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Abstract

Cytometry experiments yield high-dimensional point cloud data that is difficult to
interpret manually. Boolean gating techniques coupled with comparisons of relative
abundances of cellular subsets is the current standard for cytometry data analysis.
However, this approach is unable to capture more subtle topological features hidden in
data, especially if those features are further masked by data transforms or significant
batch effects or donor-to-donor variations in clinical data. We present that persistent
homology, a mathematical structure that summarizes the topological features, can
distinguish different sources of data, such as from groups of healthy donors or patients,
effectively. Analysis of publicly available cytometry data describing non-näıve CD8+ T
cells in COVID-19 patients and healthy controls shows that systematic structural
differences exist between single cell protein expressions in COVID-19 patients and
healthy controls.

Our method identifies proteins of interest by a decision-tree based classifier and
passes them to a kernel-density estimator (KDE) for sampling points from the density
distribution. We then compute persistence diagrams from these sampled points. The
resulting persistence diagrams identify regions in cytometry datasets of varying density
and identify protruded structures such as ‘elbows’. We compute Wasserstein distances
between these persistence diagrams for random pairs of healthy controls and COVID-19
patients and find that systematic structural differences exist between COVID-19
patients and healthy controls in the expression data for T-bet, Eomes, and Ki-67.
Further analysis shows that expression of T-bet and Eomes are significantly
downregulated in COVID-19 patient non-näıve CD8+ T cells compared to healthy
controls. This counter-intuitive finding may indicate that canonical effector CD8+ T
cells are less prevalent in COVID-19 patients than healthy controls. This method is
applicable to any cytometry dataset for discovering novel insights through topological
data analysis which may be difficult to ascertain otherwise with a standard gating
strategy or in the presence of large batch effects.
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Author summary

Identifying differences between cytometry data seen as a point cloud can be complicated
by random variations in data collection and data sources. We apply persistent homology
used in topological data analysis to describe the shape and structure of the data
representing immune cells in healthy donors and COVID-19 patients. By looking at how
the shape and structure differ between healthy donors and COVID-19 patients, we are
able to definitively conclude how these groups differ despite random variations in the
data. Furthermore, these results are novel in their ability to capture shape and
structure of cytometry data, something not described by other analyses.

1 Introduction 1

Cytometry data contain information about the abundance of proteins in single cells and 2

are widely used to determine mechanisms and biomarkers that underlie infectious 3

diseases and cancer. Recent advances in flow and mass cytometry techniques enable 4

measurement of abundances of over 40 proteins in a single cell [1, 2]. Thus, in the space 5

spanned by protein abundance values measured in cytometry experiments, a cytometry 6

dataset is represented by a point cloud composed of thousands of points where each 7

point corresponds to a single cell. Abundances of proteins or chemically modified forms 8

(e.g., phosphorylated forms) of proteins in single immune cells change due to infection of 9

the host by pathogens (e.g., a virus) or due to the presence of tumors which usually 10

result in changes in the ‘shape’ of point cloud data measured in cytometry 11

experiments [3–5]. Cytometry data analysis techniques commonly rely on Boolean 12

gating and calculation of relative proportions of resulting populations as a method to 13

compare datasets across control/healthy and experimental/diseased conditions. In 14

recent years, state-of-the-art analyses based on sophisticated machine learning 15

algorithms capable of mitigating batch effects, ad hoc gating assumptions, and 16

donor-donor variability have been developed [6, 7]. However, these methods are not 17

designed to quantitatively characterize shape features (e.g., connected clusters, cycles) 18

in high dimensional cytometry datasets that can contain valuable information regarding 19

unique co-dependencies of specific proteins in diseased individuals compared to healthy 20

subjects. 21

Topological Data Analysis (TDA) aims to capture the underlying shape of a given 22

dataset by describing its topological properties. Unlike geometry, topological features 23

(e.g., the hole in a doughnut) are invariant under continuous deformation such as 24

rotation, bending, twisting but not tearing and gluing. One of the tools by which TDA 25

describes topological features latent in data is persistent homology [8, 9]. For example, 26

for a point cloud data, persistent homology captures the birth and death of topological 27

features (e.g., ‘holes’) in a dataset after building a scaffold called a simplicial complex 28

out of the input points. This exercise provides details regarding topological features 29

that ‘persist’ over a range of scale and thus contain information regarding the shape 30

topology at different length scales (see Fig S1 for details). Persistent homology has been 31

applied to characterize shapes and shape-function relationships in a wide variety of 32

biological systems including skin pattern formation in zebra fish [10], protein structure, 33

and pattern of neuronal firing in mouse hippocampus [11]. TDA has additionally 34

previously been applied to identify immune parameters associated with transplant 35

complications for patients undergoing allogenic stem cell transplant using populations of 36

immune cell types assayed via mass cytometry [12]. However, this work did not use 37

persistent homology or expression levels of proteins in their analysis, leaving the shape 38

of cytometry data uncharacterized. Another work focuses on the use of TDA as a data 39

reduction method for single-cell RNA sequencing data [13], but again do not attempt to 40
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characterize how topologies derived from point clouds differ among disparate data 41

sources such as healthy and diseased individuals. 42

The challenges of directly applying current persistence methodologies to cytometry 43

data to characterize distinguishing features between healthy and diseased states are the 44

following: 1. Features that separate healthy from diseased state can pertain to the 45

change in density of points in a region in point cloud data - therefore, the information of 46

local density should be incorporated in persistent homology methods, in particular in 47

the filtration step that brings in sequentially the simplices connecting the points. In 48

commonly used Rips filtration [14] the density of points is not included. 2. There can 49

be shape changes giving a different length scale in the point cloud data, such as 50

formation of an elbow, in a diseased condition. 3. There can be systematic differences 51

between healthy and diseased states across batch effects and donor-donor 52

variations.Topological features should capture these global differences being oblivious to 53

the local variations caused by measurement noise. 54

We address the above challenges by developing an appropriate filtration function to 55

compute persistence and applying the method to characterize distinguishing features of 56

non-näıve CD8+ T cells between healthy and SARS-CoV-2 infected patients. 57

2 Results 58

2.1 Persistence framework for SARS-CoV-2 infection 59

Topological signatures given by persistence are stable, global, scale invariant and show 60

resilience to local perturbations [15]. It is this property of persistent homology that 61

motivates us to use TDA in distinguishing clinically relevant features in flow cytometry 62

data in COVID-19 patients. 63

Persistent Homology: Persistent homology builds on an algebraic structure called
homology groups graded by its dimension i and denoted by Hi . Intuitively, they
describe the shape of the data by ‘connectivity’ at different levels. For example, H0

describes the number of connected components, H1 describes the number of holes, and,
H2 describes the number of enclosed voids apparently present in the shape that the
dataset represents. Three and higher dimensional homology groups capture analogous
higher (� 3) dimensional features. A point cloud data (henceforth abbreviated as PCD)
itself does not have much of a ‘connected structure’. So, a scaffold called a simplicial
complex is built on top of it. This simplicial complex, in general, is made out of
simplices of various dimensions such as vertices, edges, triangles, tetrahedra, and other
higher dimensional analogues. Given a growing sequence of such complexes called
filtrations, a persistence algorithm tracks information regarding the homology groups
across this sequence. In our case, these complexes can be restricted only to vertices and
edges. With the restriction that both vertices of an edge appear before the edge, we get
a nested sequence of graphs

G0 ⇢ G1 ⇢ G2 ⇢ . . . Gn

as the filtration. Fig 1 shows such a filtration. 64

Persistence Diagram: Appearance (“birth”) and disappearance (“death”) of 65

topological features, that is, cycles whose classes constitute the homology groups, can 66

be captured by persistence algorithms [8, 16]. These “birth” and “death” events are 67

represented as points in the so-called persistence diagram. If a topological feature is 68

born at filtration step b and dies at step d, we represent this by persistence pair (b, d) 69

April 26, 2021 3

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.26.441473doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441473


G0

v0

G1

v1

v0

G2

v1

v0

v2
G3

v1

v0

v2

v3

G4

v1

v0

v2

v3

v4

G5

v1

v0

v2

v3

v4

v5

G6

e0
v1

v0

v2

v3

v4

v5

G7

e0

e1

v1

v0

v2

v3

v4

v5

G8

e0

e1

e2
v1

v0

v2

v3

v4

v5

G9

e0

e1

e2

e3
v1

v0

v2

v3

v4

v5

G10

e0

e1

e2

e3
e4v1

v0

v2

v3

v4

v5

G11

e0

e1

e2

e3
e4e5v1

v0

v2

v3

v4

v5

Figure 1. An example of filtration for a graph. The nested sequence of graphs
G0 ⇢ G1 ⇢ . . . G11 forms a filtration of the final graph G11. Each vertex vi creates a
new component in the nested sequence, and edges e0, e1, e2, e5 merge two components
whereas e4 creates a cycle (yellow).

with persistence d� b. The pair (b, d) becomes a point in the persistence diagram with 70

the “birth” as x-axis and “death” as y-axis. This 2D plot summarizes topological 71

features latent in the data. In the example-filtration of Figure 1 a new component gets 72

‘born’ when a vertex vi appears in the filtration for the first time. When an edge is 73

introduced, one of the two things can happen–either two components are joined, or a 74

cycle is created. In the first case, a ‘death’ happens for 0-th homology group H0, and in 75

the second case, a ‘birth’ happens for the 1-st homology group H1. For example, when 76

e0 comes in the filtration (G6), it merges two components created by v0 and v1. By 77

convention, we choose to kill the component that got created later in the filtration and 78

thus we let the component created by v1 die. We obtain a persistence pairing (1, 6) 79

since edge e0 at filtration step 6 kills the component created by v1 at step 1. Similarly, 80

we obtain pairs (2, 7), (4, 8), (5, 9), and (3, 11). These points, tracking the ‘birth’ and 81

‘death’ of components, produce the persistence diagram for the 0-th homology group H0 82

and hence we refer to it as H0-persistence diagram. Note that the edge e4 creates a 83

cycle (yellow) that never dies. In such cases, i.e. when a topological feature never dies, 84

we pair it with 1. For the edge e4, we obtain a persistence pair (10,1). But, this 85

feature concerns the 1-st homology group H1 and thus it becomes a point in the 86

persistence diagram for H1 which we refer to as H1-persistence diagram. One way to 87

leverage the above framework for studying a function is to assign function values to 88

vertices and edges and construct a filtration by ordering them according to these 89

assigned values. For such cases the persistence pairs take the form (b, d) where b is the 90

value at which a feature is born and d is the value at which it dies. The function values 91

that induce the filtration (Figure 2) are chosen to capture two features of the input 92

PCD–(i) the density variations, and (ii) the anisotropy of the features, that is, how 93

elongated it is in a certain direction, henceforth termed as length scale ‘of the feature’ or 94

collectively ‘of the data’. In particular, length scales refer to the prominence of 95

protrusions such as ‘elbows’ in COVID-19 data. 96

Below we briefly describe how we adapt the above persistence framework for 97

analyzing point cloud data (PCD) representing CD8+ T cells in SARS-CoV-2 infection. 98
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Details regarding the approach are provided in section 4, the supplementary Algorithms, 99

and Fig S1. 100

Computing persistent homology for cytometry datasets: Our datasets consist 101

of cytometry data for non-näıve CD8+ T cells. Given protein expressions (real values) 102

for d proteins in such a single cell, we can represent it as a d-dimensional point in Rd. 103

Considering a population of single cells, we get a point cloud (PCD) in Rd. Now, we 104

study the shape of this PCD using the persistence framework that we describe above. 105

We compute persistence diagrams for the PCDs generated with protein expressions from 106

different individuals and compare them. It turns out that, for computational purposes, 107

we need a limit on the dimension d for PCD which means we need to choose carefully 108

the proteins that differentiate effectively the subjects of our interest, namely the healthy 109

individuals, COVID-19 patients, and recovered patients. We typically choose 3 110

(sometimes 2) protein expressions to generate the PCD and call it a PCD in the P1, P2, 111

P3 space if it is generated by proteins P1, P2, and P3 respectively. 112

Flow cytometry data for non-näıve CD8+ T cells in Mathew et al. [3] show 113

generation of CD8+ T cells with larger abundances of the proteins CD38 and HLA-DR 114

(CD38+HLA-DR+ cells) for some COVID-19 patients, forming an “elbow” in the two 115

dimensional PCD with CD38 and HLA-DR protein expressions (see Fig S2). Moreover, 116

there is an increase in the local density of the points (or single CD8+ T cells) in the 117

“elbow” region. This suggests that, to study the PCD generated by the protein 118

expressions by persistence framework, we need to choose a filtration that is able to 119

capture such geometric shapes and variations in the local density. 120

We briefly describe our choice of filtration by considering the example of a point 121

cloud P ⇢ R2 shown in Fig 2. Mathematical and computational details regarding the 122

filtration are provided in the section 4. We build a filtration according to assigned 123

values to the vertices and edges of a graph connecting the input points. For a vertex p 124

which is a point in the input PCD P , we denote this value fv(p) (given by Eq 1 in 125

Section 4). Similarly, we denote the assigned value to an edge e as fe(e) (given by Eq 2 126

in Section 4); see Fig 2. The values satisfy the conditions that fv(p) < 0 and fe(e) � 0; 127

implications of this specific choice will become clear in the next paragraph. It is 128

noteworthy to mention that fv(p) is the distance-to-measure defined in [17] and 129

captures the density distribution of points whereas fe(e) captures the inter-point 130

distances between the points in the given point cloud. 131

The persistence algorithm processes each vertex and edge in the order of their 132

appearance in the filtration. We execute it using a threshold value � from �1 to 1 133

and generate the persistence diagram accordingly. Intuitively, as � is increased from 134

�1 to 1, vertices p for which fv(p)  � and edges for which fe(e)  � appear in the 135

filtration for a particular value of � (see Fig 2). Since fv(p) < 0 and fe(e) � 0, all the 136

vertices first appear as � is increased from �1 to 0, and then edges start appearing as 137

� becomes positive. The birth-death events for H0 and H1 constituting the persistence 138

diagram (Fig 2) contain information about the density and length scales present in the 139

point-cloud. For example, the points showing birth and death events for the 140

H0-persistence diagram are more densely organized for the single cell protein expression 141

data from the healthy donor than the SARS-CoV-2 infected patient in the HLA-DR - 142

CD38 plane shown in Fig S3. The denser organization of the birth-death events in the 143

persistence diagram indicates a more homogeneous distribution of CD38 and HLA-DR 144

proteins in the CD8+ T cells in healthy donors compared to that in infected patients. 145

Most of the CD8+ T cells in healthy controls have low amounts of CD38 and HLA-DR 146

abundances and few contain larger values of these proteins, indicating a greater degree 147

of homogeneity (see SI for further details/explanation). The birth-death events for H1 148

in the persistence diagram (Fig S3) in general contain information about the length 149
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Figure 2. Illustration of persistence for a 2D point cloud data (PCD). (A),
(H) shows a 2D PCD example and its computed persistence diagram. (B)-(G) shows
important changes in topological feature as � increases from �1 to 1. (B) At
� = �1.06 an isolated point, v0 appears first. Note that each isolated vertex creates a
new component. (C) At � = �0.52 points in the denser region appears in the filtration,
introducing more components. The indices of the vertices denote the order in which
they appear in the filtration. (D) At � = �0.50, all vertices appear in the filtration.
Note that, the way we have chosen the filtration function f , vertices appear before the
edges since fv(v) is always negative. (E) At � = 0.65, the first edge e1 appears merging
two components. By persistence algorithm [8], we pair the edge e1 with v9, since v9
appears later in the filtration. Corresponding to this, we get a persistence pair
(fv(v9), fe(e1)) = (�0.50, 0.65). (F) At � = 0.84, the green edge e2 appears and creates
a cycle. Since there is no 2-simplex(triangle) present, the cycle is never destroyed. In
the persistence diagram we have this pair as (fe(e3),1) = (0.84,1). (G) At � = 2.07,
the long edge e3 appears joining v0 and v1, yielding a persistence pair (�1.06, 2.07).

scales of cyclic structures in the point cloud. It also can capture protrusions like ‘elbows’ 150

that we have in COVID-19 data. Our filtration allows only birth (and not death) of 151

1-cycles and therefore, a � value corresponding to the birth of a 1-cycle captures the 152

length scale of the newly born cycle and hence an ‘elbow’. Our analysis of the PCDs in 153

Figure S3D, S3H indeed shows that � values for the birth of cycles for the COVID-19 154

patient is much larger compared to that for the healthy individual indicating the 155

presence of larger length scales in the PCD which is consistent with the presence of an 156

“elbow” shape in the PCD for the patient. 157

2.2 Application of persistence to healthy and patient data 158

Our aim is to find out systematic differences in topological features extracted from 159

cytometry data for healthy individuals and COVID-19 patients. Ideally one would like 160

to compute persistence diagrams for all 25 proteins that were measured in single CD8+ 161

T cells, however, this task encounters two major problems. First, as we mentioned 162

before taking the full 25 dimensional PCD introduces the curse of dimensionality [18] 163

making it computationally infeasible to produce the persistence diagrams. The second 164

one is more subtle. In order to measure how the density of data differs from a healthy 165

to infected person in a quantitative way, we need to ensure that the number of points in 166

each PCD, to be analyzed by persistent homology, is the same. Cytometry data usually 167

contain different numbers of single cells in datasets obtained from different donors or 168

replicates. To address the curse of dimensionality we use a classifier (XGBoost) that 169
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Figure 3. Flowchart of computation pipeline. The pipeline includes three main
stages, namely, (i) relevant feature selection, (ii) persistence computation, and (iii)
comparison of persistence diagrams.

distinguishes single CD8+ T cells in healthy donors from those in COVID-19 patients 170

and we choose the top r (taken to be 3) features (proteins) that are deemed important 171

by the classifier while classifying the data points (cells). This reduces the dimension of 172

the data from 25 to a much smaller value denoted r. To address the second issue, we 173

perform Kernel Density Estimation (KDE) on every r-dimensional dataset and take 174

equal number of samples from it. We then use the filtration defined in Eq 1 & 2 to 175

construct persistence diagrams for each dataset. To quantify the structural differences 176

in the datasets as captured by the corresponding persistence diagrams, we compute the 177

Wasserstein distance [19] between persistence diagrams from randomly selected pairs of 178

either two healthy donors (H⇥H) or a healthy donor and an infected patient (H⇥P) and 179

compute distributions of the Wasserstein distances for a large number of (H⇥H) and 180

(H⇥P) pairs. The comparison of these distributions provides information regarding the 181

systematic differences in shape features in the CD8+ T cell cytometry data across 182

healthy individuals and COVID-19 patients. The computational pipeline is summarized 183

in (Fig 3). Below we describe results from the application of our computational pipeline 184

to the CD8+ T cell cytometry data in Mathew et al. [3] 185

A few protein expressions in CD8+ T cells separate healthy donors from 186

COVID-19 patients: We use the XGBoost, a decision tree based classifier, to rank 187

order proteins for their ability to distinguish CD8+ T cell point cloud data between 188

healthy individuals and COVID-19 patients. The average accuracy of the classifier is 189

about 92%. The classifier returns a feature score for each protein that characterizes its 190

importance relative to other proteins in distinguishing cells from healthy individuals and 191

COVID-19 patients. Intuitively, feature score is an indicator of the importance of a 192

particular feature while classifying the data. By ranking the proteins by their feature 193

scores, we can reduce our further analysis to only a subset of the most important 194

proteins. Our analysis (Fig 4) shows that the top three most important proteins to the 195

XGBoost classifier are proteins T-bet, Eomes, and Ki-67. T-bet induces gene 196

expressions leading to an increase in cytotoxic functions of CD8+ T cells. CD8+ T cells 197

with increased cytotoxic functions are known as “effector” CD8+ T cells and these cells 198

show higher T-bet abundances. Conversely, Eomes induces gene expressions that 199

contribute towards increased life span and re-activation potential of CD8+ T cells to 200

specific antigens [20]. These long-lived T cells are known as “memory” T cells which 201

show increased expressions of Eomes. Memory T cells provide key protection against 202

re-exposure to the same infection. Ki-67 is a marker for actively proliferating cells [21]. 203

Mathew et al. [3] identified Ki-67 as one marker that is upregulated (increased) in some 204

COVID-19 patients. These three proteins are most likely to distinguish CD8+ T cells in 205

healthy donors from those in patients. Further details regarding the application of the 206
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classifier are provided in the Materials and Methods section (section 4). 207

Figure 4. Rank ordering of proteins using a decision tree based classifier.
Shows rank ordering of proteins by descending values of feature importance generated
by the classifier XBoost.

Persistence diagrams distinguish structural features in CD8+ T cell data 208

occurring in healthy individuals and COVID-19 patients across batch 209

effects and donor-donor variations: We select the proteins T-bet, Eomes, and 210

Ki-67 as relevant markers and compute the persistence diagrams of the PCD given by 211

them for each individual belonging to groups of healthy donors, COVID-19 patients, 212

and recovered patients. The persistence diagrams vary from individual to individual in 213

each group and between groups which could arise due to batch effects in samples and/or 214

donor-to-donor variations. To determine if there are systematic differences in 215

persistence diagrams for individuals across the three groups (healthy, patient, and 216

recovered), we compute Wasserstein distance between persistence diagrams for 3 217

categories of pairings: 1) two healthy donors (H⇥H), 2) one healthy donor and one 218

patient (H⇥P), and 3) one healthy donor and one recovered individual (H⇥R). We 219

compute distances for 108 randomly chosen pairs of individuals for each category of 220

pairings. Wasserstein distances of the persistence diagrams for 0-th and 1-st homology 221

groups H0 and H1 respectively are higher when comparing H⇥P pairs than when 222

comparing H⇥H pairs (Fig 5). This indicates that systematic geometric differences in 223

the flow cytometry PCD with T-bet, Eomes, and Ki-67 between individuals with and 224

without COVID-19 are not attributable to batch effects or donor-to-donor variations 225

alone. Increasing the number of randomly chosen pairs to 200 did not change the 226

qualitative differences shown in Fig 5 (Fig S4). The difference between H⇥H and H⇥R 227

distributions of distances in the T-bet, Eomes, and Ki-67 space are less prominent 228

(Fig S5). We further test if such systematic differences are present for proteins that are 229
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at the bottom of the list in Fig 4 and find that the distributions of Wasserstein 230

distances for corresponding persistence diagrams overlap between the H⇥H and H⇥P 231

pairs (Fig S6). This suggests that systematic differences in the geometry of the PCD 232

occur only for specific sets of proteins. Details regarding computation of persistence 233

diagrams and Wasserstein distances are given in Section 4. 234

A B

Figure 5. Distributions of Wasserstein distances between persistence
diagrams. (A) Shows distributions of Wasserstein distance between H0-persistence
diagrams for H⇥H (blue line) and H⇥P (orange line)pairs. (B) Shows distributions of
Wasserstein distance between H1-persistence diagrams for H⇥H (blue line) and H⇥P
(orange line) for the same pairs in (A).

Next, we select a comparison pair that generates a large Wasserstein distance 235

between H1-persistence diagrams to further investigate what structural differences exist 236

between the datasets. We choose one pair of a healthy control and patient that 237

generated a Wasserstein distance of 4.0⇥ 106 units in their H0-persistence diagrams and 238

1.1⇥ 104 units in H1-persistence diagrams. These two individual PCDs and their 239

resulting persistence diagrams are shown in Fig 6. 240

A readily apparent difference between the resulting persistence diagrams is given by 241

the lower birth times in H1 of the COVID-19 patient compared to the healthy control 242

(Fig 6e, 6f). This result indicates that the length scale of the data is smaller in the 243

COVID-19 patient, which can be visually confirmed in the scatter plots of the data (Fig 244

6a, 6b). Specifically, the single cell abundances of T-bet and Eomes in CD8+ T cells are 245

clustered significantly tighter around the origin for the COVID-19 patients than for the 246

healthy controls. Similar manual inspection of other H⇥P pairs that generate large 247

Wasserstein distances between their persistence diagrams confirms that this trend is not 248

limited to this pair alone. 249

Additionally, the points in the H0-persistence diagram are spread out more widely 250

for the healthy control than the COVID-19 patient (Fig 6c, 6d). A wider distribution 251

of births and deaths in the 0-th homology H0 implies that there are regions of disparate 252

densities. This suggests that the densities in the protein expressions of T-bet and Eomes 253

are more homogeneous in the PCD in the COVID-19 patient than in the healthy control. 254

The structural change in the PCD for CD8+ T cells in the T-bet/Eomes plane that 255

occurs during COVID-19 infection implies that T-bet and Eomes expression should be 256

downregulated (decreased) in non-näıve CD8+ T cells. This result is consistent with 257

analysis of clusters of CD8+ T cells by Mathew et al. [3] that shows that clusters high 258

in T-bet and/or Eomes are downregulated in COVID-19 patients. The downregulation 259

of T-bet and Eomes in response to viral infections is not well documented, as CD8+ T 260

cells commonly differentiate into phenotypes with, high T-bet, high Eomes, or both in 261

response to infections [20, 22]. 262
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A B

C D

E F

Figure 6. Differences in shape features in the 3D point cloud for CD8+ T
cells in a H⇥P pair. CD8+ T cell point cloud for proteins Eomes, Ki-67, and T-bet
for (A) a healthy control and (B) a COVID-19 patient. (C) Shows H0-persistence
diagram for the healthy control in (A). (D) Shows the H0-persistence diagram for the
COVID-19 patient in (B). (E) H1-persistence diagram for the healthy control in (A).
(F) H1-persistence diagram for the COVID-19 patient in (B).

3 Discussions and conclusions 263

We developed a persistent homology based approach to determine topological features 264

hidden in point cloud data representing single cell protein abundances measured in 265

cytometry data. In particular, we characterized the number of connected components or 266

H0, and the number of holes or H1 in our persistence calculations, and showed that our 267

approach is able to determine systematic shape differences in the cytometry data for 268

CD8+ T cells obtained from healthy individuals and COVID-19 patients. Therefore, the 269

approach is able to successfully determine systematic shape differences that exist in the 270

presence of batch effect noise and donor-donor variations in the cytometry data. 271

Furthermore, our approach does not use data transformations (e.g., arc-sinh 272

transformation) or any ad-hoc subtype gating to determine these systematic differences, 273

thus we expect persistent homology based approaches will be especially useful in 274
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identifying high-dimensional structural trends hidden in cytometry data. 275

We determined structural changes in T-bet and Eomes abundances in single CD8+ 276

T cells in COVID-19 patients that can be summarized as downregulation. This result is 277

non-intuitive as previous findings show that T-bet and Eomes protein abundances are 278

highest in effector CD8+ T cells which are induced in response to acute infections 279

suggesting T-bet and Eomes expressions are upregulated in CD8+ T cells responding to 280

infections [20,22]. The clinical implications of this result are unclear, Mathew et al. [3] 281

describe a immunophenotype in which Eomes+, T-bet+, CD8+ T cells are more 282

abundant in COVID-19 patients who respond poorly to Remdesevir and NSAIDs, have 283

high levels of IL-6, and have fewer eosinophils. Our analysis identifies that this 284

immunophenotype (i.e.,Eomes+, T-bet+, CD8+ T cells) is systematically less prevalent 285

in COVID-19 patients than in healthy controls. The ability of our approach to identify 286

non-intuitive shape features such as the above without any ’supervision’ (e.g., specific 287

gating) of the cytometry data shows that it can potentially determine more complicated 288

immunologically relevant shape features. For instance, although we did not identify 289

differing shapes or voids in the COVID-19 data in our current approach, our method 290

would be able to detect these in a different dataset that contains such characteristics. 291

Our approach integrates cellular comparisons with dataset comparisons. First, the 292

classifier pools all data and determines which proteins are significant in discriminating 293

whether cells come from healthy controls or COVID-19 patients. In this way, the 294

classifier identifies a way to compare cellular phenotypes across experimental groups. 295

Next, the computation of Wasserstein distances for persistence diagrams compares 296

individuals against each other, integrating cellular phenotypes with donor information 297

(e.g., healthy and COVID-19 patients). Thus, this approach allows us to automatically 298

identify individuals that are associated with distinguishing structural features in the 299

point cloud data. 300

Currently, the limitations are mostly centered around computational complexity and 301

the curse of dimensionality. The computational resources necessary to calculate a KDE 302

are great enough that extensions beyond three dimensions are not feasible. However, 303

improving or circumventing the KDE calculation step will significantly increase the 304

dimensionality of data that can be considered. Since we are computing pairwise 305

distances between datapoints to obtain the persistence diagram (Section SIB), 306

computation time will linearly increase as the dimension of data increases. Our 307

methodology on our computational cluster resources currently takes about 40 minutes. 308

This is comparable to other data science applications to large datasets, but can be a 309

barrier to those without access or experience with computational clusters. Additionally, 310

it is unclear how adding more dimensions will impact the statistical properties of the 311

data and interpretability of the results. To expand into many (i.e. 25) dimensions, 312

computational interpretation and validation tools will be necessary. 313

4 Materials and Methods 314

Relevant feature selection by the XGBoost classifier: Let 315

D =
�
c1, c2, . . . , cm

 
be the collection of m cytometry datasets. Each dataset, ci, can 316

be viewed as a Mn⇥p matrix where n is the number of datapoints (cells) and p is the 317

number of proteins with which each ci is generated. We denote the collection of 318

cytometry datasets of healthy individuals as CH ⇢ D and similarly the set of individuals 319

infected with SARS-CoV-2 as CP ⇢ D. We proceed to label the data in the following 320

manner: If ci 2 CH then we assign the label +1 to each of the n datapoints, similarly 321

we assign �1 if ci 2 CP . Essentially, we now have a binary classification problem where 322

our labeled dataset is D0 =
S

D = c1 [ c2 [ . . . [ cj , with labels defined as above. We 323

solve this binary classification problem with XGBoost [23], a gradient boosted decision 324
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tree based classifier, and as a byproduct we get feature scores that correspond directly 325

to each feature’s importance in the classification. The higher the score for a protein, the 326

more important it is for the classifier’s decision. After our classifier orders the proteins 327

by their scores, we take first r proteins to construct the point-cloud on which persistence 328

diagrams are computed. We set r = 3 for all our analysis reported here. We used data 329

from 56 healthy individuals and 108 COVID-19 patients for our feature selection. 330

The XGBoost classifier was implemented using the open-source python XGBoost 331

package [23]. The model was then trained and validated with K-fold cross-validation, 332

with K = 10. The average accuracy of the classifier was 92.14± 0.04%. The protein 333

scores are shown in Fig 4. 334

Kernel Density Estimation: We estimated the probability distribution function 335

associated with the point cloud data in three dimensions using Kernel Density 336

Estimation. The estimated probability distribution function was used to draw 20,000 337

points corresponding to each PCD that were further analyzed using persistent homology. 338

We used KDE estimated probability distributions instead of random selection of 20,000 339

datapoints in three dimensions, because the random selection of data points do not 340

appropriately sample the distribution of the data points for the relatively smaller 341

sample size (20, 000 data points). KDE was implemented using scikit-learn [24] package. 342

The kernel function was chosen to be ‘gaussian’. For now we have tuned the bandwidth 343

parameter based on manual observation and to remain consistent we have fixed the 344

bandwidth at 0.2 for each dataset. 345

Details of persistent homology computation: As mentioned before (section 2.1),
computation of persistence diagrams needs a filtration. We set the filtration induced by
the function f = {fv, fe} where fv(p) computes an “average” Euclidean distance
between the vertex p and its k neighbors according to Eq. (1) and fe(e) computes the
length of the edge e according to Eq. (2).

fv(p) = �
1

k

vuut
kX

i

kp� qik2 , p 2 P, and qi 2 k-Nearest Neighbors of p. . (1)

The term kp� qik in the above equation is the Euclidean distance between the vertices
p and qi. The function value fe(e) for an edge e = (p, q) is given by the Euclidean
distance between p and q. For the experiments, the number of nearest neighbors is fixed
to k = 40.

fe(e) = kp� qk , 8p, q 2 P and p 6= q (2)

We begin with computing Kernel Density Estimation (KDE) for every cytometry 346

PCD ci and take n(= 20, 000) samples from each KDE. We do this to make ci uniform 347

w.r.t. number of data points (single CD8+ T cells). We compute a complete weighted 348

graph G(V,E) with vertices in the sampled data. This complete graph G is a key-step 349

that enables us to compute the persistence diagram, Dgm(ci) of the dataset ci, w.r.t. 350

the filtration function f . We show the algorithm (Algorithm 2) that executes this step 351

in detail in the supplementary material. Notice that the graph G is weighted in the 352

sense that each vertex v 2 V and edge e 2 E carries a weight of fv(v) and fe(e) 353

respectively. Observe that f : V [ E ! R constitutes a valid filtration of G. 354

We compute persistence diagrams for each ci 2 D according to Algorithm 3. The 355

next step involves comparing the persistence diagrams. We do this by computing the 356

Wasserstein distance between persistence diagrams and plotting their distributions. We 357

take two persistence diagrams of randomly selected healthy individuals and compute the 358

April 26, 2021 12

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.26.441473doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441473


Wasserstein distance between them with the help of Gudhi [19, 25] and scikit-learn 359

Python library [24]. Similarly, we compute Wasserstein distance between persistence 360

diagrams of a healthy and an infected individual (both are randomly drawn from the 361

collection). We plot the resulting distances. We do this for 108 pairs to obtain two 362

distributions. Note that, results described in Section 2.1 still holds for 200 pairs 363

(Fig S4). Intuitively, a large Wasserstein distance between two persistence diagrams 364

implies the datasets on which they were constructed are structurally very different while 365

a small distance implies they are structurally similar. 366

Flow cytometry data for healthy individuals and COVID-19 patients: The 367

data come from Mathew et al., 2020 [3] and was retrieved from Cytobank. Mathew et 368

al. performed high-dimensional flow cytometry experiments using peripheral blood 369

obtained from 125 patients admitted to the hospital with COVID-19, 36 donors that 370

recovered from documented SARS-CoV-2 infection, and 60 healthy controls. Our 371

analysis focuses on the deposited data available at 372

https://premium.cytobank.org/cytobank/experiments/308357 for non-näıve 373

CD8+ T cells collected at the time of admission (and not any later blood draws, such as 374

at 7 days after admission). We removed forward- and side-scatter variables and other 375

non-protein measurements, resulting in 25 proteins included in our analysis. 376

Available code: Our current code is available at 377

https://github.com/soham0209/TopoCytometry and will be updated for ease-of-use 378

and performance enhancements. 379
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