficient eye movements through space and time.

Active sensing in navigation. Eye movements provide a natural means for researchers to understand
active sensing strategies [48, 49]. Common paradigms for goal-oriented navigation block large portions
of the environment from view, precluding the rigorous study of active sensing, usually in the interest of
distinguishing between different navigational strategies [28, 50]. By removing such constraints, we extend
previous results on active sensing from simple decision making tasks to the domain of sequential decision-
making (specifically navigation) with one key adaptation: rather than testing whether eye movements reduce
uncertainty about the state of the environment (such as whether a change in an image has occurred)
[17, 18, 51], we tested whether they reduce uncertainty about the model of the environment. In particular,
we find that the gaze is distributed between the two components of the model required to plan a path —
- the transition function and the reward function —- with the distribution skewed in favor of the former in
more complex environments. In general, whether active sensing reduces uncertainty about state or model
would depend on whether it is engaged in the service of inference or learning. When the world state is only
partially observable (e.g. due to visual occlusions), active sensing might be used primarily to reduce state
uncertainty. However, when the environment is complex and unfamiliar, our results show that humans use
active sensing to mitigate model uncertainty.

Navigational planning. An active topic of research in navigation is the computational algorithms underly-
ing action selection. One set of studies investigated saccade scheduling while multitasking — e.g. keeping
on the sidewalk, avoiding obstacles, and picking up litter [52–55]. More relevant to goal-oriented navigation
are the studies on habitual choices (model-free decision making) [56] vs. using explicit representations of
the reward function and transition structure (model-based decision making). Two example VR studies on
human navigation in partially observable state spaces found evidence against model-free decision mak-
ing [28, 50]. The first study involved subjects navigating between rooms arranged in a grid [28], while the
second tasked subjects to navigate in simple mazes where they could only view options for the immediate
next step [50]. In both studies, subjects had to take physical actions to learn the model from experience.
In contrast, participants in our task could interrogate the transition structure with their eyes, resulting in the
semblance of a model-based strategy. The first piece of evidence in support of a role for eye movements in
model-based computation is that subjects spent more time prospecting in more complex arenas. Further-
more, shortly after fixating on the goal, subjects’ gaze often swept backwards along their future trajectory,
evocative of a depth-first tree search, a model-based algorithm for path discovery [57].

Perceptual grouping and task decomposition. In Crowe et. al. (2000), humans solved 2D visual mazes
and were found to smoothly and accurately trace paths without having studied the maze layout [47, 58],
leading the authors to conclude that peripheral vision processing leads the generation of the next saccade
during path tracing. We suspect that a similar mechanism could underlie the sweeping eye movements
in our task. A combination of bottom-up and top-down processes may contribute to peripheral vision pro-
cessing: top-down inputs may convey the general direction in which to move the eyes (from the goal to the
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subject and vice versa), and bottom-up processes may convey information such as the presence and ori-
entation of borders [59, 60]. Perceptual grouping operations may rapidly decompose abstract feature maps
into computationally tractable chunks [61–63], and the oculomotor system may operate upon these chunks
to sequentially discover navigable trajectories. Thus, when the environment is fully observable, cognitive
computations for navigation may depend on cortical algorithms acting on sensory, rather than cognitive
maps. The tendency of humans to break larger problems into smaller, more tractable subtasks has been
previously established in domains outside of navigation [64–68]. When it comes to space, theories suggest
that a non-flat representation would reduce memory demands, and the RL framework is frequently invoked
to explain why and how [69, 70]. However, these theoretical insights have not been empirically validated
in the context of navigation, primarily due to the difficulty in distinguishing between flat and hierarchical
representations from behavior alone. Although our paradigm was not explicitly designed to study hierar-
chical path representations, the observation that subjects’ locus of concentration was often locally oriented
towards navigating to the end of each path segment suggests that subjects viewed turns as subgoals of the
overall plan.

Neural mechanisms. Eye movements are driven by many diverse neural systems. Hippocampal projec-
tions to higher oculomotor controllers (e.g. supplemental eye fields through the orbitofrontal cortex) may
guide the embodiment of simulation and memory through eye movements [71–73]. Mentally testing se-
quences of actions is precisely a theorized function of hippocampal preplay, which is the ordered activation
of potential future state representations with or without any prior experience of traversing the space rep-
resented [34–38, 74]. Modulation also occurs in the opposite direction — the contents of gaze influences
activity in the hippocampus [75–77, 77–81] and entorhinal cortex [64–66]. Although the hippocampal contri-
bution to the task used in this study is uncertain, especially given the relatively brief exposure subjects had
to each arena, it would be enlightening to examine the flow of information between brain regions with strong
spatial representations and the oculomotor circuitry during fully-observable navigation tasks throughout
model learning and consolidation.

Conclusion. We hope that the study of active sensing and planning during navigation will eventually
generalize to understanding how humans accomplish a variety of sequential decision-making tasks. A
major goal in the study of neuroscience is to elucidate the principles of biological computations which allow
humans to effortlessly exceed the capabilities of machines. Such computations allow animals to learn
environmental contingencies and flexibly achieve goals in the face of uncertainty. However, one of the main
barriers to the rigorous study of active, goal-oriented behaviors is the complexity in estimating the subject’s
prior knowledge, intentions, and internal deliberations which lead to the actions that they take. Luckily, eye
movements reveal a wealth of information about ongoing cognitive processes during tasks as complex and
naturalistic as spatial navigation.
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Methods

Experimental Model and Subject Details. Nine human subjects (all >18 years old, six males) partic-
ipated in the experiments. All but two subjects (S6 and S9) were unaware of the purpose of the study.
Four of the subjects, including S6 and S9, were exposed to the study earlier than the rest of the subjects,
and part of the official dataset for two of these subjects (S4 and S8) was collected two months prior to the
rest of data collection as a safety precaution during the COVID-19 pandemic. Six additional human subject
recruits (all >18 years old, two males) were disqualified due to experiencing motion sickness while in the
VR environment. All experimental procedures were approved by the Institutional Review Board at New York
University and all subjects signed an approved consent form.

Stimulus. Subjects were seated on a swivel chair with 360° of freedom in physical rotation and navigated
in a full-immersion hexagonal virtual arena with several obstacles. The stimulus was rendered at a frame
rate of 90 Hz using the Unity game engine v2019.3.0a7 (programmed in C#) and was viewed through
an HTC VIVE Pro virtual reality headset. The subjective vantage point (height of the point between the
subjects’ eyes with respect to the ground plane) was 1.72 meters. The subject had a field of view of 110.1°
of visual angle. Forward and backward translation was enabled via a continuous control CTI Electronics
M20U9T-N82 joystick with a maximum speed of 2.26 m/s. Subjects executed angular rotations inside the
arena by turning their head, while the joystick input enabled translation in the direction in which the subject’s
head was facing. Obstacles and arena boundaries appeared as gray, rectangular slabs of concrete. The
ground plane was grassy, and the area outside of the arena consisted of a mountainous background. Peaks
were visible above the outer boundary of the arena to provide crude orientation landmarks. Clear blue skies
with a single light source appeared overhead.

State space geometry. The arena was a rectangular hexagon enclosing an area of approximately 260
m2 of navigable space. For ease of simulation and data analyses, the arena was imparted with a hidden
triangular tessellation (deltille) composed of 6n2 equilateral triangles where n determines the state space
granularity. We chose n = 5, resulting in triangles with a side length of 2 meters, each of which constituted
a state in the discrete state space (Figure S1a). The arena contained several obstacles in the form of un-
jumpable obstacles (0.4 meters high) located along the edges between certain triangles (states). Obstacle
locations were predetermined offline using MATLAB by either randomly selecting a chosen number of edges
of the tessellation or by using a graphical user interface (GUI) to manually select edges of the tessellation;
these locations were loaded into Unity. Outer boundary walls of height 2.5 m enclosed the arena. We
chose five arenas spanning a large range in average state closeness centrality 〈C(s)〉 (Eq 2), where C(s)
is defined as the inverse average path length d from state s to every other state s′ (N states in total). On
average, arenas with lower centrality will impose a greater path length between two given states, making
them more complex to navigate. The order of arenas presented to each subject was randomly permuted
but not counterbalanced due to the large number of permutations (Table S1).

C(s) =
N − 1

Σs′d(s′, s)
(2)

Eye tracking. At the beginning of each block of trials, subjects calibrated the VIVE Pro eye tracker using
inbuilt Tobii software which prompted subjects to foveate several points tiling a 2D plane in the VR envi-
ronment. Both eyes were tracked, and the subject’s point of foveation (x-y coordinates), object of foveation
(ground, obstacles, boundaries, etc.), eye openness, and other variables of interest were recorded on each
frame using the inbuilt software. Sipatchin et. al. (2020) reported that during free head movements, point-
of-gaze measurements using the VIVE Pro eye tracker has a spread of 1.15° ± 0.69° (SE) [82]. This means
that when the subject fixates a point on the ground five meters away, the 95% confidence interval (CI) for
the measurement error in the reported gaze location would be 0-23 cm (roughly one-tenth of the length
of one transition or obstacle) and 0-67 cm (one-third of a transition length) for points fifteen meters away.
While machine precision was not factored into the analyses, the fraction of eye positions that may have
been misclassified due to hardware and software limitations is likely very tiny. Furthermore, Sipatchin et. al.
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reported that the system latency was 58.1 ms. While there is reason to suspect that the subject’s position
was recorded with a similar latency of around five frames, even if the gaze data lagged the position data,
the subject would only have moved 13 cm if they were translating at the maximum possible velocity over
this interval.

Behavioral task. At the beginning of each trial, a target in the form of a realistic banana from the Unity
Asset store appeared hovering 0.4 meters over a state randomly drawn from a uniform distribution over all
possible states. The joystick input was disabled until the subject foveated the target, but the subject was
free to scan the environment by rotating in the swivel chair during the visual search period. Two hundred
milliseconds after target foveation, the banana disappeared and subjects were tasked with navigating to
the remembered target location without time constraints. Subjects were not given instructions on what
strategy to use to complete the task. After reaching the target, subjects pressed a button on the joystick
to indicate that they have completed the trial. Alternatively, they could press another button to indicate that
they wished to skip the trial. Feedback was displayed immediately after pressing either button (see section
below). Skipping trials was discouraged except when subjects did not remember seeing the target before it
disappeared, and these trials were recorded and excluded from the analyses (< 1%).

Reward. If subjects stopped within the triangular state which contained the target, they were rewarded
with two points. If they stopped in a state sharing a border with the target state, they were rewarded with
one point. After the subject’s button press, the number of points earned on the current trial was displayed
for one second at the center of the screen. The message displayed was ‘You earned p points!’; the font
color was blue if p = 1 or p = 2, and red if p = 0. On skipped trials, the screen displayed ‘You passed
the trial’ in red. In each experimental session, after familiarizing themselves with the movement controls
by completing ten trials in a simplistic six-compartment arena (granularity, n = 1), subjects completed one
block of fifty trials in each of five arenas (Figure 1). At the end of each block, a blue message stating ‘You
have completed all trials!’ prompted them to prepare for the next block. Session durations were determined
by the subject’s speed and the length of the breaks that they needed from the virtual environment, ranging
from 1.5-2 hours. Subjects were paid $0.02/point for a maximum of 5 arenas x 50 trials/arena x 2 points/trial
x $0.02/point = $10, in addition to a base pay of $10/hour for their time (the average payment was $27.72).

RL formulation. Navigation can be formulated as a Markov Decision Process (MDP) described by the
tuple < S,A, P,R, γ > whose elements denote, respectively, a finite state space S, a finite action space
A, a state transition distribution P , a reward function R, and a temporal discount factor γ that captures the
relative preference of distal over proximal rewards [83]. Given that an agent is in state s ∈ S, the agent
may execute an action a ∈ A in order to bring about a change in state s→ s′ with probability P (s′|s, a) and
harvest a reward R(s, a). To relate this formalism to the structure of the arena, it is instructive to consider
the possibility of traversal from state s to any state s′ in a single time step as described by the adjacency
matrix T : T (s, s′) = 1 if there exists an available action which would bring about the change in state s→ s′

with a non-zero probability, and T (s, s′) = 0 otherwise. By definition, T (s, s′) = 0 if there is an obstacle
between s and s′. Thus, the arena structure is fully encapsulated in the adjacency matrix.

In the case that an agent is tasked with navigating to a goal location sG where the agent would receive a
reward, the reward function R(s, a) > 0 if and only if the action a allows for the transition s → sG in one
time step, and R(s, a) = 0 otherwise. Given this formulation, we may compute the optimal policy π∗(a|s),
which describes the actions that an agent should take from each state in order to reach the target state in
the fewest possible number of time steps. The optimal policy may be derived by computing optimal state
values V ∗(s), defined as the expected future rewards to be earned when an agent begins in state s and
acts in accordance with the policy π∗. The optimal value function can be computed by solving the Bellman
Equation (Eq 3) via dynamic programming methods such as value iteration, an algorithm that involves
iteratively unrolling the recursion in this equation [84]. The optimal policy is given by the argument a that
maximizes the right-hand side of (3). Intuitively, following the optimal policy requires that agents take actions
to ascend the value function where the value gradient is most steep (Figure 1e).
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V ∗(s) = max
a

[R(s, a) + γ
∑
s′

P (s′|s, a)V ∗(s′)] (3)

We incorporated twelve possible degrees of freedom in the action space, such that one-step transitions
could result in relocating to a state that is 0°, 30°, 60°, . . . , 300°, or 330° with respect to the previous
state. However, the center-to-center distances between states for a given transition depends on the angle
of transition. Specifically, as shown in Figure S1b, if a step in the 0° direction requires translating 1 m, then
a step in the 60°, 120°, 180°, 240°, and 300° directions would also require translating 1 m, but a step in
the 30°, 150°, and 270° directions would require translating 2

√
3/3 m, and a step in the 90°, 210°, and

330° directions would require translating
√

3/3 m. Therefore, in Eq 3, R(s, a) = −1, −2
√

3/3, or −
√

3/3,
depending on the step size required in taking an action a. The value of the goal state sG was set to zero
on each iteration. Value functions were computed for each goal location, and the relative value of states
describes the relative minimum number of time steps required to reach sG from each state. The lower the
value of a state, the greater the geodesic separation between the state and the goal state. We set γ = 1
during all simulations and performed 100 iterations before calculating optimal trajectory lengths from an
initial state si to the target state sG, as this number of iterations allowed for value iteration to converge.

Relevance computation. To compute the relevance Ωk(s0, sG) of the kth transition to the task of navi-
gating from a specific initial state s0 to a specific goal sG, we calculated the absolute change induced in
the optimal value of the initial state after toggling the navigability of that transition by changing the corre-
sponding element in the adjacency matrix from 1 to 0 or from 0 to 1 (Eq 4). For the simulations described
below, we also tested a more elaborate path-dependent metric Ωk(s0, sG;π∗) defined as the sum of squared
differences induced in the values of all states along the optimal path (Eq 5). Furthermore, we tested the
robustness of the measure to the precise algorithm used to compute state values by computing value func-
tions using the successor representation (SR) algorithm, which caches future state occupancy probabilities
learned with a specific policy [32]. As we used a random walk policy, we computed the matrix of probabili-
ties M analytically by temporally abstracting a one-step transition matrix T : M = (I − γT )−1. The cached
probabilities can then be combined with a one-hot reward vector R(s) = 1(s = sG) to yield state values
V = MR. We set the temporal discount factor γ = 1 and integrated over 100 time steps.

Ωk(s0, sG) = [V (s0|Tk = 1)− V (s0|Tk = 0)]2 (4)

Ωk(s0, sG;π∗) =
∑sG

s=s0
[V (s|Tk = 1)− V (s|Tk = 0)]2 (5)

Relation to bottlenecks. In order to assess whether the relevance metric is predictive of the degree to
which transitions are bottlenecks in the environment, we correlated normalized relevance values (averaged
across all target locations and normalized via dividing by the maximum relevance value across all transitions
for each target location) with the average betweenness centrality G of the two states on either side of a
transition (Eq 6). Betweenness centrality essentially calculates the degree to which a state controls the
traffic flowing through the arena. σij represents the number of shortest paths between states i and j, and
σij(s) represents the number of such paths which pass through state s.

G(s) =
∑

a6=s 6=b

σij(s)

σij
(6)

Simulations. Behavior of three qualitatively different artificial agents with different planning capacities
was simulated. All agents were initialized with a noisy model of the environment. Representational noise
was simulated by toggling 50% of randomly selected unavailable transitions from T (s, s′) = 0 to 1, and the
equivalent number of randomly selected available transitions from T (s, s′) = 1 to 0. This is analogous to
the agents misplacing obstacles in their memories, or equivalently, a subjective-objective model mismatch
induced by volatility in the environment. The blind agent was unable to correct its model during a planning
period. On each trial, eight transitions (out of 210 available) were drawn for each sighted agent; the agent’s
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model was compared with the true arena structure at these transitions and, if applicable, corrected prior
to navigation. Samples were drawn uniformly from all possible transitions (without replacement) for the
random exploration agent. For the goalward looking agent, the probability of drawing a transition was
determined by a circular normal (von Mises) distribution with µ = θG (where θG is the angle of the goal
w.r.t the agent’s heading), σ = 1, and concentration parameter κ = 5. In contrast, the directed sampling
agent gathered information specifically about the eight transitions that were calculated to be most relevant
for that trial. After the model updates, if any, the agents’ subjective value functions were recomputed, and
agents took actions according to the resulting policies. When an agent encountered a situation in which
no action was subjectively available, they attempted a random action. In the case that a new action is
discovered, the agents temporarily updated T (s, s′) from 0 to 1 for that action. Conversely, in the case
that an agent attempted to take an action but discovered that it was not actually feasible, they temporarily
updated their subjective models to account for the transition block which they had just learned about. In
both cases, value functions were recomputed using the updated model. Simulations were conducted with
25 arenas of granularity n = 3 (state space size = 54 for computational tractability) and 100 trials per arena.
Furthermore, we tested the agents’ performance using a range of gaze samples evenly spaced between 2
and 14 foveations.

Data processing. In order to identify moving and non-moving epochs within each trial, movement onset
and offset times were detected by applying a moving average filter of window size 5 frames on the absolute
value of the joystick input function. When the smoothed joystick input exceeded the threshold of 0.2 m/s
(approx. 10% of the maximum velocity), the subject was deemed to be moving, and when the input fell below
this threshold for the last time on each trial, the subject was deemed to have stopped moving. Subjects’
relative planning time was defined as the ratio of pre-movement time to the total trial duration, minus the
search period (which was roughly constant across arenas). Prior to any eye movement analyses, blinks
were filtered from the eye movements by detecting when the fraction of the pupil visible dipped below
0.8. The spread in the (x, y) gaze positions within trials was calculated as the expectation of variance,
En[

√
Vart[x] + Vart[y] ], where Vart[·] denotes the variance across time t within a trial and En[·] denotes

expectation across trials denoted by n. The spread across trials was calculated as the variance of the
expectation,

√
Varn[Et[x]] + Varn[Et[y]], where Et[·] denotes expectation across time and Varn[·] denotes

the variance across trials.

For Figures 1f, 1g, S1d, S1f, and 1g, the first trial of each run was removed from the analyses due to
an occasional rapid teleportation of the subject to a random starting location associated with the software
starting up. While there were a few instances where more than one run occurred per block due to subjects
adjusting the headset, at least 51 trials were actually collected during each block such that most blocks
consisted of 50 trials when the first trial of each run was omitted. For analyses such as epoch duration,
gaze distribution, relevance, sweep detection, and subgoal detection, the first trial was not discarded since
the teleportation only affected the recorded path length, but as the teleportation was virtually instantaneous,
the new starting locations on such trials could be used for analyses which do not depend upon the path
length variable.

Relevance estimation. Prior to estimating the task-relevance of the subjects’ gaze positions at each time
point, the closest transition k to the subject’s point of gaze was identified and the effect of toggling the
transition on the value function was computed as Ωk(s(t), sG). In order to construct a null distribution of
relevance values, we paired the eye movements on each trial with the goal location for a random trial, given
the subject’s position in the current trial. This shuffled average is not task-specific, and therefore may be
compared with the true Ω values to probe whether the spatial distribution of gaze positions was sensitive to
the goal location on each trial. Similarly, the shuffled fraction of time looking at the goal was computed with
a goal state randomly chosen from all states.

Sweep classification. Forward and backward eye movements (sweeps) along the intended trajectory
were classified by first calculating the point (x, y) on the trajectory closest to the location of gaze in each
frame. For each trial, the fraction of the total trajectory length corresponding to each point was stored as a
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variable f , and periods when f(t) consecutively ascended or descended were identified. For each period,
we determined m, an integer whose magnitude denoted the sequence length and whose sign denoted the
sequence direction (+/- for ascending/descending sequences). We then constructed a null distribution p(m)
describing the chance-level frequency of m by randomly selecting 20 trials and recomputing f based on the
subject’s trajectories on those trials. Sequential eye movements of length m where the CDF of p(m) was
less than α/2 or greater than 1 − α/2 were classified as backward and forward sweeps, respectively. The
significance threshold α was chosen to be 0.02. Compensating for noise in the gaze position, we applied a
median filter of length 20 frames to both the true and shuffled f functions. During post-processing, sweeps
in the same direction that were separated by less than 25 frames (278 ms) were merged, and sweeps for
which the gaze fell outside of 2 meters from the intended trajectory on >30% of the frames pertaining to
the sweep were eliminated. Sweeps were required to be at least 25 frames in length. To remove periods of
fixation, the minimum variance in f(t) values for all time points corresponding to the sweep was required to
be 0.001. Finally, sweeps which did not cover at least 20% of the total trajectory length were removed from
the analyses. This algorithm allowed for the automated detection of sequential eye movements pertaining
to the prospective evaluation of trajectories which subjects subsequently took.

Saccade detection. Saccade times were classified to be eye movement speeds v which crossed the
threshold of 50◦/s from below, where speeds were computed using Eq 7, where x, y, and z correspond to
the coordinates of the point of gaze (averaged across both eyes), and α and β respectively correspond to
the lateral and vertical displacement of the pupil.

α(t) = tan−1(
x(t)√

y2(t) + z2(t)
), β(t) = tan−1(

z(t)√
y2(t) + x2(t)

), v(t) =

√
d

dt
α2(t) +

d

dt
β2(t) (7)

Subgoal analysis. Turns in the subjects’ trajectories were isolated by applying a threshold of 60 deg/s
on their angular velocity (smoothed with a median filter; window size = 8 frames). The first and last frames
for periods of elevated angular velocity were recorded. For the purposes of the analysis in Figure 6, all
trials (for all subjects in all arenas) were stop-aligned and periods of turns vs. periods of navigating straight
segments were independently interpolated to fit an arbitrarily defined common timeline of 25 time points
per turn and 100 time points per straight segment. Note that the number of trials for which there were (for
example) more than four turns in the trajectory was substantially fewer than the number of trials for which
there were one or no turns, such that the quantity of raw data contributing to each normalized position value
in Figure 6 increases from left to right.
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Figure S1: A. Arenas were regular hexagons with a side length of 10 m, and a triangular tessellation with a unit length of 2 m.
Two points were rewarded if participants reached the goal state (green), and one point was rewarded if participants reached a state
neighboring the goal state (light green). B. To incorporate twelve degrees of freedom in translation, value functions were computed
by dynamic programming whereby the cost of actions scaled in accordance with the center-to-center distance between states s and
s′ (pertaining to the transition which results from taking action a). C. Top: Across all subjects and all trials, the probability of being
awarded two points (green) increased with arena centrality, while the probability of being awarded one point (light green) is relatively
constant across all arenas. Gray denotes the probability of not being rewarded. Middle: The total fraction of points earned increased
as a function of arena centrality. Bottom: Distance between the stopping location and goal in rewarded (green) and unrewarded (red)
trials. Error bars denote ±1 SEM. D. Left: Across all arenas (colored according to the arena coloring scheme introduced in Figure 1b),
the path lengths observed in unrewarded trials were close to the optimal trajectory lengths between the starting state and the state
at which subjects stopped on these trials, suggesting that unrewarded trials were predominantly caused by subjects forgetting the
precise location of the target. Right: The ratio of observed to optimal path lengths (to the subjects’ stopping location on unrewarded
trials) was close to unity in all arenas. E. Performance was stable across each block, as measured by the average probability of being
rewarded on each trial (green), as well as the average ratio between the empirical and optimal path lengths (gray). F. Distribution of
epoch durations across all subjects and all trials. Pre-movement occupied a greater fraction of the total trial time for more complex
arenas. G. Some subjects spent lesser time deliberating before movement, but this did not impact task performance. Relative pre-
movement duration was defined as the average ratio of the duration of the pre-movement epoch to the duration of the entire trial after
goal detection. The average proportion of time that subjects spent making prospective eye movements prior to using the joystick did
not correlate with their average path lengths across all arenas (gray), nor with the overall probability of them being rewarded (green).
H. The relative pre-movement duration did not differ between rewarded and unrewarded trials (after matching the mean trial duration
of the two groups, separately for each arena), except for the two easiest arenas, where planning demands are low. This suggests that
failure to obtain rewards is not mere due to poor planning. Error bars denote ±1 SEM.
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Figure S2: Gaze is increasingly concentrated around the goal/stopping location for easier arenas. The believed goal location was
assumed to be the subjects’ stopping position, and the point of gaze was visibly more concentrated around the stop location than
around the true goal location (especially in the most complex arena). The effects of working memory on gaze were more apparent
for easier, more open arenas. Each panel depicts eye movements on a random subset of trials (3 trials x 9 subjects) in each arena.
The origin (0,0) denotes the goal location or the stopping location. Raw gaze positions relative to these points are depicted during the
pre-movement and movement epochs. Axis limits are ±15 m for all panels.
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Figure S3: A. The average value (calculated using dynamic programming) of the states upon which subjects gaze increased as the
subject approached the remembered goal location. Specifically, the greater the number of turns remaining in the trajectory (where
turns were classified using a threshold applied on angular velocity), the lower the value of the states upon which the subjects looked,
partly due to a lower probability of gazing upon or near the goal state (see Figure 6). Values shown here are negative due to the
formulation of value as a function of the path length from a state to the target state (the value of the target state is zero). B. During
search, subjects spend a greater fraction of time foveating the arena borders (purple) than during the active navigation phase (which
consists of both the pre-movement and movement epochs). During navigation (both before and during movement), subjects spend
more time foveating the ground (green). While there appears to be a trend in the fraction of time foveating obstacles (orange) vs. arena
centrality, this is explained by a higher obstacle density in the more complex arenas. C Across all subjects and all trials, the probability
of gazing upon each obstacle remains relatively constant across all arenas during each epoch. All error bars denote ±1 SEM.
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PerfectSmartGoalwardRandomBlind

Figure S4: Example simulated trajectories, as well as the gaze samples (red dots, if applicable), taken by each agent. The configuration
of the arena reflects the agent’s subjective model at the end of all eye movements. Note that the subjective model of the "smart" agent
was still quite mismatched with the true world model after eight eye movements, but the visual samples allowed for the correction of
the model at crucial locations such that the trajectory of the "smart" agent was closer to optimal than that of the other agents.
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Figure S5: Simulations reveal that foveating ‘relevant transitions’ reduces path length. Results were robust to the precise algorithm
(value iteration vs. successor representation) as well as the degree of temporal abstraction (current state vs. optimal trajectory) used
to estimate the relevance of transitions. Plots similar to Figure 3c and 3d are shown for relevance values calculated with A value
iteration, current state, B value iteration, entire trajectory, C successor representation, current state, and D successor representation,
entire trajectory.
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Figure S6: A-E: Breakdown of Figure 4a for arenas 1 (most complex) through 5 (least complex).

32

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.26.441482doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441482
http://creativecommons.org/licenses/by-nd/4.0/


0

4

8

# 
of

 s
ac

ca
de

s

6 10 x10 -2

0

4

8

# 
of

 s
ac

ca
de

s
6 10

Arena centrality
x10 -2

0 5 10
Sweep start —
goal detection (s)

0.6

0.8

1

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

6 10

Arena centrality

0

5

10

15

S
pe

ed
 (m

/s
)

x10 -2

max subj. vel.

6 10

Arena centrality

0

1

2

3

D
ur

at
io

n 
(s

)

x10 -2

6 10
0

5

10

15

S
pe

ed
 (m

/s
)

x10 -2

BA Gaze @ trajectory % trials
with sweeps

0

50

100

x10 -26 10
Arena centrality

0

20

40
%

 T
im

e

6 10 x10 -2

6 10
0

1

2

3

D
ur

at
io

n 
(s

)

x10 -2

Arena centrality

pre-movement

1True0

1

S
hu

ffl
ed

H Trial epoch: search (S) pre-movement (P) movement (M)

0.6

1

A
U

C

S P M

0
2
4
6

S
ac

ca
de

 ra
te

 (/
s)

6 10 x10 -2

movement

C

D

B
ac

kw
ar

d 
sw

ee
ps

Fo
rw

ar
d 

sw
ee

ps

B
ac

kw
ar

d

Fo
rw

ar
d

pre-move.
movement

N
ot

 s
w

ee
pi

ng

F

10
20
30

%
 tr

ia
ls

0

10

20

%
 tr

ia
ls

0

2

4

S
w

ee
p 

st
ar

t —
go

al
 d

et
ec

tio
n 

(s
)

0
6 10

Arena centrality Arena centrality
6 10 x10 -2 6 10 x10 -2 x10 -2

Arena centrality

direction of first sweep:      forward      backward
pre-movement movement

0 1

1

S
hu

ffl
ed

G

0.6

1

A
U

C

Relevance, sweeps removed Relevance, gaze < 2 m from trajectory removed

S P M

Time to first sweep
    forward      backward Arenas: easier

E

Fr
ac

tio
n 

of
 ti

m
e easier easier

Pre-move. Movement

sweeping trajectory
trajectory, not sweeping
other

target

True

0
0.2
0.4
0.6
0.8

1

Arenas
0
0.2
0.4
0.6
0.8
1

Arena centrality

33

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.26.441482doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441482
http://creativecommons.org/licenses/by-nd/4.0/


Figure S7: A. The fraction of time that subjects spent gazing within 2 m from the trajectory that they took on each trial (excluding
points of gaze within 2 m from the goal location) decreased with arena centrality. B. The fraction of trials with sweeps was lower for
less complex arenas. Error bars for A and B denote ±1 SEM across subjects. C. Eye movements on each trial was decomposed
into fixations within 2 m of the target (green), fixations within 2 m of the subject’s trajectory (excluding the target) during sweeps vs.
outside of sweeps, and fixations outside of sweeps that were neither made to the target nor trajectory. Subjects viewed the hidden
target location more in easier arenas, and gazed upon the rest of the trajectory more in difficult arenas. The fraction of time which was
spent looking elsewhere was relatively constant across arenas and epochs. D. Left: Across all subjects and all trials, the speed of
backward sweeps (bottom plot) was greater than the speed of forward sweeps (top plot) for all arenas. Before movement (orange), the
speed of forward sweeps was faster than that during movement (blue) in the two most complex arenas. Right: Forward sweeps before
movement, as well as backwards sweeps before and during movement, were relatively constant in duration across different arenas.
However, forward sweeps during movement were longer in the two most complex arenas. E. Left: The average number of saccades
per sweep was lower for easier arenas, and was highest during forward sweeps while the subject was actively moving. Right: The
saccade rate was higher during sweeps than outside of sweeps. F. The direction of the first sweep was more likely to be backwards
if it occurred prior to movement (left), and forwards if it occurred during movement (right). While the fraction of trials with a sweep
occurring prior to movement increased as a function of arena difficulty, the fraction of trials for which the first sweep occurred during
movement was rather constant for all but the easiest arena. G. Left: The average delay between goal detection and the first sweep
increased with arena difficulty. Right: The cumulative distribution of the delays across all subjects and all trials. H. Left: ROC curves
constructed as described in Figure 4a (rightmost) for the distributions of true vs. shuffled average relevance values for each trial
(pooled across all arenas, all subjects, and all trials), with periods of sweeping eye movements removed, reveals that during the pre-
movement (orange) and movement (blue) epochs, non-sequential eye movements are still directed towards task-relevant locations.
AUC plots were constructed with sweeps removed, as described in Figure 4b. The AUC values remain well above chance during the
pre-movement (orange) and movement (blue) epochs. Right: The same analysis was performed with gaze positions falling within 2 m of
the subject’s trajectory on each trial removed, revealing that the remaining visual samples were still made to relevant locations in space.

34

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.26.441482doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441482
http://creativecommons.org/licenses/by-nd/4.0/


Subject ID Block 1 Block 2 Block 3 Block 4 Block 5

1 3 2 1 4 5
2 5 4 1 2 3
3 5 3 1 2 4
4 4 5 2 3 1
5 3 4 2 5 1
6 5 2 1 3 4
7 3 2 5 1 4
8 4 5 3 1 2
9 2 1 4 5 3

Table S1: The order of arena presentation was randomized across subjects.

Epoch Arena 1 Arena 2 Arena 3 Arena 4 Arena 5

search 3.3 {6} 5.2 {5} 0 {3} 0 {4} 0 {2}
pre-movement 135 {10} 45 {11} 51 {11} 22 {11} 67 {17}

movement 184 {8} 36 {10} 38 {9} 3.5 {10} 0 {10}

Table S2: Median true relevance values {with interquartile range (IQR)} for each arena (x10−3).
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Relevance derivation: In this section, we derive a general measure to quantify the relevance of transi-
tions with respect to the task of navigating between two given states. The following derivation focuses on
the general setting when external noise (stochastic transitions) is present and internal noise (model uncer-
tainty) is inhomogeneous. As we will show, the measure used to quantify transition relevance in the main
text (Equation 1) corresponds to the special case where transitions are deterministic and uncertainty is
homogeneous. Let Tk denote the status of the kth stochastic transition (1 or 0) and pk be the parameter of
the true probability distribution (p.d.) of that transition such that P (Tk = 1) = pk and P (Tk = 0) = 1 − pk.
Let p̂k be the parameter of the subjective probability distribution of the transition. I.e. The agent thinks that
P (Tk = 1) = p̂k and P (Tk = 0) = 1 − p̂k. Given a particular goal state, let V k

s denote the value of the
agent’s current state s evaluated using the true transition status Tk such that V k

s = Vs(Tk = 1) if Tk = 1
and V k

s = Vs(Tk = 0) if Tk = 0. Let V̂ k
s denote the expectation of the value of state s evaluated using the

subjective transition p.d. of the kth transition such that V̂ k
s = p̂k Vs(Tk = 1) + (1 − p̂k) Vs(Tk = 0). Since

looking at a transition will dramatically reduce the uncertainty about the status of that transition, this can
impact the subjective value of the current state, provided that transition is critical to the task at hand. For
instance, discovering a subway line linking your neighborhood and downtown will increase the value of your
neighborhood if your workplace is located downtown, but will have no impact if your workplace is located
crosstown. Therefore, we define relevance (Ωk) of the kth transition as the expectation of the (log) change
in subjective value about the current state s induced by looking at that transition. Then, we have:

Ωk = E[ log(|V k
s − V̂ k

s |) ]pk
where E[ . ]pk

denotes expectation taken w.r.t the true p.d.

= E[ log(|V k
s − p̂k Vs(Tk = 1)− (1− p̂k) Vs(Tk = 0)|) ]

= pk log(|Vs(Tk = 1)− p̂k Vs(Tk = 1)− (1− p̂k) Vs(Tk = 0)|) +
(1− pk) log(|Vs(Tk = 0)− p̂k Vs(Tk = 1)− (1− p̂k) Vs(Tk = 0)|)

= pk log((1− p̂k)|∆V |) + (1− pk) log(p̂k|∆V |) where ∆V = Vs(Tk = 1)− Vs(Tk = 0)

= pk log(1− p̂k) + (1− pk) log(p̂k) + log(|∆V |)

= (pk − 1 + 1) log(1− p̂k) − pk log(p̂k) + log(p̂k) + log(|∆V |)

= −(1− pk) log(1− p̂k) − pk log(p̂k) + log(p̂k) + log(1− p̂k) + log(|∆V |)

= H(pk, p̂k) + log(p̂k (1− p̂k)) + log(|∆V |)
where H(X,Y ) denotes the cross entropy between X and Y

= H(pk) + DKL(pk||p̂k) + log(p̂k (1− p̂k)) + log(|∆V |)
where H(X) denotes the entropy of X

= H(pk) + DKL(pk||p̂k) + log(Var[T̂k]) + 1
2 log(|∆V |2)

where T̂k denotes the subjective knowledge about the status of the kth transition

Observe that Ωk is comprised of four factors: (I) H(pk), the entropy of pk, which captures transition volatil-
ity, (II) DKL(pk||p̂k), the Kullback-Leibler divergence between true and subjective p.d., which captures the
degree of mismatch between the subjective and true transition models, (III) log(Var[T̂k]), the log variance
of the subjective status of the transition, which captures the agent’s uncertainty, and (IV) log(|∆V |2) =
log([Vs(Tk = 1) − Vs(Tk = 0)]2), the log change in the value of the current state induced by changing the
transition status, which captures the sensitivity of the value function to the transition. The first and third
terms suggest that an agent should prioritize looking at transitions with high volatility and high subjective
uncertainty. The second term suggests that it is best to look at transitions whose subjective status is known
to be wrong. Although this is mathematically correct, agents would not know the true model to begin with
and therefore cannot direct their attention at such transitions. Therefore, if external and internal noise are
homogeneous, the best strategy would be to look at transitions which the value function is highly sensitive
to, as postulated by Equation 1 in the main text. Note that in deriving Ωk, we have neglected the contribu-
tion of model mismatches that may exist at other transitions. This approximation will be valid if the model
mismatch is small, and the solution works well in practice as demonstrated by the simulations (Figure 3).
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