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Abstract 

Deciphering the cellular composition in genome-wide spatially resolved transcriptomic data 

is a critical task to clarify the spatial context of cells in a tissue. In this study, we developed a 

method, CellDART, which estimates the spatial distribution of cells defined by single-cell 

level data using domain adaptation of neural networks and applied it to the spatial mapping of 

human lung tissue. The neural network that predicts the cell proportion in a pseudospot, a 

virtual mixture of cells from single-cell data, is translated to decompose the cell types in each 

spatial barcoded region. First, CellDART was applied to mouse brain and human dorsolateral 

prefrontal cortex tissue to identify cell types with a layer-specific spatial distribution. Overall, 

the suggested approach was superior to the other computational methods in predicting the 

spatial localization of excitatory neurons. Furthermore, CellDART elucidated the cell type 

predominance defined by the human lung cell atlas across the lung tissue compartments and it 

corresponded to the known prevalent cell types. CellDART is expected to help to elucidate 

the spatial heterogeneity of cells and their close interactions in various tissues.  

Keywords: spatially resolved transcriptomics; single-cell genomics; domain adaptation; deep 

learning; cell label transfer 
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Main 

Rapid progress in spatially resolved transcriptomics helped to comprehensively characterize 

the spatial interaction of cells in a tissue1, 2. Breakthrough technologies enabled capturing 

genome-wide spatial gene expression at a resolution of several cells3 to the single-cell4-6 and 

even subcellular levels7. These methods have been used in various disease models to decipher 

spatial maps of genes of interest and culprit cells8-12. Furthermore, emerging computational 

approaches facilitated the spatiotemporal tracking of specific cells and elucidated cell-to-cell 

interactions by preserving the spatial context12-14. However, there is an inherent limitation in 

the spatial transcriptomic analysis that each spot or bead covers more than one cell in most 

cases. Even with a high-resolution technique, a small portion of several cells can be contained 

in the same spatial barcoded region. In addition, a tissue with a high level of heterogeneity, 

such as cancer, consists of a variety of cells in each small domain of the tissue15. Thus, the 

identification of different cell types in each spot is a crucial task to understand the spatial 

context of pathophysiology using a spatially resolved transcriptome. 

In this regard, recent computational tools have focused on integrating different types of 

transcriptomic data, particularly spatially resolved transcriptomic and single-cell RNA-

sequencing (scRNA-seq) data14, 16-23. These tools have utilized the cell type signatures 

defined by scRNA-seq and transferred the cell labels into spatial transcriptomic data. The 

majority of the approaches applied a statistical model or a matrix decomposition to infer the 

cell fraction in each spot 18, 20-22. Meanwhile, calculating the proportion of cell types defined 

by scRNA-seq data from spots of spatially resolved transcriptomic data can be considered a 

domain adaptation task24, 25. A model that predicts cell fractions from the gene expression 

profile of a group of cells can be transferred to predict the spatial cell-type distribution. 
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In this paper, we suggest a method, CellDART, that implements adversarial discriminative 

domain adaptation (ADDA)26 to infer the cell fraction in spatial transcriptomic data. The 

randomly selected cells from scRNA-seq data constitute a pseudospot in which the fraction of 

cells is known. The neural network model that extracts the cell fraction from the gene 

expression of a pseudospot is adapted to a different domain where spatial transcriptomic data 

are present. Consequently, the joint analysis of spatial and single-cell transcriptomic data 

elucidates the spatial cell composition and unveils the spatial heterogeneity of the cells. We 

utilized the proposed method to provide a resource for spatial mapping of the human lung cell 

atlas using the spatially resolved transcriptome of human lung tissue. 
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Results 

Decomposition of spatial cell distribution with CellDART in human and mouse brain 

data 

The performance of CellDART was assessed in publicly available single-nucleus (also 

considered single-cell data) and spatial transcriptomic autopsy samples of the human 

dorsolateral prefrontal cortex (DLPFC), each of which was obtained from two different 

subject groups with no neurological disorders. Additionally, single-cell and spatial datasets 

acquired from the mouse brain were utilized. First, both single-cell datasets were 

preprocessed, and the cells were named after the annotation data provided by the original 

papers27, 28. The 33 and 29 annotated cell clusters from the human and mouse brains were 

visualized by t-distributed stochastic neighbor embedding (t-SNE) plots (Supplementary Fig. 

1a, b), and marker genes for each cluster were extracted (Supplementary Fig. 1c, d and 

Supplementary Tables 1, 2). The cell clusters showed distinct gene expression patterns 

represented by cell type-specific marker genes.  

A specific number of cells (k = 8) were randomly sampled from the single-cell data with 

random weights to generate pseudospots (number of pseudospots = 20000). Then, composite 

gene expression values were computed based on marker genes (Fig. 1a). A neural network 

was trained to accurately decompose the pseudospots, and another network, the domain 

classifier, was trained to discriminate spots of real spatially resolved transcriptomes from 

pseudospots. During the training process, the weights of neural networks were updated to 

predict cell fractions and fool the domain classifier to avoid discriminating spots and 

pseudospots (Fig. 1a). As a result, the neural network, source classifier, was trained to 

estimate cell fractions in both the pseudospots and the real spatial spots as an adversarial 

domain adaptation process. 
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The layer-specific excitatory neuron fraction in each spot was predicted by CellDART and 

spatially mapped to the tissue. In the case of mouse brain tissue, 7 excitatory neurons showed 

spatially restricted patterns in a specific cortical layer (Fig. 1b). In addition, the 10 excitatory 

neuron clusters in the human brain presented layer-specific distribution patterns across the six 

cortical layers (layers 1 to 6) (Fig. 2a and Supplementary Fig. 2a). Additionally, the spatial 

density of human non-neuronal cells was estimated with a neural network (Supplementary 

Fig. 2b). Astrocytes were mainly located in layer 1 and layer 6, while oligodendrocyte cluster 

3 (Oligos_3), which showed an approximately 10 to 60 times higher cell fraction than the 

other two clusters (Oligos_1 and Oligos_2), was predominantly localized in white matter. 

Endothelial cells, microglia, and macrophages were spatially distributed across the six 

cortical layers with low cell proportions. 

 

Comparison of CellDART with other integration tools in human brain tissue 

The capability of CellDART to accurately assign cell types in spatial spots was compared 

with that of three computational tools: Scanorama, Cell2location, and RCTD. The three 

methods were employed to decipher the spatial distribution of excitatory neurons and non-

neuronal cells in the DLPFC dataset.  

Scanorama showed a few excitatory neurons of cortical layer-specific distribution patterns, 

whereas Ex_2_L5, Ex_4_L6, Ex_9_L5_6, and Ex_10_L2_4 excitatory neurons were 

distributed differently from the known cortical distribution (Supplementary Fig. 3a, b). 

Astrocytes and oligodendrocytes did not show consistent cell distribution patterns across the 

cell subtypes. Endothelial cells, microglia, and macrophages were predominantly localized in 

layer 1, layer 6, and the white matter according to the Scanorama analysis (Supplementary 

Fig. 3c).  
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In the case of Cell2location, neither excitatory neurons nor non-neuronal cells showed 

layer-specific localization patterns except for a few cell types (Ex_4_L6, Oligos_1, and 

Micro_Macro) (Supplementary Fig. 4).  

Finally, for RCTD, a few excitatory neurons (Ex_2_L5 and Ex_10_L2_4) exhibited a high 

cell fraction in the corresponding cortical layer of a known layer specificity; however, other 

excitatory neurons presented heterogeneous patterns of distribution (Supplementary Fig. 5a, 

b). Additionally, in the non-neuronal cells, the spatial distribution was relatively uneven and 

not layer-specific except for three oligodendrocyte cell clusters (Supplementary Fig. 5c). 

Receiver operating characteristic (ROC) curve analysis was implemented to compare the 

performance of the four different tools in predicting the layer-specific distribution of 

excitatory neurons (Fig. 2b). The spatial spots in the DFPLC data were classified into a 

specific layer, layer 1 to layer 6, white matter, or unknown, with manual annotation data29 

based on the tissue morphology and marker genes30. The ROC curves for 10 excitatory 

neurons revealed that CellDART has overall good prediction accuracy, with an area under the 

curve (AUC) ranging from 0.629 in Ex_7_L4-6 to 0.759 in Ex_4_L6. On the other hand, 

Scanorama and RCTD exhibited relatively low discriminative accuracy in several cell types 

with AUCs below 0.5 and comparable AUCs with CellDART for a few cell types. In addition, 

Cell2location showed several cell types with AUCs below 0.5 and a maximum AUC of 0.591. 

The confidence interval of the AUC was generated by bootstrapping, and the results were 

compared among the four methods (Supplementary Fig. 6). In general, CellDART showed 

superior performance in predicting layer-specific localization patterns across all excitatory 

neurons. 

 

Discovery of spatial heterogeneity of human lung tissue with CellDART 
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CellDART was further applied to normal lung spatial transcriptomic data. Human lung tissue 

was obtained from one patient who underwent lobectomy for surgical resection of lung 

cancer. The two normal lung tissues were dissected far from the tumor and pathologically 

confirmed to have no tumor cells (Supplementary Fig. 7). The demographic features of the 

patient are summarized in Supplementary Table 3. The publicly available human lung cell 

atlas data were used for spatial mapping of lung cell types using CellDART. They consisted 

of scRNA-seq from three human normal lung tissues31. The single-cell data were embedded 

in low-dimensional space by a t-SNE plot, and 57 cell clusters showed discrete gene 

expression patterns (Supplementary Fig. 8a). The marker genes selected in each cell cluster 

were pooled and utilized in the downstream analysis (Supplementary Fig. 8b and 

Supplementary Table 4). After the generation of pseudospots, CellDART was trained to 

assign the proportion of cells in the spatial spots. The tissue slides from two spatial datasets 

(lung 1 and lung 2) were manually segmented, and each spot was classified into 7 categories: 

alveolar space, bronchial epithelium, fibrous stroma, immune cluster, terminal bronchiole, 

vessels, and unknown region (Fig. 3a, b). In addition, the cell types were classified into five 

categories based on a previous study31. An average scaled cell proportion of spots in the same 

tissue domain was calculated, and the values were expressed with heatmaps. 

In both the lung 1 and lung 2 datasets, each cell type showed different distribution patterns 

across the segmented tissue domains (Fig. 3c, d). Among the ‘airway epithelial’ cells (blue 

color on the left side of the heatmaps), proximal ciliated, ciliated, mucous, and club were 

mainly localized in bronchial epithelium or terminal bronchiole. ‘Alveoli epithelial’ cells 

(orange color) were localized in the alveolar space of lung 2 data. ‘Muscle stromal’ cells (red 

color) were mainly distributed in unknown stroma in the lung 1 data and terminal bronchioles 

or vessels in the lung 2 data. ‘Immune’ cells (brown color), particularly B-cells, monocytes, 

and dendritic cells, were predominantly located in the immune cluster tissue domain. Finally, 
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‘endothelial’ and ‘other stromal’ cells did not present spatially localized patterns of 

distribution. 

For the next step, cell types that showed highly different cell fractions across the tissue 

domains were selected (Supplementary Table 5). The top 7 cell types were ranked by the 

ratio of the scaled cell fraction in the specific tissue domain compared to the other domains 

and were mapped to the tissue (Fig. 4a, b). The cell types with an average scaled cell fraction 

in the domain below 0.2 were excluded. For lung 1 tissue, ‘proximal basal’ and ‘proximal 

ciliated’ cells, which were previously described as ‘airway epithelial’ cells (blue color), were 

predominantly distributed in the bronchial epithelium or terminal bronchiole tissue domain 

(Fig. 4a). Most ‘immune’ cell types (brown color) were localized in the immune cluster 

domain except for ‘classical monocytes’, which are commonly found in bronchial epithelium. 

In lung 2 tissue, ‘ciliated’, ‘proximal ciliated’, ‘club’, and ‘mucous’ cells, which are included 

in ‘airway epithelial’ (blue color) cells, were mainly located in the terminal bronchiole 

domain (Fig. 4b). ‘Capillary intermediate 2’ included in the ‘endothelial’ cell type (green 

color) was localized in the alveolar space domain, while another endothelial cell type, ‘artery’, 

was mainly located in the fibrous stroma and vessels. Additionally, ‘alveolar epithelial type 2’ 

in the ‘alveoli epithelial’ (orange color) was predominantly distributed in the alveolar space 

domain. In summary, CellDART could precisely localize the spatial distribution of 

heterogeneous cell types in normal lung tissue. 
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Discussion 

CellDART, which adapts the domain of single-cell and spatial transcriptomic data, could be 

flexibly applied to brain and lung tissues to decompose the spatial distribution of various cell 

types. The suggested approach was capable of accurately predicting the layer-specific 

localization of excitatory neurons and non-neuronal cells in the brain. Additionally, 

CellDART was superior to the other three computational tools, Scanorama, Cell2 location, 

and RCTD, in spatially localizing multiple excitatory neuron subtypes. Moreover, our domain 

adaptation method deciphered the spatial distribution patterns of various lung cells across the 

different tissue compartments. 

CellDART can be adopted for spatial transcriptomic data to portray the cellular landscape 

of the tissue by preserving the spatial context. In the brain, six cortical layers and the white 

matter contain different cell types, and the heterogeneous cells in each layer shape distinct 

functional characteristics32. Therefore, it is crucial to precisely decompose brain cell types in 

spatial transcriptomic data to comprehensively analyze the spatial crosstalk among cells. In 

the mouse brain tissue, layer-specific excitatory neurons revealed localized patterns of 

distribution across the cortical layers (Fig. 1b). Additionally, in the validation study with 

human DLPFC tissue, not only layer-specific excitatory neurons but also glial cells such as 

astrocytes and oligodendrocytes showed spatially restricted patterns (Fig. 2 and 

Supplementary Fig. 2b). Three astrocyte subtypes, Astros_1, Astros_2, and Astros_3, were 

predominantly located in L1 and L6. It has been reported that astrocytes form cortical layer-

specific morphological and gene expression features32-34; however, the abundance of 

excitatory neurons in the mid cortical layers may have masked the presence of diverse 

astrocyte populations. Meanwhile, one of the oligodendrocyte subtypes, Oligos_3, which 

presented a higher absolute cell fraction than the other subtypes, was localized in the white 
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matter. This finding is in line with a previous study showing that oligodendrocytes are highly 

restricted in white matter compared to gray matter35. On the other hand, the spatial 

distribution of glial cells did not match the known localization patterns and was not layer-

specific in Scanorama and Cell2location, respectively (Supplementary Fig. 3, 4). In the case 

of RCTD, oligodendrocytes showed strong localization patterns in white matter; however, 

other glial cells did not present a layer-specific distribution (Supplementary Fig. 5). 

Our suggested method, CellDART, was further applied to human lung tissues where a 

mixture of various cells was present across the tissue compartments31. The cell types that 

exhibited a high proportion in a specific tissue domain corresponded with a previous paper 

presenting the cell type predominance in the lung compartments (Figs. 3, 4). In addition, 

when the top 7 highly localized cell types in each tissue compartment were listed, the selected 

cell types were shared between the lung 1 and lung 2 tissues (Supplementary Table 5). 

More specifically, for the alveolar space tissue domain, three alveolar epithelial cells 

(‘alveolar epithelial type 1, 2,’ and ‘signaling alveolar epithelial type 2’) and two capillary 

cells (‘capillary intermediate 2 and ‘capillary aerocyte’) overlapped in both tissues. The cell 

types were also shared in the fibrous stroma (‘fibromyocyte’, ‘mesothelial’, and 

‘myofibroblast’), immune cluster (‘B’, ‘OLR1+ classical monocyte’, ‘EREG+ dendritic’, and 

‘plasmacytoid dendritic’), and terminal bronchiole (‘proximal basal’, ’proximal ciliated’, 

‘differentiating basal’, and ‘ciliated’) tissue domains. In short, CellDART can accurately 

assign prevalent cell types in the tissue compartments and is reproducible across replicates of 

the tissue. Considering the heterogeneous cell types in the lung, our resource of spatially 

resolved cell types derived from human lung tissue data provides the spatial distribution of 

cell types and may be used as controls to analyze pathologic patterns of various lung diseases. 
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There are two important issues to consider before applying CellDART to transfer cell 

labels. First, the density of cells may vary in the different regions of the tissue. In our method, 

the sampled number of cells in a pseudospot is fixed during the training; however, the domain 

adaptation process aligns the pseudospot to the spatial data, and the impact of spatial cell 

density variance on the result may be attenuated. In addition, the small population of cells in 

the spatial data may be neglected during the prediction of the cell proportion. The proportion 

of those cell types can be masked due to other predominant cell types in the spatial spots. In 

that case, CellDART can be implemented for the corresponding subpopulation of cells by 

extracting the marker genes for the subclusters. 

In conclusion, CellDART is capable of estimating the spatial cell compositions in complex 

tissues with high levels of heterogeneity by aligning the domain of single-cell and spatial 

transcriptomics data. The suggested method may help elucidate the spatial interaction of 

various cells in close proximity and track the cell-level transcriptomic changes while 

preserving the spatial context. 
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Methods 

Human brain cortex data 

A publicly available Visium spatial transcriptomics dataset obtained from the DLPFC of 

postmortem neurotypical humans was downloaded from the data repository provided by the 

paper29. Among the 12 slides, 'tissue 151673' with 3639 spots and 33538 genes was selected. 

The count matrix for the tissue and brain layer information for each spot (cortical layers 1-6 

and white matter) was added, and spots with no layer information were excluded from further 

analysis. Single-nucleus transcriptomic data acquired from the DLPFC of a healthy human 

control group (n=17) were utilized for the joint analysis28. The count matrix for 35212 cells 

and 30062 genes and the cell type annotation were included in the analysis. 

 

Mouse brain data 

Visium spatial transcriptomics dataset for the mouse brain was downloaded from the 10X 

Genomics Data Repository. The ‘Mouse Brain Serial Section (Sagittal-Anterior)’ slide, which 

contains 2695 spots and 32285 genes, was utilized for the CellDART analysis. For the joint 

analysis, scRNA-seq data obtained from the mouse primary visual cortex and anterior lateral 

motor cortex were selected. The count matrix was comprised of 23178 cells and 45768 genes. 

The layer-specific excitatory neuron types [L2/3 IT (intratelencephalic), L4, L5 IT, L5 PT 

(pyramidal tract), L6b, L6 CT (corticothalamic) and L6 IT] were determined based on the 

markers discovered in a previous study27. 
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Normal human lung data 

Two normal lung samples were acquired from lung specimens from one patient who 

underwent surgical resection for lung cancer. We acquired samples and embedded them in 

optimal cutting temperature (OCT) compound in the operating room and stored them at -

80°C until cryosectioning. For cryosectioning, samples were equilibrated to -20°C with a 

cryotome (Thermo Scientific, USA). Sections were imaged and processed for spatially 

resolved gene expression using the Visium Spatial Transcriptomic kit (10X Genomics, USA). 

The protocol of this study was reviewed and approved by the institutional review board of 

Seoul National University (Application number: H-2009-081-1158). 'Lung 1' consists of 1591 

spots and 36601 genes, and 'Lung 2' consists of 2683 spots and 36601 genes. Single-cell data 

from the normal lung tissue of three subjects were downloaded and utilized for the integrated 

analysis31. The count matrix for 65662 cells and 26485 genes and the cell labels were 

included in the downstream analysis. 

 

Preprocessing spatial and single-cell datasets 

All of the preprocessing steps were performed with Python (version 3.7) with the Scanpy 

toolkit (version 1.5.1)36. The count matrices for both spatial and single-cell datasets were 

normalized with the 'scanpy.pp.normalize_total' function such that gene expression was 

comparable between spots or cells. For the single-cell data, the counts were log-transformed 

(scanpy.pp.log1p) followed by scaling (scanpy.pp.scale) and dimensionality reduction by 

principal component analysis (scanpy.tl.pca). Finally, the cells were represented with a t-

distributed stochastic neighborhood embedding (t-SNE) plot (scanpy.tl.tsne and 
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scanpy.pl.tsne) and were named based on the annotation data from publicly available 

datasets. 

Meanwhile, the top 20 and 10 highly expressed marker genes for each cell cluster from 

brain and lung samples were extracted with the Wilcoxon rank-sum test 

('scanpy.tl.rank_genes_groups') based on the log-normalized count. Multiple comparison 

correction with the Benjamini-Hochberg method was applied, and genes were ranked by the 

corrected p-values. All of the cell type markers were pooled to form cell signature genes 

(Supplementary Fig. 9a). The intersection between the cell signature genes and all provided 

genes from the spatial data was obtained. The downstream analysis was performed only with 

these intersecting genes. 

For the next step, k cells were randomly selected from the mouse or human brain (k = 8) 

and lung single-cell datasets (k = 10). Random weights were given to each cell to mimic the 

cases in which only the portion of the cells are contained in a spatial spot (Supplementary 

Fig. 9a). The virtual mixture of the cells was defined as a 'pseudospot'. A total of 20000 

pseudospots were generated, and the composite gene expression values were calculated for 

each pseudospot. Then, the log-normalized count matrices for single-cell, pseudospot, and 

spatial spot data were scaled such that the value lies between 0 and 1 in each cell or spot. 

 

CellDART: Cell type inference with domain adaptation 

The modified ADDA algorithm26 was applied to develop a model to predict cell type 

proportions for each spot (Fig. 1). The training of neural networks was implemented based on 

Keras (version 2.3.1), TensorFlow (version 1.14.0) and scikit-learn (version 0.24.1) packages. 
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First, a feature embedder that computes 64-dimensional embedding features from the gene 

expression data of either spatial spots or pseudospots was defined. The feature embedder was 

comprised of two fully connected layers, each of which underwent batch normalization and 

activation by the ELU function. The outputs of the first layer and second layer have 1024 and 

64 dimensions, respectively. Source and domain classifiers were defined such that they could 

predict the cell fraction in each spot and discriminate pseudospots from spots, respectively. 

The domain classifier consisted of two fully connected layers. The first layer with 32-

dimensional output was connected to the embedded features. After batch normalization, ELU 

activation, and dropout, another layer to discriminate real spots from pseudospots was 

applied. The source classifier is directly connected to the embedded features of the feature 

extractor as a one-layer model connected to the feature embedder. Therefore, the feature 

extractor attached to either of the classifiers was named a source or domain classification 

model. The source and domain classification model shared the feature extractor. 

The loss function of the source classifier that predicts cell type proportions was defined 

by Kullback-Leibler divergence (KLD). KLD is decreased when the distribution of predicted 

and real cell type proportions is similar. For the initialization of weights of feature embedder 

and source classifier, initial training to predict cell type proportions for pseudospots was 

performed. The optimization process can be summarized by these formulae: 
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f: feature embedder, S: source classification model, D: domain classification model 

First, the model was trained to minimize Ls as a pre-training process. As an adversarial 

loss, it is typical to train the model with the standard loss function with inverted labels as in 

the above formula. Thus, two optimization processes were applied (Supplementary Fig. 9b). 

The networks were optimized to minimize Ls and Ladv with fixed weights of the domain 

classifier. Then, the domain classifier was trained to minimize LD with fixed weights of the 

feature embedder, f. These two processes were repeated with a training parameter of the 

number of iterations. The iteration number was set to 3000, the minibatch size was 512, and 

the learning rate for the training domain classifier was 0.005. The loss weights between the 

source and domain classifiers were 1:0.6 in brain tissues and 1:1 in lung tissues. 

Finally, the trained model, CellDART, predicted the cell fraction in each spot from the 

spatial data, and the results for each cell type were spatially mapped to the tissue by the 

'scanpy.pl.spatial' function. Additionally, the distribution of cell type compositions across the 

brain layer was represented with the ‘scanpy.pl.stacked_violin’ function. 

 

Comparison to other tools 

For the DLPFC datasets, the performance of CellDART was compared with three other 

computational tools: Scanorama16, Cell2location20, and RCTD21. Briefly, Scanorama aligns 

the single-cell and spatial datasets based on the mutual nearest neighbors between the two. 

Meanwhile, Cell2location assumes that the count matrix from spatial data follows a negative 

binomial distribution and can be decomposed into a linear combination of cell type 
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signatures. RCTD postulates that counts in spatial spots follow a Poisson distribution and 

applies the maximum likelihood method to estimate cell proportions. These three toolkits 

were applied, and cell density from Cell2location and cell fraction from Scanorama and 

RCTD were spatially mapped to the tissue. For Cell2location analysis, we set the total 

number of cells, cell types, and groups of cell types (for example, excitatory neurons group) 

in each spatial spot as 8, 9, and 5, respectively. For RCTD, we selected ‘full mode’, which 

does not restrict the number of cells in each spot. 

The DLPFC spatial data contain the brain layer information (layer 1 to layer 6, white 

matter, and unknown), and the single-cell data have ten layer-specific excitatory neuron 

clusters (Ex_1_L5_6, Ex_2_L5, Ex_3_L4_5, Ex_4_L6, Ex_5_L5, Ex_6_L4_6, Ex_7_L4_6, 

Ex_8_L5_6, Ex_9_L5_6, and Ex_10_L2_4). The layer specificity of excitatory neurons was 

determined by the cell types identified from the single-nucleus RNA-seq data28 with the layer 

markers suggested by several studies30, 37, 38. Receiver operating characteristic (ROC) analysis 

was performed to determine whether the spatial cell fraction of excitatory neuron clusters 

could differentiate the specific cortical layer. The cell fraction and layer information of each 

spot were bootstrapped, and 1000 null distribution samples for the area under the curve 

(AUC) value were calculated. The ROC curves and AUC values were compared between 

CellDART, Scanorama, Cell2location, and RCTD. The statistical analysis and visualization 

were implemented with scikit-learn and matplotlib (version 3.3.4). 

 

Spatial mapping of lung cells to normal lung tissue data: investigation of the spatial 

heterogeneity of the cells 
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The boundary of the tissue structures in two lung samples (lung 1 and lung 2) was delineated 

by a pathologist on H&E staining images, and the spots were classified into 6 domains: 

alveolar space, bronchial epithelium, fibrous stroma, immune cluster, terminal bronchiole, 

and vessels. The uncertain region of the tissue was named ‘unknown’ and more specifically 

‘unknown stroma’ if the corresponding region was stromal tissue. After transferring the 

single-cell cluster labels to the spatial data, the minimum and maximum cell fraction values 

across all spots were scaled to 0 and 1, respectively. The cell types were divided into six 

categories based on where the cells were commonly found31 (‘airway epithelium’, ‘alveoli 

epithelium’, ‘endothelial’, ‘muscle stromal’, and ‘other stromal’). The average scaled cell 

fraction in each tissue domain according to cell types was visualized with a seaborn 

clustermap function (version 0.11.1), and the cell type categories were color-coded and 

presented on top. For the next step, the cell types showing highly different cell fractions 

across the histological domains were selected, and their spatial composition was mapped to 

the tissue. Cell type selection was performed with the Wilcoxon rank-sum test, and 

Benjamini-Hochberg corrected p-values were computed. The cell types in each tissue domain 

were ranked based on a ratio of the average scaled cell fraction in a specific tissue domain to 

the rest of the domains. The cell types with an average scaled fraction below 0.2 were 

excluded from further analysis. An adjusted p-value below 0.05 was considered significant. 
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Code availability 

Python source code for CellDART is uploaded on 

https://github.com/mexchy1000/CellDART. 
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Figure legends 

 

Fig. 1. CellDART analysis in human and mouse brain tissues 

a, Schematic diagram for CellDART analysis. The human dorsolateral prefrontal cortex 

(DLPFC) dataset was preprocessed, and the marker genes for each cell cluster were extracted. 

The shared genes between the pooled cluster markers and the spatial transcriptomic data were 

selected for the downstream analysis. Then, 20000 pseudospots were generated by randomly 

selecting 8 cells from the single-cell data and giving them random weights. A feature 

extractor with a source and domain classifier was trained to estimate the cell fraction from the 
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pseudospot and distinguish the pseudospots from the spatial spots. First, weights of the neural 

network were updated except for the domain classifier. Next, the data label for the spot and 

pseudospot was inverted, and only the domain classifier was updated. Finally, the trained 

CellDART model was applied to spatial transcriptomics data to estimate the cell proportion 

in each spot. 

b, Spatial mapping of 7 layer-specific mouse excitatory neurons predicted by CellDART. The 

figure in the top left corner shows the mouse brain tissue slide. Colormaps present the 

maximum and minimum values for the corresponding cell fraction. 
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Fig. 2. Implementation of CellDART in a human dorsolateral prefrontal cortex dataset. 

a, Spatial mapping of 10 layer-specific excitatory neurons predicted by CellDART. The 

figure in the top left corner shows the layer annotation for each spatial spot. The layer 

consists of cortical layers 1 to 6 and white matter. ‘Nan’ represents the spot without the layer 

information. Colormaps present the maximum and minimum values for the corresponding 

cell fraction. 

b, Receiver operating characteristic (ROC) analysis for predicting the layer-specific 

distribution of excitatory neurons. The computational tools CellDART, Scanorama, 

Cell2location, and RCTD, which estimate cell types in the spatial spots, were compared by 

means of the area under the curve (AUC). The ROC curves for CellDART, Scanorama, 

Cell2location, and RCTD are color-coded, and AUC values are presented in the lower right 
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corner of each plot. 
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Fig. 3. Application of CellDART in human lung data to decipher the tissue 

microenvironment 

a-b, Segmentation of the histological structures in normal lung tissue (a) 1 and (b) 2. The 

tissue was divided into six domains: alveolar space (capillary pneumocyte), bronchial 

epithelium, fibrous stroma, immune cluster, terminal bronchiole, and vessels. Uncertain 

stromal tissue was defined as ‘unknown stroma’, and the other unspecified areas were defined 

as ‘unknown’. 

c-d, Heatmaps for the average scaled cell fraction in each histological domain of (c) lung 1 

and (d) 2 tissues. The cell types were classified into 6 categories (‘alveolar epithelial’, 

‘alveoli epithelial’, ‘endothelial’, ‘muscle stromal’, ‘other stromal’, and ‘immune’) based on 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.26.441459doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441459


the original paper of the human lung cell atlas31 and color-coded on top of the heatmaps. 

Additionally, hierarchical clustering was performed based on cell fraction profiles across the 

tissue compartment to visualize the similarity between the cell types. 
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Fig. 4. Spatial compositions of tissue compartment-specific cell types in the human lung 

a-b, Spatial mapping of the lung cell fraction for the top 7 cell types predominant in a 

specific tissue compartment of the (a) lung 1 and (b) 2 datasets. The cell types were ranked 

based on the average scaled cell fraction in a specific tissue domain compared to the other 

domains. The figure in the top left corner shows the classification of the tissue domain for 

each spatial spot. Colormaps present the maximum and minimum values for the 

corresponding cell fraction.  
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