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Abstract: Preterm birth (PTB) is a global public health crisis which results in significant neonatal and maternal 

mortality. Yet little is known regarding the molecular mechanisms of idiopathic spontaneous PTB (isPTB) and 

we have few diagnostic markers for adequate assessment of placental development and function. Previous studies 

of placental pathology, and our transcriptomics studies suggest a role for placental maturity in isPTB. It is known 

that placental methylation changes over gestation and we hypothesized that if placental hypermaturity is present 

in our samples, we would observe unique isPTB methylation signature as well as identify loci where isPTB 

methylation is more similar to that of term birth (TB) than the gestational age matched controls. Our results 

indicate the isPTB DNA methylation pattern mimics the TB methylation pattern suggesting hypermaturity. Only 

seven significant differentially methylated regions (DMRs) fitting the isPTB specific hypomethylation (relative 

to the controls) pattern were identified, indicating unusually high similarity in DNA methylation between isPTB 

and TB samples. In contrast, 1,718 acute histologic chorioamnionitis(AHC) specific DMRs were identified with 

hypermethylated DMRs in WNT and cadherin pathways when compared to isPTB and TB samples. In these AHC 
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DMRs, there were no significant differences between the isPTB and TB, which indicated again, a striking level 

of similarly between isPTB and TB sample sets. Taken together, these data reflect a more mature placenta than 

expected which may be impacting birth timing.  

Introduction 

 Preterm birth, defined as delivery at less than 37 weeks of gestation is the leading cause of neonatal 

mortality worldwide. Prematurity affects an average of 10% of infants born in the United States with rates 

increasing and costs approximately $26.2 billion dollars a year (annual societal cost including medical, 

educational and lost productivity)1,2. The majority (50%) of preterm births are idiopathic and spontaneous, rather 

than being related directly to diagnosed medical causes (e.g. pre-eclampsia). Risk factors include but are not 

limited to: ethnicity, fetal gender, environmental exposures, and economic disparities3. Complications include 

developmental delays, growth restriction, chronic respiratory problems as well as adult sequale3. Studies into the 

etiology of preterm birth have implicated a role for the placenta, a central component of the maternal-fetal 

interface, which has a vital role in pregnancy initiation, maintenance, and birth timing as well as fetal growth and 

development4. As such, proper placental development, maturation, and function are essential for a successful 

pregnancy outcome and life time offspring health. Each of these processes is an intricate balance of molecular 

interactions that are not fully understood even in healthy, normal, term pregnancies. Placental maturation is 

accompanied by a marked increase in placental surface area (6m2 to 12m2) due to placental remodeling initiated 

between 20-24 weeks gestation and continuing throughout the remainder of gestation4. This remodeling 

accommodates exponential fetal growth across the second half of gestation. Under normal physiological 

conditions, placental maturation is recognized by histological hallmarks including increased quantities of terminal 

villi (<80 microns in diameter), syncytial nuclear aggregates (SNAs, 10+ syncytial nuclei being extruded from 

the syncytiotrophoblast), and formation of the vasculosyncytial membranes (VSM) which allow for more efficient 

transport of nutrients and diffusion of blood gases across the syncytiotrophoblast and villous vascular endothelial 
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cell membranes to the placental-fetal circulation5,6. When these hallmarks are observed in significant quantities 

prior to 37 weeks, placentas are classified as having advanced villous maturation (AVM). Histological studies of 

pathological placentas indicate AVM occurs in 50-60% of isPTB and iatrogenic preterm births7,8. This indicates 

a potential developmental disconnect between placental maturation and the corresponding fetal maturation. In 

infection associated preterm births, AVM was observed in less than 20% of pathologic placentas7,8. These studies 

indicate multiple morphological endotypes exist, underlying the classical clinical PTB phenotypes, especially 

those of spontaneous PTB which are based on gestational age and simply defined as early, moderate and late9. 

The identification of these morphological endotypes further highlights the heterogeneity confounding the 

identification of PTB etiology and potential diagnostic biomarkers. Multiple levels of heterogeneity confound 

elucidation of molecular mechanisms involved in sPTB, from inconsistent sampling of maternal/placental/fetal 

tissues to the numerous cell types across the maternal-fetal interface10–13. One way to overcome this problem is 

to link morphological endotypes to well characterized molecular signatures from the same sample to generate 

more precise spontaneous preterm birth phenotypes.  

 Over the last decade, advances in the integration of “omics” data have allowed for the discovery of 

biomarkers and mechanistic insight into various diseases including several types of cancer14–16. However, our 

limited knowledge of normal placental physiology throughout gestation coupled with a lack of precise preterm 

morphological and molecular phenotyping impedes our ability to exploit omics” data to improve pregnancy 

outcomes associated with prematurity. While transcriptomics allows for examination of differential gene 

expression between normal and PTB placental tissues, DNA methylation (DNAm) studies on the same tissue may 

provide insights into the observed differences through regulation of expression17–20.  However, heterogeneity of 

DNAm across placental villous tissues has made interpretation of such data challenging19. To further confound 

interpretation, some studies have focused on DNAm differences between normal and iatrogenic preterm 
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conditions  such as fetal growth restriction (FGR), pre-eclampsia (PE), or simply differences in gestational age, 

or PTB as a whole without consideration for underlying pathophysiology such as placental maturation21–23.  

 We have previously identified transcriptomic signatures of AVM in a small cohort using clinically 

phenotyped placental villous samples from isPTB and AHC births between 29 and 36 weeks and normal term 

births between 38 and 42 weeks24. Given the importance of DNA methylation to placental development and 

maturation, we wanted determine if we could detect DNAm signatures associated with spontaneous PTB 

phenotypes. As with our previous transcriptomic analyses, we were able to identify distinct DNAm signatures 

indicative of AVM in our isPTB and AHC samples.  

Methods  

Study Population 

This study was approved by the Cincinnati Children’s Hospital Medical Center institutional review board (#IRB 

2013-2243, 2015-8030, 2016-2033). De-identified term (n=6), isPTB  (n=8), and  IAI (n=8) placental villous 

samples along with appropriate covariate information were obtained from the following sources: The Global 

Alliance to Prevent Prematurity and Stillbirth (GAPPS) in Seattle Washington USA, the Research Centre for 

Women’s and Infant’s Health (RCWIH) at Mt Sinai Hospital Toronto Canada, and the University of Cincinnati 

Medical Center (UCMC). Inclusion criteria included: maternal age 18 years or older, singleton pregnancies with 

either normal term delivery (38-42 weeks gestation) or preterm delivery (29-36 weeks gestation) without 

additional complications. Additional data regarding these samples can be found in24.  

DNA Methylome Generation  

DNA was isolated from homogenized, snap frozen placental villous samples using the DNAeasy Kit (Qiagen).  

DNA quality was assessed using Qubit and nanodrop. A minimum of 500ng was submitted to the University of 

Minnesota Genomics Center and the University of Cincinnati Genomics, Epigenomics and Sequencing Core for 
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DNA quality assessment, bisulfite conversion, and methylome generation on the Illumina Methylation EPIC Bead 

Chip. Control samples were included in each run to assess for batch effects across different array chips.  

DNA Methylation array data processing  

 Methylation data processing and analyses based on a previously developed workflow25 which was 

modified to fit the analysis parameters of this study. All packages are available within Bioconductor26 and all 

package scripts were run in RStudio/R v4.0.227,28.  IDAT file preprocessing and probe quality control was 

conducted in R using scripts from which are based in minfi29 and methylumi30. IDAT files and a sample file 

containing covariate and BeadChip metadata were loaded into R where data quality was assessed using the mean 

detection p-values for the probes in each sample. This summary data allowed determination of failed samples to 

be excluded. We assessed which normalization algorithm would best suit our data set, comparing several methods 

including quantile31, subset-quartile within array normalization (SWAN)32, beta-mixture quantile normalization 

BMIQ33 and functional normalization(Funnorm)34. We chose to apply Functional Normalization 

(preprocessFunnorm) for the algorithm’s ability to utilize the internal control probes for each individual sample 

in an unsupervised manner to control for unwanted variation.  

 After normalization, we excluded individual low-quality probes with a detection p-value > 0.1 in more 

than 2 samples or bead count <3 in at least 5% of samples, sex chromosome probes, cross-hybridizing probes, 

and probes were SNPs (within the binding region or within 5-10bp of the binding region) could potentially affect 

hybridization25. To ensure appropriate filtering of problematic probes, we utilized several resources including the 

Illumina MethylationEPIC BeadChip hg38 manifest and  Zhou et al35 to identify additional variation that would 

interfere with probe hybridization. We utilized McCartney et al36 to filter the cross-hybridizing probes that are 

not listed in the manifest. We removed all probes that reside in the ENCODE DAC black list regions37. 

  Once probe filtering was complete, we assessed the data for batch effects using principle component 

analysis (PCA) and no significant batch effect was observed, therefore no correction was applied38. The resulting 
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data matrix contained M-values and was used in all downstream analyses for maximum statistical inference in 

calculation of differential methylation. 

Identification of differentially methylated positions 

 To assess differentially methylated positions (DMPs), we utilized a generalized linear model (glm) within 

limma39 to assess differential methylation for each individual probe within the M-value matrix as 25 with 

adjustment for birth types and fetal sex within the model. We did not assess any additional covariate data in this 

particular analysis. The following pairwise comparisons were used to identify significant positions of differential 

methylation: isPTB verses AHC, TB verses AHC and isPTB verses TB. Within limma, we utilized the separate 

method,  which applies multiple test adjustments to each column of p-values of each individual pairwise 

comparison. Multiple corrections testing was performed using the Benjamini Hochberg method40 using multiple 

Q values: <0.5, <0.1, <0.2 and <0.3 (Supplemental Table 1). We opted to define significant DMPs with a Q <0.3 

and a log2 fold-change of >1.    

Methylome DMP Signature Identification 

To identify methylation signatures, we used Venny 2.041 to generate Venn diagrams to identify and sort significant 

DMPs. Candidate DMP fold changes were sorted by methylation pattern. The isPTB signature was defined as 

any DMP that was more or less  methylated when compared to the AHC and TB, with the AHC vs TB methylation 

signature being non-significant. The AHC signature was defines as any DMP that was more or less methylated 

compared to isPTB and TB and where the isPTB vs TB methylation was non-significant. Heatmaps were 

generated in Prism v8 (GraphPad) using M-values. To assess if the differential methylation was influenced by 

outliers or by artifacts, we generated violin plots with median and quartiles in Prism v8 to check the distribution 

of the individual sample beta values. Beta values were generated by transforming the M-values from the data 

matrix.  
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Differentially Methylation Region (DMR) Identification  

We used DMRcate25,42 to identify differentially methylated regions comprised of significant DMPs within a 

specified distance using moderated t statistics. To identify significant DMPs within DMRcate, we used the M-

value matrix (normalized and filtered) and set a threshold of Benjamini Hochberg adjusted p-value <0.3. Since 

DMRcate uses limma to determine the significant DMPs, we were able to utilize the same glm design from the 

initial DMPs analysis against adjusting for fetal sex and birth type. Once significant DMPs were identified, DMR 

identification thresholds were set at lamba=1000, C=2, and minimum cpgs=5. As we are analyzing array data, we 

opted to use the default lambda and C (scaling factor) which allows for optimal differentiation with 1 standard 

deviation of support to account for Type 1 errors. Once significant DMRs were identified in each pairwise 

comparison, we intersected them using Venny 2.0 to identify isPTB and AHC specific DMRs. The isPTB 

signature was defined as any DMR that was more or less methylated when compared to the AHC and TB, with 

the AHC vs TB. The AHC signature was defines as any DMR that was more or less methylated compared to 

isPTB and TB and where the isPTB vs TB methylation was non-significant meaning no DMR was identified in 

DMRcate. We also set a mean difference in differentiation threshold of 0.01. Heatmaps were generated in Prism 

v8 (GraphPad) using M-values. 

Functional analyses of DMRs 

DMRs were entered into the Panther Pathway DB43 for statistical overrepresentation analyses for Reactome 

Pathways and to assess gene ontology (GO) for biological and molecular processes. Fisher’s Exact tests were 

used to determine significance and Bonferroni correction for multiple comparisons. Pathways were considered 

significant if they had an adjusted p-value <0.05.  

 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.26.441471doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441471


 8 

Statistical Analyses 

Cohort data were analyzed in Prism v8 (GraphPad). Data were evaluated for normality and non-parametric tests 

applied as appropriate. Non-parametric data are expressed as median and range and were analyzed by Kruskal-

Wallis Test ANOVA with Dunn’s Multiple Comparisons. Categorical data were analyzed using Fisher’s Exact 

Test.  

Results 

Methylation Study Characteristics 

Maternal and fetal characteristics for the three different pregnancy outcomes included in the DNAm 

analyses are presented in Table 1. Transcriptomes from these samples were previously published24. Due to the 

amount of sample required for DNA extraction only a subset of the samples were used. Significant differences 

were observed in gestational age and fetal weights between AHC and isPTB samples compared to the TB samples 

(P<0.05). All AHC and TB for which there were fetal weights available were appropriate for gestational age. We 

included males and females in each sample set and adjusted the linear models for fetal sex in addition to birth 

outcome. It is important to note that in this study, we have mixed ethnic background within each of the sample 

sets.  

Identification of significant differentially methylated positions (DMP)  

Preliminary quality control identified one sample with mean probe detection p value >0.1 and it was 

subsequently removed from methylation analyses. Prior to normalization and subsequent probe filtering, there 

were 866,901 probes in the data matrix. After normalization and filtering, 108,691 probes were removed, leaving 

758,210 probes in the matrix for analyses (Supplemental Table 1). 

Our initial statistical testing using the Benjamini Hochberg Q cutoff of 0.05 did not yield any significant 

DMPs in the isPTB vs TB pairwise comparison. We ran several different cutoffs and ultimately relaxed our Q 

cutoff <0.3 to obtain a viable number of DMPs in the isPTB vs TB pairwise comparison (Supplemental Table 2). 

We then set a threshold for differential methylation of log2 fold change of >1. The DMP analysis identified a 
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total of 24,202 significant DMPs across all pairwise comparisons in the model. In the isPTB vs AHC comparison 

we identified 8,309 DMPs, 4,334 with reduced methylation and 3,975 more methylated in isPTB compared to 

AHC. In the TB vs AHC comparison, we identified a total of 15,817 DMPs with 7,170 less methylated and 8,647 

more methylated in TB. Lastly, in the isPTB vs TB comparison, 85 DMPs were identified as significant with 13 

more methylated and 72 less methylated (Figure 1A).  

We observed differences in genomic location of the DMPs between the pairwise comparisons and thus, 

analyzed the genomic location distribution of the DMPs per comparison (Figure 1B). In the isPTB vs AHC and 

TB vs AHC comparisons the majority of DMPs were associated with CpG islands, shores, shelves (isPTB = 70% 

and TB = 65%) while the remaining DMPs were in open sea locations which are typically 3-4kb away from CpG 

islands (isPTB = 30% and TB =  35% respectively). In contrast, in the isPTB vs TB comparison, 70% of the 

DMPs were associated with open sea positions while only 30% associated with CpG islands, shores, and shelves.  

Isolation of isPTB and AHC DNA methylation signatures using DMPs 

 The first step in identification of a DMP methylation signature was to intersect the significant DMPs from 

each pairwise comparison and determine which would potentially segregate into an isPTB or AHC signature 

(Figure 1C). As a result of the intersection, we identified 47 potential isPTB specific DMPs. Upon examining the 

DNAm patterns for these DMPs across all pairwise comparisons, we ultimately isolated 3 isPTB specific DMPs. 

Our examination of the individual sample beta values and their distribution for each DMP to confirm our findings 

are not due to artifacts or outliers(Figure 2A).  Although we initially identified 8,306 potential AHC specific 

DMPs via the intersection, upon further examination of the DNAm pattern, we ultimately isolated 6,177 (Figure 

2B). Of these, 3,002 are more methylated and 3,175 are less methylated. We also examined the genomic location 

distribution of the AHC signature DMPs and found that 76% were located within CpG islands, shores, and shelves 

with remaining 24% located in open sea regions (Supplemental Figure 1).   

Identification of differentially methylated regions (DMRs) 
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 To identify differentially methylated regions, we used the M-value matrix of data values previously 

generated in our initial analyses. We utilized again a relaxed Q <0.3 to ensure we would be able to identify enough 

CpG sites to identify DMRs in the isPTB vs TB comparison (Supplemental Table 5). Only then, we were able to 

identify significant DMRs within all pairwise comparisons (Table 2). 56 DMRs were observed within the isPTB 

vs TB comparison in contrast to the thousands significant DMRs identified in the isPTB and TB verses AHC 

pairwise comparisons. All isPTB vs TB DMRs were under 2000bp wide and had no more than 18 CpG sites in 

any given DMR. In contrast, the DMRs in the isPTB and TB vs AHC comparisons were wider and encompassed 

more probes (Table 2). We intersected the DMRs and identified potential candidate DMRs for isPTB and AHC 

methylation signatures (Supplemental Figure 2).  Ultimately, we identified 51 potential isPTB specific and 12,843 

AHC specific DMRs. These DMRs overlap with coding and non-coding loci across the genome as per the 

annotation from DMRcate package42.   

Identification and function of DMRs specific to isPTB and AHC 

 Of the 51 candidate isPTB DMRs, only seven demonstrated an isPTB specific signature (Figure 4 and 

Table 3). Six isPTB specific DMRs overlap coding/non-coding loci with only one sitting in an upstream promoter 

region, LINC02028 (Table 4). This is the only isPTB-specific DMR that overlaps with a CpG island. Four of the 

DMRs sit within transcripts for FAM186A, NOD2, UBL7-AS1, and PDE9A, more specifically within introns or 

at intron/exon boundaries. The remaining two DMRs sit in the 3'UTR of genes, ZBTB4 and STXB6, with the 

ZBTB4 DMR crossing the last exon/UTR boundary (Table 4). No over-represented pathways were identified.  

 Of the 12,843 AHC specific DMRs, only 1,718 demonstrated an AHC specific methylation pattern. These 

DMRs include coding and non-coding loci (Figure 5A and Supplemental Table 6). Of these, 801 DMRs are more 

methylated while 917 are less methylated than corresponding DMRs in the isPTB or TB pairwise comparison.  In 

the top 25 more/less methylated loci, the lack of significant differences in methylation can be clearly be observed 

in TB vs isPTB(Figure 5B and Table 5).  
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 We assessed the potential implications of the AHC specific DMRs using statistical over-representation 

analyses for pathways and GO terms. In the more methylated DMRs, we identified two significantly over-

represented pathways: WNT and Cadherin signaling (Table 6). Significant Biological Process GO terms included 

homophilic cell adhesion via plasma membrane adhesion molecules (GO:0007156) and cell-cell adhesion via 

plasma-membrane adhesion molecules (GO:0098742).  

 No significant over-represented pathways were identified in the less methylated DMRs. The significant 

Biological Process GO terms that were associated with the less methylated dataset include cell morphogenesis 

involved in differentiation (GO:0000904), cell morphogenesis (GO:0000902), cell morphogenesis 

(GO:0000902), and detection of chemical stimulus (GO:0009593). For Molecular Function, the following 

significant GO terms were identified: ion binding (GO:0043167), protein binding (GO:0005515), protein binding 

(GO:0005515), and olfactory receptor activity (GO:0004984) (Table 7) 

 

 

Discussion  

 To gain insight into the role of DNA methylation in spontaneous preterm birth, we utilized pairwise 

comparisons of placental villous tissue from spontaneous preterm births and normal term births within a general 

linear model adjusting for fetal sex and gestational age at delivery. We were able to identify distinct methylation 

signatures at both the positional (DMP) and regional (DMR) levels in isPTB and AHC. Through bioinformatic 

functional assessment, we were able to identify pathways of interest pertaining to placental maturation.  

 Given the sheer number of datapoints being examined, we felt that relaxing the Q value to 0.3 would not 

adversely affect our analyses and we were willing to accept the potential increase in false positives44,45. This 

allowed us to better assess any potential differences between isPTB and TB despite the potential increase in false 

positives. The Benjamini Hochberg correction is dependent on the overall number of samples to be corrected and 

considered to be rather conservative. Regardless of the statistical parameters applied, the isPTB signature 

mimicked the TB signature to a high degree which is in agreement with the transcriptomic signatures we 
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previously identified24 and provides additional evidence of a potential placental hypermaturity signature 

associated with isPTB. Although this is the first study investigating DNA methylation in spontaneous preterm 

birth, this pattern of DNA methylation was also observed in studies of iatrogenic preterm births in DMP and DMR 

analyses, for both PE and IUGR20. In the second study, focusing on imprinted regions found that IUGR samples 

also mimicked the PE and term controls46.  Pyrosequencing from this second study confirmed no differences in 

the DMRs suggesting the detection of hypermaturity molecular signature.  Given that hypermaturity is estimated 

to affect 50-60% of all preterm births7,8, these results provide additional evidence supporting that DNAm could 

be clinically useful in classifying various PTB placental pathophysiologies such as hypermaturity20,47.  

 DMRs are associated with numerous disease pathologies including various types of tissues48,49. While 

DNAm has been studied in the other adverse pregnancy outcomes such as PE, IUGR, this study is the first to look 

specifically at isPTB. Our analysis resulted in the identification of seven DMRs with isPTB specific methylation 

patterns; two are associated with non-coding transcripts (LINC02028 and UBL7-AS), five with genes (ZBTB4, 

STXBP6, PDE9A, NOD2, and FAM186A).  Of these genes, four are of particular interest due to their potential 

function in or previous association with PTB.  

 ZBTB4 is a placentally expressed gene coding for a transcription factor that binds methylated CpGs in a 

repressive manner, controls TP53 responses in cells, and inhibits cell growth and proliferation 50–52. TP53 35was 

identified as a potential biological pathway of interest in our microarray meta-analysis of spontaneous PTB53 and 

has been implicated in isPTB from a uterine perspective in mice54. STXBP6, also known as AMISYN, binds 

SNARE complex proteins together55. As SNARE complexes have been well described in synaptic vesicle 

formation and exocytosis56 and regulation of membrane fusion dynamics57,58, the presence of this protein in the 

placenta suggests potential role in placental extracellular vesicle formation or the mediation of membrane fusion 

during cytotrophoblast differentiation57,59.  
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 PDE9A functions in the hydrolysis of cAMP into monophosphates, modulating the bioavailability of 

cAMP and cGMP in cells60.  cAMP signaling is essential to cytotrophoblast differentiation into 

syncytiotrophoblast61; therefore, alteration of PDE9A expression or function impacts cAMP bioavailability 

potentially altering this specific trophoblast differentiation pathway. In fact, PDE9A has been proposed as a 

potential first trimester maternal serum biomarker for Trisomy 2162. Placentas from Trisomy 21 fetuses have 

multiple defects in cytotrophoblast differentiation, specifically cell fusion, resulting in what appears to be delayed 

villous maturation, indicating a key role for this gene in normal placental maturation62–65.  

 NOD2 has a role in activation of the innate inflammatory response and has been implicated in NFKB 

activation66–68. NFKB activation is a central component of pro-inflammatory /labor pathways in both normal term 

and preterm pathophysiology67,69,70. As a member of the NOD-like receptor family, NOD2 has been previously 

associated with recognition of pathogen associated molecular patterns (PAMPs) and damage associated molecular 

patterns (DAMPs) both of which have been associated with preterm labor and birth67. The activation of pathways 

associated with PAMPs and DAMPs have previously been associated with sPTB and iatrogenic PTB53,71–73. 

NOD2 has been studied primarily in the context of a proinflammatory factor in fetal membranes and myometrium; 

however, NOD2 is expressed in first trimester and term placental tissues, specifically in syncytiotrophoblast and 

stromal cells66,74. Furthermore, NOD2 polymorphisms have been associated with preterm birth in several genetic 

studies examining innate immunity, preterm premature rupture of membranes (PPROM), and early onset PE and 

HELLP syndromes67,72,75,76.  

 Taken together, these isPTB DMRs and their associated genes suggest that altered DNA methylation 

maybe highly influential in isPTB; however, from these data alone, it cannot be determined if this is a causative 

effect or the result of isPTB as the samples were obtained at delivery. Although we cannot sample placental 

tissues throughout gestation to determine cause or effect, using DNAm profiling on delivered placental tissues 

will provide key insights in the pathophysiological underpinnings of adverse pregnancy outcomes.  
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 In contrast to the isPTB DNAm signature, our examination of the AHC samples compared to the isPTB 

and TB samples identified 1,718 DMRs. We observed within the top 25 more/less methylated DMRs, multiple 

DMRs were associated with genes of  interest that were previously associated with adverse pregnancy outcomes 

including IUGR and PE. Several have also been associated gestational diabetes mellitus (GDM) which can also 

result in preterm birth. These genes of interest include: MLLT177, FGFR277, CACNA1A78, GCK79,80, FER1L681, 

CTSH82, and ACAP383. Additionally, GSE1 84, VSTM185, and ACSS184  are expressed in the placenta but have not 

yet been associated with an adverse pregnancy outcome. Our pathway analyses of the more methylated DMRs, 

yielded two pathways with statistical over-representation, WNT and Cadherin signaling. Both of these pathways 

are necessary for placental development and maturation86–89 and a prior methylation study in PE also identified 

differential methylation (increased methylation) in WNT and cadherin signaling90, which is in agreement with 

our findings. Given that over 50% of PE cases have hypermaturity along with the pathological hallmarks of PE, 

this may indicate a role for these pathways in placental maturation.  

 One of the caveats to studying placental villous omics of any nature is the lack of normal gestational age 

matched tissue due to limited accessibility throughout gestation. We previously utilized infection associated 

samples in our transcriptome analyses as our gestational age controls as their villi did not appear to be inflamed 

via pathological assessment. While we cannot rule out that changes at AHC loci may be due to infection, we did 

not observe pathways or GO terms associated with immunity or infection. Our data suggests that the overall AHC 

DNAm signature is reflective of appropriate villous maturation rather than an infection signature as was observed 

in our transcriptome data24.  

 This is the first study to examine DNAm in spontaneous preterm birth in the context of placental maturity. 

The identification of hypermaturity signatures by both positional and regional differences in methylation 

highlights the necessity of spontaneous preterm placentas in order to understand underlying the molecular 

mechanisms leading to the observed hypermaturity. These differences could be due to altered trophoblast biology. 
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These data when taken in the context of a potential epigenetic clock, suggests that perhaps epigenetic aging may 

have a role as it has in other fetal tissue and stem cells91,92. Future studies need to investigate the origin of the 

observed hypermaturity and its impact on the maternal-fetal interface and pregnancy outcomes.  
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Figures and Tables:  

 

 

 

Table 1: Clinical characteristics of the placental villous samples included in the methylation analyses 

Characteristics 

Acute Histological 

Chorioamnionitis Births 

(AHC) 

Idiopathic 

Spontaneous Preterm 

Births (isPTB) 

Term Births P-values 

Number of 

samples 
8 11 8  

Maternal Age 34.5(25-40) 25(18-39) 28(19-37) NS1 

Gestational Age 32(29-35)* 33(30-36)* 39(38-41) <0.00011 

Fetal sex  

(% female) 
3(38%) 6(55%) 4(38%) NS2 

Fetal weight 

(grams) 
1765(1360-2300)* 2105(1450-2722)* 3820(3650-4527) <0.00011 

Birth weight 

percentile 
55(20-80) 60(3-80) 90(60-99) NS1 

SGA % 0 18.0% 0  

Delivery type     

Cesarean (%) 4(50%) 4(37%) 5(50%) NS2 

Infection Status     

(% Positive) 8(100%)* 0(0%) 0(0%) <0.00012 

Data shown as median with range or total number with percent  
1ANOVA with Tukey’s correction for multiple comparisons 
2Chi Square Analyses      

NS=Not significant 
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Figure 1: Identification of methylation signatures using a comparative approach. A. Differentially 

methylated positions were identified using pairwise comparisons in limma. Red points indicate significant DMPs 

with a threshold of log2 fold change >1 and Benjamini Hochberg adjusted p value <0.2. Blue lines represent 

log2fold change of 1. B. Genomic distribution of DMPs in the pairwise comparisons.  The majority of DMPs in 

the isPTB and TB verses AHC comparisons are located inside or close to known CpG islands. However, in the 

isPTB verses TB comparison, the majority of DMPs are in open sea regions with no known islands within 4kb. 

C. The venn diagram represents the intersection of pairwise comparisons to classify significant DMPs into isPTB 

and AHC specific methylation signatures.  
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Figure 2: Identification of significant methylation signatures for isPTB and AHC DMPs.  

A. Three DMPs identified as having a isPTB specific methylation pattern where the isPTB samples were more or 

less methylated compared to the AHC or TB samples.  B.  6,177 DMPs demonstrating a methylation pattern 

where the AHC samples were more or less methylated than the isPTB or TB samples. The breakout heatmap 

shows the pattern or the top 25 more and less methylated samples and demonstrates the similarity of methylation 

between the isPTB and TB samples. The distribution of individual sample beta values was assessed to determine 

if there were outliers or artifacts influencing the methylation patterns 

 

 

 

 

 

 

 

 

 

 

Table 2 Summary of significantly differentiated DMRs identified by DMRcate encompassing both coding 

and non-coding loci 

 

Pairwise comparison Number of Significant 

DMRs  

Identified* 

Width of DMR 

 (Range) 

Number of Significant 

Probes in DMR 

(Range) 

isPTB vs TB  56 180-1750bp  5-18 probes 

isPTB vs AHC  12,883 83-9,386bp 5-110 probes  

TB vs AHC 19,006 37-14,383bp 5-202 probes 

*minimum smoothed FDR <0.05 
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Figure 4 isPTB specific DMR signature.  Differentially methylated DMRs were identified by differences in the 

mean of the probe values across the DMR. Only 7 isPTB DMRs had an isPTB specific signature where the isPTB 

DMRs were less methylated than the TB or AHC DMRs. Two of the DMRs overlap non-coding regions. No 

DMRs were identified that were more methylated.  
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Table 3 Summary of isPTB signature DMRs  

 
 Mean Difference of all probes in DMR  

Locus isPTB vs TB isPTB vs AHC TB vs AHC DMR coordinates 

LINC02028 -0.033 -0.028 0.007 chr3:194072066-194072416 

FAM186A -0.0416 -0.0175 0.0192 chr12:50343856-50344626 

NOD2 -0.043 -0.015 0.022 chr16:50715192-50715700 

UBL7-AS1 -0.054 -0.028 0.005 chr15:74466794-74467158 

ZBTB4 -0.058 -0.045 0.0008 chr17:7461421-7462028 

PDE9A -0.059 -0.066 0.054 chr21:42733397-42733894 

STXB6 -0.087 -0.0466 0.042 chr14:24808650-24810213 

 

 

 

 

 

 

Table 4 Functional information for the isPTB DMRs 

 

Locus Overlaps with CpG Island Location 

LINC02028 chr3:194070715-194071468 Promoter 

FAM186A NA Intronic 

NOD2 NA Intronic 

UBL7-AS1 NA Intronic 

ZBTB4 NA 3'UTR/last exon 

PDE9A NA Intron/exon boundary 

STXB6 NA 3'UTR 
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Figure 5 AHC specific DMR signature A. Differentially methylated DMRs were identified by differences in 

the mean of the probe values across the DMR. AHC specific DMRs are defined by when the AHC DMRs were 

More or less methylated than the TB or isPTB DMRs. B. The top 25 more and less methylated DMRs 

demonstrates the clarity of the molecular signature, as there is no significant differential methylation in the TB vs 

isPTB comparison.  
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Table 5:  The top 25 more and less methylated DMR mean differences in pairwise comparisons 

 

DMR location Locus Name 
Mean Diff  AHC 

vs TB 
Mean Diff AHC 

v isPTB 
Mean Diff TB v 

isPTB 

chr2:11915711-11916260 MIR3681HG 0.1474 0.1065 Not significant 

chr1:150692971-150694343 GOLPH3L 0.1366 0.0874 Not significant 

chr22:19973978-19975691 ARVCF 0.1125 0.0887 Not significant 

chr16:85342729-85343936 GSE1 0.1023 0.0615 Not significant 

chr9:34372089-34373067 MYORG 0.0993 0.0698 Not significant 

chr19:6230050-6230665 MLLT1 0.0986 0.0519 Not significant 

chr4:12224743-12225077 LINC02270 0.0946 0.0679 Not significant 

chr8:103750821-103751623 RIMS2 0.0894 0.0832 Not significant 

chr2:794646-796536 LINC01115 0.0881 0.0683 Not significant 

chr10:121577971-121579007 FGFR2 0.0812 0.0774 Not significant 

chr13:45965025-45966279 ZC3H13 0.0800 0.0565 Not significant 

chr22:46440394-46442103 CELSR1 0.0786 0.0848 Not significant 

chr19:54040774-54041856 VSTM1 0.0753 0.0491 Not significant 

chr11:62211493-62212431 SCGB2A1 0.0748 0.0606 Not significant 

chr4:7967275-7969643 ABLIM2 0.0741 0.0827 Not significant 

chr12:75057893-75058468 KCNC2 0.0723 0.0780 Not significant 

chr12:126018024-126018364 AC005186.1 0.0721 0.0576 Not significant 

chr16:89488412-89489377 ANKRD11 0.0714 0.0426 Not significant 

chr19:13616871-13617970 CACNA1A 0.0678 0.0609 Not significant 

chr1:41831580-41832649 HIVEP3 0.0668 0.0545 Not significant 

chr7:65878352-65879115 VKORC1L1 0.0667 0.0491 Not significant 

chr17:66097276-66098113 CEP112 0.0665 0.0687 Not significant 

chr3:195619562-195620147 MUC20P1 0.0653 0.0550 Not significant 

chr2:43327937-43328914 THADA 0.0647 0.0588 Not significant 

chr7:44152238-44154322 GCK 0.0632 0.0475 Not significant 

chr17:46018654-46019184 MAPT -0.0470 -0.0518 Not significant 

chr19:44302666-44303858 ZNF235 -0.0494 -0.0474 Not significant 

chr6:161560605-161561121 PRKN -0.0494 -0.0327 Not significant 
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chr16:67184164-67185527 EXOC3L1 -0.0506 -0.0433 Not significant 

chr11:17568197-17569556 OTOG -0.0522 -0.0294 Not significant 

chr22:23744094-23745131 ZNF70 -0.0536 -0.0400 Not significant 

chr1:160084263-160085568 KCNJ9 -0.0541 -0.0222 Not significant 

chr8:123859056-123859953 FER1L6 -0.0563 -0.0473 Not significant 

chr16:8724073-8724983 ABAT -0.0577 -0.0662 Not significant 

chr15:78933106-78934580 CTSH -0.0579 -0.0794 Not significant 

chr11:129993525-129993935 PRDM10 -0.0596 -0.0476 Not significant 

chr17:27312855-27313499 WSB1 -0.0598 -0.0373 Not significant 

chr19:30413468-30414886 ZNF536 -0.0621 -0.0370 Not significant 

chr20:25013229-25014771 ACSS1 -0.0649 -0.0353 Not significant 

chr16:30485296-30485966 ITGAL -0.0683 -0.0504 Not significant 

chr1:1296671-1297807 ACAP3 -0.0685 -0.0662 Not significant 

chr2:11679584-11680144 LPIN1 -0.0691 -0.0437 Not significant 

chr19:14048977-14049823 IL27RA -0.0702 -0.0460 Not significant 

chr9:123656764-123657427 DENND1A -0.0794 -0.0852 Not significant 

chr16:31366142-31366536 ITGAX -0.0852 -0.0428 Not significant 

chr7:133811022-133812369 EXOC4 -0.0945 -0.0578 Not significant 

chr12:69724920-69725444 AC025263.1 -0.0988 -0.0738 Not significant 

chr15:90208739-90209326 SEMA4B -0.1083 -0.1185 Not significant 

chr22:24988020-24990749 KIAA1671 -0.1093 -0.0773 Not significant 

chr10:93334974-93335677 MYOF -0.1173 -0.0643 Not significant 
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Table 6: Bioinformatic functional assessment of more methylated AHC signature DMRs via PantherDB 

  
Homo sapiens 

(all genes in 
database) 

Genes from 
input list Expected 

Fold 
Enrichment 

Adjusted  
P-Value* 

PANTHER Pathways      

Cadherin signaling 

pathway (P00012) 
164 21 5.34 3.94 6.51E-05 

Wnt signaling pathway 

(P00057) 
317 30 10.31 2.91 1.03E-04 

GO biological process 

complete 
     

homophilic cell adhesion 

via plasma membrane 

adhesion molecules 

(GO:0007156) 

168 26 5.47 4.76 4.62E-06 

cell-cell adhesion via 

plasma-membrane 

adhesion molecules 

(GO:0098742) 

257 28 8.36 3.35 1.05E-03 

      

GO molecular function 

complete 
     

ion binding 

(GO:0043167) 
6354 277 206.71 1.34 5.61E-05 

binding (GO:0005488) 16539 593 538.05 1.1 8.90E-05 

molecular_function 

(GO:0003674) 
18245 631 593.55 1.06 4.23E-03 

metal ion binding 

(GO:0046872) 
4268 192 138.85 1.38 4.82E-03 

cation binding 

(GO:0043169) 
4354 194 141.65 1.37 9.08E-03 

adenyl nucleotide binding 

(GO:0030554) 
1572 84 51.14 1.64 3.90E-02 

*Fisher Test Bonferroni Corrected for multiple comparisons 
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Table 7: Bioinformatic functional assessment of less methylated AHC signature DMRs via PantherDB 

  
Homo sapiens (all 

genes in database) 

Genes from 

input list Expected 

Fold 

Enrichment 

Adjusted  

P-Value* 

GO biological process 

complete 
     

cell morphogenesis involved 

in differentiation 

(GO:0000904) 

568 49 21.68 2.26 5.15E-03 

detection of chemical stimulus 

(GO:0009593) 
522 2 19.92 0.1 8.02E-03 

cell morphogenesis 

(GO:0000902) 
721 56 27.52 2.04 1.96E-02 

detection of chemical stimulus 

involved in sensory perception 

(GO:0050907) 

486 2 18.55 0.11 3.64E-02 

GO molecular function 

complete 
     

binding (GO:0005488) 16539 689 631.2 1.09 2.56E-04 

protein binding (GO:0005515) 14359 615 548.01 1.12 4.39E-04 

molecular_function 

(GO:0003674) 
18245 739 696.31 1.06 1.33E-03 

ion binding (GO:0043167) 6354 310 242.5 1.28 1.69E-03 

olfactory receptor activity 

(GO:0004984) 
441 2 16.83 0.12 4.87E-02 

*Fischer Test Bonferroni Corrected for multiple comparison 
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SUPPLEMENTAL TABLES (some will be in Excel) 

 

Supplemental Table 1 Probe Filtering during quality control assessment 

Total probes read into pipeline    866,901 

Failed Detection  810 866,091 

Normalization (FunNorm) 232 865,859 
   

Filtering probes after quality control      

Probes that failed in 2+ samples  8,546 865,859 

Remove X/Y probes 18,913 857,313 

Remove SNPs (Manifest) 28,488 838,400 

Remove SNPs (Zhou 2016) 13,303 809,912 

Remove Cross hybridizing probes (McCartney 

2016) 
38,280 796,609 

Remove Blacklist probes (2019 Blacklist) 119 758,329 

Total probes left for analyses  758,210 

 

 

 

Supplemental Table 2 Statistical testing in limma to determine significant DMPs between pairwise 

comparisons  
 BH adjusted p <0.05 BH adjusted p <0.1 

 isPTB vs 

AHC 

TB vs 

AHC 

isPTB vs 

TB 

isPTB vs 

AHC 

TB vs 

AHC 

isPTB vs 

TB 

More methylated 

probes 
13,111 41,767 0 27,797 71,566 0 

Less methylated 

probes 
17,037 31,632 0 36,791 59,535 0 

Total DMPs 30,148 73,399 0 64,588 131,101 0 
       

 BH adjusted p <0.2 BH adjusted p <0.3 

 isPTB vs 

AHC 

TB vs 

AHC 

isPTB vs 

TB 

isPTB vs 

AHC 

TB vs 

AHC 

isPTB vs 

TB 

More methylated 

probes 
51,382 116,150 0 73,338 152,935 29 

Less methylated 

probes 
72,136 109,987 7 105,617 152,647 593 

Total DMPs 123,518 226,137 7 178,955 305,582 662 

 

*Separate was selected within limma as the statistical method within limma 

** Limma only selected for adjusted p value, not log2 fold change.  
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Supplemental Table 3 Values for isPTB DMPs (EXCEL)- this is a large file 

Supplemental Table 4 Values for AHC DMP (EXCEL)- this is a large file 

 

 

Supplemental Table 5 Statistical testing in DMRcate to determine significant DMPs between pairwise 

comparisons  

 

BH adjusted p <0.05 <0.2 <0.3 <0.5 

isPTB vs TB 0 7 662 14,611 

isPTB vs AHC 30,148 123,518 178,955 300,625 

TB vs AHC 73,399 226,137 305,582 483,450 

** Limma only selected for adjusted p value, not log2 fold change.  

 

 

Supplemental Table 6 Values for AHC DMRs (EXCEL)- this is a large file  

 

 

SUPPLEMENTAL FIGURES 

 

 
Supplemental Figure 1: Genomic Distribution of DMPs within the AHC methylation signature. The 

distribution of 6,177 DMPs in the AHC signature DMPs. The majority of probes are found within CpG islands 

or closely associated with islands.  
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Supplemental Figure 2: Intersection of 

significant DMRs The venn diagram 

representing the intersection of pairwise 

comparisons to classify significant DMRs into 

isPTB and AHC specific signatures 
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