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Abstract:

There is increasing interest in the roles played by covalently modified nucleotides in mRNAs and non-
coding RNAs. New high-throughput sequencing technologies localize these modifications to exact
nucleotide positions. There has been, however, and inability to account for these modifications in
secondary structure prediction because of a lack of software tools for handling modifications and a lack
of thermodynamic parameters for modifications. Here, we report that we solved these issues for N°-
methyladenosine (m®A), for the first time allowing secondary structure prediction for a nucleotide
alphabet of A, C, G, U, and m®A. We revised the RNAstructure software package to work with any user-
defined alphabet of nucleotides. We also developed a set of nearest neighbor parameters for helices
and loops containing m®A, using a set of 45 optical melting experiments. Interestingly, N®-methylation
decreases the folding stability of structures with adenosines in the middle of a helix, has little effect on
the folding stability of adenosines at the ends of helices, and stabilizes the folding stability for structures
with unpaired adenosines stacked on the end of a helix. The parameters were tested against an
additional two melting experiments, including a consensus sequence for methylation and an m°A
dangling end. The utility of the new software was tested using predictions of the structure of a
molecular switch in the MALAT1 IncRNA, for which a conformation change is triggered by methylation.
Additionally, human transcriptome-wide calculations for the effect of N®-methylation on the probability
of an adenosine being buried in a helix compare favorably with PARS structure mapping data. Now
users of RNAstructure are able to develop hypothesis for structure-function relationships for RNAs with
m°PA, including conformational switching triggered by methylation.
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Introduction:

It has long been appreciated that covalent modification of RNA is used by nature to expand the
chemical repertoire of the four common nucleotides. tRNAs, in particular, are known to have prevalent
modifications, and the roles of some of these have been elucidated. For mRNAs and long non-coding
RNAs (IncRNAs), it had been harder to identify sites of modification until recently when new methods
were developed using next generation sequencing technologies to identify modifications®3.
Modifications including deamination to inosine*®, pseudo-uridylation®®, 5-methylation of cytosine®, and
Né-adenosine methylation!®*®> now can now be localized transcriptome-wide.

Né-methyladenosine (mPA) is considered the most prevalent modification in mRNA, and m°®A is
also widespread in IncRNAs'®?’, It is known to have writers that apply the modifications to specific
positions (methyltransferases including METTL3 and METTL14), readers that identify sequences with N°-
methylation (RNA-binding proteins including YTHDF2 and the YTH family), and erasers (demethylases
including FTO and ALKBH5) that can remove the modification, restoring the base to adenine!®?.,
Furthermore, there are hundreds of sites for which the m®A modification consensus site is conserved
between the mouse and human genomes*®. The impacts of N6-methylation are being elucidated???3,

For example, N®-methylation is known to cause structural switches that, for example, can expose protein
binding sites that are otherwise not available for binding?*. Additionally, m°®A can regulate splicing®.

RNA secondary structure prediction is in widespread use to help determine structure-function
relationships?®?’, but has not been generally available for understanding the roles of covalent
modifications®®. For unmodified sequences, secondary structure prediction has been used to identify
microRNA binding sites?®, design siRNAs3*3! identify protein binding sites®?, and discover functional RNA
structures®33>, These types of calculations have not been able to account for modifications without
extensive user intervention because a set of nearest neighbor parameters are needed for estimating the
folding stability of structures that include modifications?®3¢. A number of studies have demonstrated an
impact on folding stability by modifications®*’#?, but no complete set of parameters have been available
for RNA folding, as there are for RNA folding with the four prevalent bases*. At the same time, no
software has been available for handling a larger alphabet of sequences containing modifications. This
led to chicken-and-egg problem; without software, there was no impetus to assemble parameters and
without parameters there was no reason to write the software.

In this work, we developed a full set of nearest neighbor parameters for a folding alphabet of
mPA, A, C, G, and U nucleotides. These parameters account for helix and loop formation, and they are
based on optical meting experiments for 32 helices with m®A-U base pairs and 13 oligonucleotides with
meA in loop motifs. We also modified the RNAstructure software package to accept user-defined folding
alphabets and to read and utilize thermodynamic parameters for these extended alphabets*. Together,
these advances allow the prediction of RNA secondary structures for sequences with mA. We
demonstrate, for calculations with human mRNA sequences known to contain m°®A, that N®-methylation
alters the folding landscape so that m®A is less likely to be buried in a helix, i.e. stacked between two
base pairs. We also provide a model for the RNA secondary structures of the methylation-triggered
conformational change in the IncRNA metastasis-associated lung adenocarcinoma transcript (MALAT1).
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Results:

Overview of Methods: Secondary structure prediction for RNA sequences including m°A
requires both a set of nearest neighbor folding parameters and software capable of using the set of
parameters. An overview of the methods is illustrated in Figure 1. RNA secondary structure prediction
requires both parameters for evaluating folding stability and a search algorithm to identify the optimal
structure given the parameters?®?”4>_ |n our RNAstructure software, we use nearest neighbor
parameters to estimate folding free energy change®® and set of dynamic programming algorithms that
predict optimal structures*®*’.

We built a database of optical melting experiments of oligonucleotides including m®A and then
used linear regression to fit nearest neighbor parameters. We also extended the functionality of
RNAstructure® to recognize modified nucleotides in sequences and to use parameters for sequence
alphabets beyond the four common nucleotides. The m®A modification parameters are the first to take
advantage of this new feature.

Helix Nearest Neighbor Parameters for m®A: The full set of Turner nearest neighbor rules for
estimating RNA folding stability are based on optical meting experiments of 802 oligonucleotides and
use 294 parameters3¢449 We have shown, however, that the precision of a subset of parameters is
more important than others for the precise prediction of secondary structure®. Following that work, we
focused our experiments on estimating parameters for helices, dangling ends, and terminal mismatches.

Our first goal was to fit the 15 stacking nearest neighbor parameters for m®A-U pairs adjacent to
Watson-Crick pairs, G-U pairs, or m®A-U pairs. For this study, 29 fully helical duplexes containing m°A-U
pairs were synthesized and optically melted. This provides a total database of 32 fully helical duplexes
with mPA-U base pairs. Table S1 provides the duplexes and the stabilities determined by optical melting.
These specific oligonucleotide sequences were chosen, in part, because analogous model RNA helices
with A in the m°®A position had been previously studied by optical melting (with the exception of
GGUUAACC;). This allows us to directly compare the folding stability with and without N®-methylation.
We calculated the change in folding stability (AAG®3;) per methylation as compared to the unmethylated
duplex. Figure S1 shows that the AAG°s3; is highly dependent on the adjacent sequence, ranging from
+2.1 to -0.1 per methylation where positive free energies are destabilizing for methylation. Therefore,
to estimate folding stabilities for duplexes with m®A-U pairs, a full nearest neighbor model is needed to
account for the sequence dependency.

Linear regression was used to fit the nearest neighbor parameters for folding free energy
change. Figure 2A shows the increments in comparison to the same stack with A-U pairs and Table S2
provides the values. The free energy changes range from -1.79+0.25 kcal/mol to +1.45+0.57 kcal/mol.
As expected based on prior optical melting experiments for duplexes with m®A-U pairs®”%%, nearest
neighbor stacks for methylated A-U pairs are less stable than stacks for unmethylated A-U pairs. On
average, the stacks with m®A-U pairs are 0.4 kcal/mol less stable per methylation. There are exceptions,
however; an m®A-U pair followed by a U-A pair is as stable as an A-U pair followed by a U-A pair (-1.10
kcal/mol). The most unstable stack has two m®A-U pairs. Like A-U pairs, when the m®-U pair is adjacent
a G-C it is more stable than when adjacent to A-U. Also like A-U pairs, m®A-U pairs adjacent to G-U are
less stable than those adjacent to A-U pairs.
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An unexpected feature of terminal m®A-U pairs is that they require no terminal penalty,
although terminal A-U pairs receive a +0.45 + 0.04 kcal/mol penalty per A-U pair at the end of a helix®.
Two findings support this. First, when a terminal parameter is included as a parameter in the linear
regression fit, the value is +0.13 + 0.17 kcal/mol, which is not significantly different from 0 kcal/mol.
Second, our dataset includes two helices with the same nearest neighbor stacks, but with different helix
ends (Figure 2B). Previously, it was noted that this pair of helices, when unmethylated, had markedly
different stability (0.70+0.28 kcal/mol), with the helix with A-U ends less stable®l. For the methylated
helices, the difference is small (0.18+0.27 kcal/mol). This demonstrates that a terminal m°A-U base pair
has overall similar stability to a terminal A-U base pair because a terminal A-U pair has a more favorable
stack but requires the terminal A-U penalty.

Loop Nearest Neighbor Parameters for m°A: For secondary structure prediction, parameters
need to also be extrapolated for loop formation. The stability of a 3’ dangling m®A had been previously
measured®’. Additional optical melting experiments were performed for two m°A 3’ dangling ends, an
mPA 5’ dangling end, and seven terminal mismatches involving at least one m°®A. One hairpin loop was
measured with an m®A in the loop and not adjacent to the helix end. One 2x2 internal loop was
measured with symmetric tandem G-m°PA pairs. The loop sequences were chosen such that analogous
sequences with A instead of m®A had been previously studied, so that the effect of methylation on
stability can be quantified. Table S3 provides the measured stabilities for these model structures and
Table S4 shows the stability of the loop motif in comparison to the motif with A.

As shown by Figure 3, an m°A as a dangling end or as a component in a terminal mismatch
stabilizes secondary structure formation to a greater extent than an analogous A. On average, the m°A
dangling end is -0.43+0.15 kcal/mol more stable than the analogous A dangling end for the 3’ and 5’
dangling ends studied here. Terminal mismatches for m®A-m°®A, G-m®A, m®A-G, and m®A-C on Watson-
Crick or G-U terminal pairs are on average -0.28+0.26 kcal/mol more stabilizing than the analogous A-A,
G-A, A-G, or A-C terminal mismatches. This stabilizing effect is sequence dependent; the AAG®s; ranges
from -0.74 kcal/mol (G-m®A mismatch on a U-G pair) to +0.02 kcal/mol (G-m®A mismatch on an A-U
pair). An m®A-m°®A mismatch on an mPA-U pair is more stable than the m®A-m®A mismatch on an m°®A-U
pair by -0.42+0.40 kcal/mol.

The hairpin loop structure with m°®A is marginally less stable than the analogous hairpin loop
with A (AAG°37 = 0.23+0.24 kcal/mol; Table S4). The 2x2 internal loop with tandem G-m°A pairs is also
marginally less stable than the analogous loop with tandem G-A pairs (AAG®37 = 0.33+0.53 kcal/mol;
Table S4). Both stability changes are within the uncertainty estimates, suggesting that they are not
substantial differences.

Additional Experiments to Test the Parameters: To test our parameters, we performed
additional melts of duplexes. The first is a duplex with all base pairs, incorporating a consensus N°-
methylation site, GGACU, where we determined the helix stability with and without methylation. The
second is an additional 3’ dangling m°®A to test our assumption that dangling m°A are stabilized by -0.3
kcal/mol compared to dangling A. Table S5 provides the stabilities determined by optical melting and
Table S6 shows how well the stabilities are estimated with our nearest neighbor parameters.

We conclude from these tests that the nearest neighbor parameters are accurate enough to be
used for RNA secondary structure prediction®®*°. The estimates for the duplex stabilities are within the
uncertainties propagated for the experiment and the nearest neighbor parameters (AAG°37 column of
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Table S6). The unmethylated consensus duplex is estimated by nearest neighbor parameters to be more
stable (by -0.48%0.73 kcal/mol) than it is by experiment. The methylated consensus duplex is estimated
by nearest neighbors to be less stable than it is (by 0.85+0.97 kcal/mol). These deviations are 2.9% and
5.5% of the experimentally determined values. The estimated stability of the duplex with the dangling
mOA closely matches the experimental value (AAG®s; of 0.01+0.84 kcal/mol).

RNAstructure Software Modifications: To predict RNA secondary structures for sequences with
A, C, G, U, and m®A, we modified the command line programs in the RNAstructure software package to
accept extended alphabets of nucleotides**. By default, the software interprets sequences as standard
RNA, but a command line switch can specify an alternative alphabet. For example, the nearest neighbor
parameters for a DNA alphabet composed of A, C, G, and T has long been available. Now, because of
this work, the nearest neighbor parameters for an RNA m®A alphabet is available.

The key to an extended alphabet is the specification of the nucleotides and pairs (Figure S2). A
common architecture across the RNAstructure programs means that the command line programs are
capable of using the extended alphabets, which can include any number of characters. This includes the
prediction of minimum free energy structures, base pair probabilities, maximum expected accuracy
structures, and folding stability for structures. Each nucleotide must be encoded by a single-character,
and we chose “6” or “M” as the character to encode mPA in sequences and in the m°A nearest neighbor
parameter tables. The Methods section details our estimates for the m®A nearest neighbor parameters.

Nearest neighbor parameter tables are read from disk as programs start. Each parameter table
requires additional rows and columns to provide the nearest neighbor parameters values for those
nucleotides, although the dimensionality of the tables stays the same. For example, a base pair stack
table is four-dimensional because the sequence of four positions is required to estimate the stacking
stability of two pairs. When mPA is included with RNA, the size of each dimension is increased to five
from four. The largest table is the 2x2 internal loop lookup table3®, which is eight dimensional because it
includes the sequence of the two closing base pairs.

Modeling Conformational Changes as a Result of Methylation: It has been established that N°-
methylation can alter RNA structure, and because of this m°A is considered a conformational switch. To
test our new m°®A nearest neighbor parameters and software, we made a quantitative prediction for the
switching of the structure in the IncRNA MALAT1 that opens a binding site for heterogeneous nuclear
ribonucleoprotein C (HNRNPC). This has been characterized by Tao Pan and co-workers in an in vitro
system with a single stem-loop structure®. Filter binding experiments demonstrated that the
methylated RNA is more accessible to protein binding than the unmethylated RNA. Additionally,
enzymatic cleavage by RNase S1, which has specificity for loop regions of RNA, demonstrated increased
cleavage 5’ and 3’ to the methylated A, supporting a conformational change.

We used RNAstructure to predict the secondary structure of the 32 nucleotide RNA using
stochastic sampling of the structures from the ensemble®. This can be used to characterize the
structures of RNAs that can fold to more than one structure at equilibrium. We found two predominant
structures in the ensemble, as demonstrated in Figure 4A. One of the two structures is that of the stem-
loop that was previously predicted and has three of the five nucleotides at the HNRNPC site base
paired®. Interestingly, the second major structure in the ensemble has two stem-loops and the
HNRNPC site is more exposed for protein binding (a single U at the 5’ end of the binding site is base
paired). RNAstructure estimates a shift in the population from the closed (protein-occluded) structure
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to the open (protein-accessible) structure in agreement with the experimentally measured shift in
protein binding. In the absence of methylation, the ratio of closed:open is estimated to be 62:38, but in
the presence of N®-methylation the ratio is estimated to be 41:59. This demonstrates a quantitative
prediction of shift in ensemble folding behavior with methylation that explains how the methylation
accomplishes the structural switching.

Furthermore, we probed the 32 nucleotide RNA (extended with a 3’ structural cassette) by
chemical mapping with CMCT (1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-
toluenesulfonate), DMS (dimethyl sulfate), and kethoxal (Figure 4A). The chemical mapping data and
the prior enzymatic mapping®? data are consistent with the sequence populating more than one
structure; neither of the two proposed structures alone fully explains the data. Nuclease S1 prefers to
cut in loop regions and Nuclease V1 prefers to cut in helical regions®, but a number of cleavages occur
in tandem at the same phosphodiester bond. This indicates a mixture of structures. The loss of V1
cleavages between U10 and U11 supports an increase in the population of the open structure upon
methylation. The S1 cleavage that emerges 5’ and 3’ to m®A22 upon methylation is consistent with the
increase in population of the open structure. The chemical mapping data also suggest a mixture of two
structures; the three agents used react with moieties on the Watson-Crick faces and paired bases are
generally more protected than unpaired bases®. A number of base reactivities support a population of
the closed structure for both sequences, including C16, A17, U19, and U20. The CMCT reactivities at
U26 and U30 support the second hairpin loop in the open structure, both with and without methylation.
The loss of reactivity upon methylation at C15 and the gain of kethoxal reactivity upon methylation at
G29 are consistent with the shift towards the open conformation upon methylation. In summary, the
structure predictions with m®A parameters provide a more complete picture of conformational
switching, which is more complicated than a simple on-off switch and better reflected as a shift in the
Boltzmann-weighted ensemble between conformations.

Transcriptome-Wide Predictions with m°A: To further test our new mPA nearest neighbor
parameters and software, we predicted structures for 18,026 mRNAs that were identified as having N°A
methylation by whole transcriptome sequencing® and for which PARS structure mapping data are
available®®. We used the nearest neighbor parameters and RNAstructure package to estimate the
probability that the methylation site is buried in a helix, i.e. in a base pair stacked between two other
base pairs, for both the unmethylated and methylated sequence (Figure 4B). We used 800 nucleotide
fragments of local sequence to estimate the pairing probability because we previously found that pairing
probability estimates for 800 nucleotide fragments reasonably match those for global secondary
structure prediction®®. This is a reasonable balance between accuracy and total calculation time.

We find that the unmethylated A at the methylation site is less likely to be buried in a helix than
adjacent nucleotides (Figure 4B). This is intuitive because adjacent nucleotides at the consensus site are
often G or C, and A is more predominant in loops in RNAs with known structure®’. There is a substantial
shift in the probability of m®A being buried in a helix relative to A (21% for A and 13% for m°®A). This
suggests there could be widespread structural switching being affected by N6-methylation. We can also
compare our results to PARS data for the same sequences (Figure 4C)3*>°. A PARS score quantifies the
enzymatic cleavage estimate of local pairing and the experiment is performed transcriptome wide. A
lower PARS score indicates greater nuclease S1 cleavage relative to nuclease V1 and thus a greater
extent of unpairing because nuclease S1 has specificity for loops and nuclease V1 has specificity for
helices®>%%° The PARS scores at the methylation site also demonstrate a propensity to be unpaired at
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the methylation site, but the minimum average PARS score is at the nucleotide 5’ to the m®A site. A
possible explanation for the discrepancy is that PARS attributes S1 cleavages to the base 5’ to the
cleavage site, assuming that the base 5’ to the cleavage is unpaired. Cleavage can also occur when the
base 3’ to the cleavage site is unpaired and therefore the PARS scores 5’ to the methylation site might
be overestimating the propensity of being unpaired, in that some of the propensity of being unpaired
should be attributed to the methylation site. For example, the prior S1 mapping of 55 rRNA structure is
consistent with cleavages both 5’ and 3’ to unpaired nucleotides (Figure S3)%%. Prior analysis of PARS
scores for methylation sites also concluded that the data indicate the m°®A is positioned in structures at
the transition between base paired regions and loop regions, consistent with our structure prediction
estimates®®.

Discussion:

Here we provide the first complete nearest neighbor model for a folding alphabet including
modified nucleotides. Because mPA is considered the most abundant modification in mRNA and is
known to affect folding stability, we chose m°®A as the first modification to study. The full nearest
neighbor model for secondary structure prediction requires both helical stack parameters and also loop
parameters. We know from a sensitivity analysis of secondary structure prediction that, for loops,
accurate parameters are most important for dangling ends and terminal mismatches***°, accordingly we
focused our experimental effort on these motifs. We also observed marginal differences in stability for
hairpin and internal loops containing m°A as compared to the same sequences without the N°-
methylation. Subsequent studies could be focused on understanding and modeling folding stability
differences for loops with m°®A.

The other component of this study was advancing RNAstructure to work with sequences with
nucleotides beyond A, C, G, and U. We provide command line tools that are ready to make quantitative
predictions of structure and folding stability for sequences with m®A. Given the software, we plan
expand our work in the future to include alphabets with inosine and pseudouridine. Both have helical
nearest neighbor parameters available for stacks on Watson-Crick pairs*®*-®2, and both could be
extended to full nearest neighbor parameters sets with additional optical melting experiments.

The two loops studied here with N6-methylations both had marginally less folding stability than
the analogous unmethylated loops. Solution structures are available for each of the A-containing loops,
and these structures provide clues as to why the stabilities would be only marginally changed by
methylation. The hairpin loop, GGCGUAAUAGCC, has the first A in the loop (A6; the site of our m®-
methylation) stacked at the apex of the loop on the adjacent A (A7)®3. Because A6 is not hydrogen
bonding in the structure, a methylation at N® can be accommodated in the preferred syn orientation by
the structure without change®. For the internal loop with tandem G-A pairs, the pairs are trans-sugar-
Hoogsteen pairs, i.e. the N® position of the A is hydrogen bonded with the G at the N3 position®®. For
each methylated A, one hydrogen of N° is available to form this hydrogen bond, placing the methyl in
the preferred syn orientation®. However, the second hydrogen of A N®is close to 04’ of the G (ranging
from 2.34 to 3.36 A in the 15 deposited NMR models). This suggests the structures would need at least
small changes to accommodate the syn methyl to avoid a steric clash3%%%,
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Recent studies demonstrated the ability of computational methods to estimate folding free
energy changes®® 72, In this work, we performed optical melting experiments to determine the folding
stabilities of small model systems with m°®A and fit nearest neighbor parameters to these data. Future
work, however, could rely on computation or a mixture of computation and experimentation. Hopfinger
et al., for example, estimated helical stacking nearest neighbor parameters for the eight stacks with
mPA-U pairs adjacent to Watson-Crick pairs®®. Overall the agreement of their estimates against our
experimental values is excellent, with a root mean squared deviation of 0.30 kcal/mol. The largest single
deviation is for a U-mPA pair followed by a G-C pair, where their estimate overstabilized the stack by 0.6
kcal/mol (Figure S4). Loop folding stabilities continue to be more of a challenge to estimate using
computational methods because the conformational flexibility requires extensive sampling’?.

With this work, we demonstrate the position of m°®A in a structure determines whether folding
stability is increased, decreased, or unchanged relative to the same structure with A. It was previously
known that N®-methylation of an A-U pair in the middle of a helix would decrease the helix folding
stability®”3°. Our stacking parameters now quantify this sequence-dependent change (Figure 2A). It was
also previously known that m®A stacking on the end of a helix would stabilize the helix more than an
analogous A. In this work, we also discovered that an m°®A-U base pair at the terminal position of a helix
provides roughly the same folding stability as an analogous A-U base pair. This is because terminal A-U
pairs destabilize helices with a penalty of +0.45 kcal/mol°! that is not needed for terminal m®A-U base
pairs (Figure 2B). Recently, it was also discovered that terminal G-U base pairs in helices do not need an
end penalty’®. These results, taken together, show why N®-methylation is a potent switch of secondary
structure.

Our transcriptome-wide calculations also suggest that structure switches from N®-methylation
might be widespread (Figure 4B). It will be interesting to perform similar calculations with other
widespread covalent modifications, such as inosine. There is potential to identify structural mechanisms
by which covalent modifications exert changes in protein binding, transcript stability, or gene
expression.
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Methods:

Synthesis of Oligonucleotides with m°A: Oligoribonucleotides were synthesized on a
BioAutomation MerMade12 DNA/RNA synthesizer using B-cyanoethyl phosphoramidite chemistry and
commercially available RNA phosphoramidites (ChemGenes, GenePharma) and protected N°-
methyladenosine phosphoramidite, which was synthetized according to a standard protocol. (Synthesis
of N®-methyl adenosine via Dimroth rearrangement followed by protection of the 5'-hydroxyl with
dimethoxytrityl and 2'-hydroxyl with tert-butyldimethylsilyl. Next, 5’- and 2’-protected N°-
methyladenosine was treated with 2-cyanoethyl N,N,N’,N’-tetraisopropylphosphorodiamidite
Oligoribonucleotides were deprotected with aqueous ammonia/ethanol (3/1 v/v) for 16 h at 55°C. Silyl
protecting groups were cleaved by treatment triethylamine trihydrofluoride. Deprotected

74,75.)

oligonucleotides were purified by silica gel thin layer chromatography (TLC) in 1-propanol/aqueous
ammonia/water (55/35/10 v/v/v) as described previously>*”>.

Optical Melting Data: The thermodynamic measurements were performed for nine various
concentrations of RNA duplex in the range of 0.1 mM — 1 uM in buffer containing 1 M sodium chloride,
20 mM sodium cacodylate, and 0.5 mM Na,EDTA, pH 7. Oligonucleotide single strand concentrations
were calculated from the absorbance above 80°C and single strand extinction coefficients were
approximated by a nearest-neighbor model’®. Absorbance vs. temperature melting curves were
measured at 260 nm with a heating rate of 1°C/min from 0 to 90°C on JASCO V-650 spectrophotometer
with a thermoprogrammer. The melting curves were analyzed and the thermodynamic parameters
calculated from a two-state model with the program MeltWin 3.577. For most model RNAs, the AH®
derived from Ty? vs. In(Cr/4) plots is within 15% of that derived from averaging the fits to individual
melting curves, as expected if the two-state model is reasonable.

Linear Regression: Linear least-squares fitting to determine RNA stacking stabilities was
performed with a custom Python program using the statsmodels ordinary least-squares class (OLS)2.
For each duplex, to determine the stabilities to be fit, the fixed terms were subtracted, including the
stability of base pair stacks with Watson-Crick and G-U pairs only, the duplex initiation term, the
terminal A-U penalty term (when needed), and the symmetry term (when needed). The fit was
excellent, with coefficient of determination, R?, of 0.984. Uncertainty estimates (Figure 2A and Table S2)
are the standard errors of the regression. Table S7 shows the stability to be fit and the estimate of the
fit. Table S8 shows the number of occurrences of each stacking parameter in the set of fit helices.
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Loop Motif Stability Calculations: Loop motif stabilities (Table S4) are calculated by subtracting
the helical component of stability.

For the dangling ends and terminal mismatches, twice the stability increment of the motif is
determined by subtracting a reference helix stability from the stability of the duplex with the motif’:

2XAGO37 motif = AGo37 duplex with two motifs =~ A(5037 reference duplex without the motifs
The factor of two is present because the self-complementary duplexes have two instances of the motif.

For the hairpin loop, the stability of the loop motif is determined by subtracting the stability of
the helical stacks (estimated with nearest neighbor parameters) from the total stability®’:

AGD37 hairpin loop = AGo37 stem-loop ~ AGo37 helical stacks
The total helical stack stability is reported as the Reference AG°s7 in Table S4.

For the internal loop, the stability is the total stability of the duplex minus the helical stacks
(estimated with nearest neighbor parameters) and minus the stability cost of symmetry (because the
duplex is self-complementary)?®:

o — o o o
AG 37 internal loop — AG 37 duplex with internal loop ~ AG 37 helical stacks ~ AG 37 symmetry

The Reference AG°;; reported in Table S4 is the sum of the helical stacks and symmetry free energy
increments.

Error Propagation: To estimate uncertainties in free energies (o), we propagate uncertainty
estimates for experiments and nearest neighbor parameters using the standard method for
uncorrelated parameters:

dAG*\?
o’ =Y; (0-2 )

L 9AG;

50,82

where AG°; is the i term and o; is the uncertainty in the i term>*®2, For the sum of terms used here,

this simplifies to:
0® = X;(n;0))?
where n; is the number of occurrences of the it" parameter.

For uncertainty estimates for optical melting experiments, we use 4% of the magnitude of the
AG®37. This was chosen as a conservative estimate of the precision of optical melting by Xia et al.>%. Itis
twice the mean difference in free energies determined using the two fit methods for optical melting
data (Average of Curve Fits and Analysis of Ty Dependence) for a database of optical melting
experiments.

Nearest Neighbor Parameter Determination: Nearest neighbor parameters were developed to
estimate the folding stability (AG°s7) of sequences with A, C, G, U, and m°®A. Nearest neighbor
parameters are inherited from the 2004 Turner Rules3®, where a summary of their derivation can be
found in Zuber et al.*® and examples for their use are available on the Nearest Neighbor Database
(NNDB)* website. Helical stacking tables are from Xia et al.>! for Watson-Crick stacks and from Chen et
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al.”? for stacks that contain G-U pairs, supplemented with the new stacks determined for m®A-U pairs in
this work. Following Chen et al., terminal G-U base pairs in a helix are not penalized.

Dangling end m®As are stabilized as compared to the analogous A dangling end by the mean
additional stability found here (-0.4 kcal/mol). Dangling ends on m®A-U pairs are assumed to be the
same stability as dangling ends on A-U base pairs. When the stability is measured by an experiment, the
measured value is used (Table S4).

Terminal mismatches involving m®A are estimated to be more stable than the analogous A
terminal mismatch by the mean value found for the terminal mismatches in this study (-0.3 kcal/mol).
MEA-m°®A terminal mismatches receive only -0.3 kcal/mol additional stability. A terminal mismatch on
an mPA-U pair is also stabilized by -0.3 kcal/mol compared to the analogous mismatch on an A-U pair.
These effects are additive; an m®A-containing terminal mismatch on an m®A-U pair receives an
additional -0.6 kcal/mol stability than the analogous terminal mismatch with all A parameters. When
the stability is measured by an experiment, the measured value is used (Table S4).

Hairpin, internal, and bulge loop initiation costs are length-dependent®®. The same length-
dependent costs are used here, which assumes that m®A does not alter the initiation costs.

1x1, 2x1, and 2x2 internal loop stabilities are stored in lookup tables. The stabilities for loops
with unpaired m®A are taken from the analogous loops with A. And m®A-U-closed loops are taken from
analogous A-U-closed loops with one change. A-U-closed loops have a 0.7 kcal/mol stability penalty per
closure?®; for mbA-U-closed loops, this cost has been removed compared to the analogous A-U-closed
loop. Larger internal loops use a terminal stacking table to assign a stability increment for the sequence
of the closing pair and first mismatch. Separate tables are used for loops of size 1xn, 2x3, and
(>2)x(>2)%. These terminal stack tables use the analogous A parameter for stacks with m°®A. The one
exception is that the +0.7 kcal/mol internal loop A-U pair closure penalty is removed for m®A-U closures.

Hairpin loop tables for triloop, tetraloops, and hexaloops are unchanged. These tables include
stabilities for specific hairpin sequences known by experiment to not be well predicted using nearest
neighbor rules®®. Other hairpin loops are estimated with the sum of a terminal mismatch and a length-
dependent initiation. The terminal mismatches for m®A use the analogous A parameter.

Multibranch loop initiation parameters are from an experimental fit using a simple linear
model®*84, The ersatz functional form was found to perform well in a study testing alternative
functional forms®. Coaxial stacking is included in multibranch and exterior loops>®. Coaxial stacking
between two adjacent helices is assumed to be as stable as a helical stack. For coaxial stacks with an
intervening mismatch, there are two stacks. The coaxial stacking increment for the stack where the
backbone is not continuous was previously found to be independent of sequence®, and the sequence-
independent value is used here for stacks involving one or more m°As. The other stack is identical to the
terminal mismatch stack table.

Extended Alphabet Implementation in RNAstructure. RNAstructure is a software package
written in C++, with a C++ class library that is also wrapped using SWIG to be available to JAVA or Python
programs®. It is open source and provided for free under the GNU GPL license version 2 at
https://rna.urmc.rochester.edu . A number of the command line programs have been updated to be
capable of using extended alphabets, including Fold®” (secondary structure prediction by free energy

17


https://doi.org/10.1101/2021.04.26.441443
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.26.441443; this version posted April 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

minimization), efn28 (estimation of folding free energy changes for secondary structures), partition®”#°

(partition function calculations for estimating pair, motif, or structure probabilities). A number of
programs that rely of the partition function calculations are therefore also able to consider extended
alphabets, including AlISub® (prediction of all low free energy structures within an increment of the
lowest), design®® (design of a sequence to fold to a specific secondary structure), EnsembleEnergy
(calculation of the ensemble folding free energy change), MaxExpect®**? (prediction of maximum
expected accuracy structures), ProbKnot®* (prediction of structures that can include pseudoknots),
ProbScan®* (estimation of motif probabilities), and stochastic®® (stochastic sampling from the Boltzmann
ensemble).

The command line tools read the thermodynamic parameters at startup. The switch --alphabet
is used to specify the set of parameters to be used. The default is “rna”, the current (2004) Turner rules
for estimating RNA folding free energy changes®**. Included with the latest RNAstructure release
(version 6.3) is also “m6A”, the parameters discussed here, and “dna”, a set of nearest neighbor rules
for DNA secondary structure prediction. The files are a plain text format that was updated (in version
6.0) for extended alphabets. The specification file (Figure S2) is read first, and defines the alphabet and
base pairs. Dynamic memory allocation is used to provide the memory needed to store the tables. The
parameters themselves are then read from the files.

The 2004 Turner rules gave a terminal base pair penalty for any base pair (A-U or G-U) at the
end of a helix that contained a U3®°%8, |n this work, we found that terminal m®A-U pairs did not require
this terminal base pair penalty. Additionally, the revised G-U parameters’?, used with the m°A
parameters we derived, do not require a terminal base pair penalty. Therefore, we changed the
implementation of the energy function to account for this change.

MALAT1 Calculations: The secondary structure of the 32-nucleotide fragment of MALAT1 was
predicted with and without N8-methylation of A22 using the stochastic program in RNAstructure®*. The
ensemble size was set to 100 structures. The predicted ensembles show fluctuations in pairs around the
two predominant structures, as expected. As examples, terminal base pairs for helices are variably
present and the lower helix in the Open structure of Figure 4A can be absent in the Open structure. To
classify each sampled structure as Open or Closed, the hamming distance on base pairs was calculated
to each the Open and Closed conformation, and the structure was assigned to the conformation with
lower distance.

Chemical mapping of RNA and data analysis: DMS (to modify adenosine and cytidine), CMCT (to
modify uridine and guanosine) and kethoxal (to modify guanosine) were used to chemically map
secondary structure of 32 nucleotide RNA (with a 3’-structural cassette). The RNA
(5’AACUUAAUGUUUUUGCAUUGGACUUUGAGUUACCUUCCGGGCUUCGGUCCGGAAC) was synthesized
using the phosphoramidite method on a MerMade synthesizer, deprotected and purified on a 12%
denaturing gel. The RNA contained a structure cassette at the 3’ end (underlined), which was designed
using RNAstructure to fold independently and allow readout of whole structure of studied RNA®>. The RNA
contained C16-2’-OMe instead of a standard C nucleotide at position 16, introduced to prevent
nonenzymatic spontaneous cleavage between C16 and A17°%°’. For each reaction, 10 pmol of RNA was
folded in buffer containing 300 mM NaCl, 10 mM Tris-HCl, 5 mM MgCl, pH 8.0. Briefly the appropriate
amount of RNA was diluted in H,0 and heated 3 min in 80 °C followed by slow cooling. Then, at 50 °C a
concentrated buffer was added to get final buffer solution and sample was continuously slowly cooled.
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After 10 min incubation at 4 °C chemical mapping was conducted using two concentration of each
reagent. To a 9 pl sample, 1 pul of 300 mM or 160 mM DMS in ethanol was added to give a final
concentration of 30 or 15 mM DMS. For modification with CMCT, 9 ul of CMCT solution was added to the
9 ul of RNA sample. CMCT was diluted in a folding buffer to give a final concentration of 250, and 100 mM
in the reaction mixture. Kethoxal was diluted in ethanol/water (1:3 v/v) to give a final concentration of
160 and 80 mM. After modification with kethoxal, 3 pl of 35 mM potassium borate solution was added to
stabilize products of modification. Chemical modification reactions were incubated for 1.5 h at 4 °C.
Reactions were stopped by precipitation with ethanol. The chemical modification reactions were repeated
for a total of two replicates of each agent. The RNA in control reactions was treated the same, except no
chemical reagents was added.

Modification sites were identified by primer extension. The DNA primer for reverse transcription
(RT) was synthesized with 6-fluorescein (FAM) on the 5’ end (5FAMGTTCCGGACCGAAGCCCG). The DNA
primer was complementary to 3’ end of RNA (the cassette part). For each reverse transcription reaction,
10 pmol of primer was used. Primer extension was performed at 55 °C with SuperScript Ill reverse
transcriptase using Invitrogen's protocol. Reactions were stopped by addition of loading buffer containing
urea and 10 mM EDTA, then chilling on ice. Prior to separation and read-out of cDNA products the samples
were heated for 5 min at 95 °C and then separated on a 12% polyacrylamide denaturing gel (Figure S5).

The gel image from the Phosphorimager was analyzed using SAFA program to quantify nucleotide
reactivities®®. cDNA products were identified by comparing to sequencing lanes and to control lanes and
the raw results from SAFA were normalized. To quantify chemical modification at each nucleotide, we
first corrected for the background by subtracting the volume integral of the band in the control lane from
the volume integral of experimental lane. For each of two experiments for each modification agent and
each sequence, we characterized the modification extent by quartiles. When a nucleotide was in the
highest quartile of RT stops in both experiments, we report the mapping as strong (Figure 4A). When a
nucleotide was in the second highest quartile in both experiments or the highest quartile in one and the
second highest quartile in the other, we report the cleavage as moderate.

Transcriptome-Wide Calculations: We downloaded the set of m°A positions reported in the
human transcriptome by Schwartz et al.>, which was available as their Supplementary Table S2. Using a
Python program, for each entry for the human genome of “high confidence category” and with a RefSeq
entry, we fetched the sequence from RefSeq® using the Bio.Entrez module from Biopython'®. To
identify the exact position of the m°A in the transcript, we used the provided hg19 coordinates to
identify the A in one of the expected sequence motifs (GGACA, GGACT, GGACC, GAACT, AGACT, AGACA,
or TGACT) using the twobitreader Python package!® and the hg19 sequence downloaded from the UCSC
genome browser!®?, Once the motif was identified in the genome, the sequence was found in the
RefSeq sequence, and an 800 nucleotide FASTA sequence was generate with the m°®A position at the
401% position. For sequences in which the m®A was too close to the 5’ end or 3’ end to be in the 401
position, up to 800 nucleotides were extracted with the mPA position at either the 5’ end or 3’ end.
Sequences were generated with both A and 6 at the mPA position. In total, 18,155 high confidence m°A
sites were found.

Next, the partition function was calculated for each 800 nucleotide sequence using the partition
program from RNAstructure**. To determine the probability that the m®A position was buried in a helix,
a custom C++ program was written using inheritance of the RNA class**. The probability of the it
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nucleotide being buried in a helix is the sum for all j of the probability the i-j base pair is sandwiched
between the base pairs (i-1)-(j+1) and (i+1)-(j-1). Each of these can be determined using the partition
function, Q, as a normalization factor and partial partition function for interior and exterior fragments:

N

P, = ZV’(i —1L,j+ D)X Ksqere (0= 1,7+1,0,)) X Kspqere (4L J, i+ 1L, j— D) xV(i+1,j—1)

j=1

where P; is the probability that nucleotide i is buried in a helix, N is the length of the sequence, V'(i,j) is
the partition function for the exterior fragment of nucleotides 1 to i to j and to N given that i is paired to
j, Kstack(i,j,i+1,j-1) is the equilibrium constant for the base pair stack of base pairs i-j and (i+1)-(j-1), and
V(i,j) is the partition function for the interior fragment from nucleotides i to j given that i is paired to j.
Figure S6 diagrams V' and V. These arrays of partition functions for sequence fragments are also
explained in a description of the partition function calculation®.

PARS calculations: To calculate PARS scores for human transcripts, we downloaded the dataset
deposited by Wan et al.>® to the NCBI GEO (Gene Expression Omnibus)!®. We used the mapped reads
available for S1-treated (accessions GSM1226157, GSM1226159, and GSM1226161) and V1-treated
(accessions GSM1226158, GSM1226160, and GSM1226162) samples. We calculated the PARS-score
using®®:

S1

Vl-x(—mml)+5

U \Vigorar
S1;+5

PARS; = log, [

where PARS; is the PARS score for the i nucleotide, V1; is the number of reads in the V1-treated
samples attributed to the it" nucleotide, S1; is the number of reads in the S1-treated samples attributed
to the i™" nucleotide, Sl is the total number of S1-treated sample reads, and V1l is the total number
of V1-treated sample reads. The ratio of Slita and V1iotal is @ normalization factor. The addition of 5 in
the numerator and denominator is a pseudocount to reduce the magnitude of scores for positions with
few reads®®. In total, entries were found for 18,026 transcripts of the 18,155 high-confidence m°A-
containg transcripts found.
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Figure 1. Overview. In this study, we advanced the RNAstructure software package* (at center) to be
capable of predicting secondary structures for sequences with the m®A nucleotide. RNA secondary
structure prediction by RNAstructure relies on nearest neighbor parameters for estimating folding
stability and dynamic programming algorithms for estimating structures and base pair probabilities.
Here we fitted nearest neighbor parameters for m°®A to optical melting data and revised the dynamic
programming algorithms to be capable of considering any sequence alphabet.
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Figure 2. Panel A. The nearest neighbor parameters for helix stacks. The position of the m°A is
indicated by 6. The stacking parameters are compared for methylated (blue; i.e. m®A-U base pairs) and
unmethylated (red; i.e. A-U base pairs) sequences for analogous nearest neighbors. The unmethylated
stacks (i.e. A-U base pairs) are those of Xia et al.! for adjacent Watson-Crick pairs and those of Chen et
al.” for adjacent G-U pairs. Stacks with m®A-U pairs are generally less stabilizing than analogous stacks
with A-U pairs. Panel B. Terminal m®A-U pairs are not destabilizing. The top two sequences (Watson-
Crick paired with a complementary strand) have the same nearest neighbor stacks, but the second helix
has two terminal A-U pairs®L. This costs 0.7 kcal/mol of stability. The bottom two sequences also have
the same nearest neighbor stacks, but the second has two terminal m°A-U pairs. Here the stability cost
is 0.18 kcal/mol and not outside of the uncertainty estimate. On average, terminal A-U pairs cost 0.45
kcal/mol of stability®?, but terminal m®A-U pairs are not destabilizing.
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Figure 3. MPA Stacking on a Helix End Stabilizes Secondary Structure as Compared to A Stacking. The
AAG°3; (kcal/mol) for dangling ends and terminal mismatches as a result of N®-methylation (Table S4) is
shown, where negative values mean greater folding stability for m®A than A. The motifs shown here
have a terminal base pair (left side of motif), and either a dangling end or terminal mismatch right (right
side of motif). On average, the methylated motifs are more stabilizing than the unmethylated motifs,
although the extent of the stabilization is sequence dependent.
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Figure 4. Tests of the new mP®A nearest neighbor parameters and RNAstructure software. Panel A.
The Conformational Switch of MALAT1 RNA. Secondary structure was predicted for the model
methylation-activated switch for HNRNPC binding. In the absence of methylation, the left (closed)
structure is predicted to predominate the ensemble, where the HNRNPC protein binding site (marked in
red nucleotides) is occluded to binding. When A22 is methylated to mA, the right (open) structure is
predicted to predominate, where the HNRNPC binding site is more accessible. In the absence of
methylation, the ratio of closed:open is estimated to be 62:38. This estimate switches to 41:59 for the
methylated sequence. Chemical and enzymatic probing results are superimposed on the structures.
Mapping data for the unmethylated sequence are superimposed on the closed conformation (left) and
mapping data for the methylated sequence are superimposed on the open structure (right). The
chemical agents act on Watson-Crick faces and prefer loop nucleotides, although they also act on helix
ends and G-U pairs®. Nuclease S1 prefers loop regions and Nuclease V1 prefers helical regions®*. The
chemical and enzymatic mapping data support a mixture of the two structures both with and without
Nb-methylation. Panel B. The Average Probability that A or m°A are Buried in a Helix at the Position of
a High-Confidence m°®A sites in the Human Transcriptome. The mean probability that an A or m®A is
base paired and stacked between two adjacent pairs for 18,026 sites of N®-methylation, as estimated by
RNAstructure. Position 0 is the site of methylation. N°®-methylation is estimated to further open the
structure at the methylation site. Panel C. The Average PARS Scores for Accessibility for the 18,026
sites of N®-methylation in the Human Transcriptome. Lower PARS scores indicate higher counts of
nuclease S1 cleavage relative to nuclease V1 cleavage and therefore a higher likelihood of being
unpaired. The RNAstructure predictions and the PARS data both show considerable single-stranded
character at the site of N®-methylation.
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