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Abstract 

Mechanical proprieties determine many cellular functions, such as cell fate specification, 

migration, or circulation through vasculature. Identifying factors governing cell mechanical 

phenotype is therefore a subject of great interest. Here we present a mechanomics approach 

for establishing links between mechanical phenotype changes and the genes involved in 

driving them. We employ a machine learning-based discriminative network analysis method 

termed PC-corr to associate cell mechanical states, measured by real-time deformability 

cytometry (RT-DC), with large-scale transcriptome datasets ranging from stem cell 

development to cancer progression, and originating from different murine and human 

tissues. By intersecting the discriminative networks inferred from two selected datasets, we 

identify a conserved module of five genes with putative roles in the regulation of cell 

mechanics. We validate the power of the individual genes to discriminate between soft and 

stiff cell states in silico, and demonstrate experimentally that the top scoring gene, CAV1, 

changes the mechanical phenotype of cells when silenced or overexpressed. The data-driven 

approach presented here has the power of de novo identification of genes involved in cell 

mechanics regulation and paves the way towards engineering cell mechanical properties on 

demand to explore their impact on physiological and pathological cell functions. 

Keywords: mechanical phenotype, deformability cytometry, transcriptomics, RNAseq, 

unsupervised machine learning, systems biology, discriminative network analysis, 

mechanomics  
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Introduction 

The extent to which cells can be deformed by external loads is determined by their 

mechanical properties, such as cell stiffness. Since the mechanical phenotype of cells has 

been shown to reflect functional cell changes, it is now well established as a sensitive label-

free biophysical marker of cell state in health and disease1–4. Beyond being a passive 

property that can be correlated with cell state, cell stiffness is increasingly recognized as an 

important feature involved in shaping processes such as development5–8 and cancer 

progression9–13. Identifying the molecular targets for on-demand tuning of mechanical 

properties is, thus, essential for exploring the precise impact that cell mechanics has on 

physiological and pathological processes in living organisms. 

The mechanical properties of cells are determined by various intracellular structures and 

their dynamics, with cytoskeletal networks at the forefront14. According to current 

knowledge, the most prominent contributor to the global mechanical phenotype is the actin 

cortex and its contractility regulated via Rho signalling15–17. Intermediate filaments, including 

vimentin and keratin, reside deeper inside the cell and can also contribute to measured cell 

stiffness, especially at high strains18–22. Although there is some evidence of the contribution 

of microtubules to cell stiffness at high strains23, their role has been difficult to address 

directly, since drug-induced microtubule disassembly evokes reinforcement of actin 

cytoskeleton and cell contractility24. Apart from cytoskeletal contributions, the cell 

mechanical phenotype can be influenced by the level of intracellular packing25–27 or 

mechanical properties of organelles occupying cell interior, such as the cell nucleus28,29. 

When aiming at modulating the mechanical properties of cells, it may not be practical to 

target cytoskeletal structures, which are central to a multitude of cellular processes, because 

their disruption is generally toxic to cells. It is therefore important to identify targets that 

enable subtle, alternative ways of intervening with cell stiffness.  

Most of our knowledge about the molecular contributors to cell mechanics has been derived 

from drug perturbations or genetic modifications targeting structures known a priori. The 
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challenge of identifying novel targets determining the mechanical phenotype can be 

addressed on a large scale by performing screens using RNA interference30–32 or small-

molecule compound libraries. Alternatively, the problem can be reverse-engineered, in that 

omics datasets for systems with known mechanical phenotype changes are used for 

prediction of genes involved in the regulation of mechanical phenotype in a mechanomics 

approach4. Broadly speaking, mechanomics is a study of omics data within the context of 

mechanobiology. So far, this term was used with regard to changes in omics profiles in 

response to a mechanical stimuli such as shear flow, tensile stretch, or mechanical 

compression33–35, or to collectively name all of the mechanical forces acting on or within 

cells36–40. However, it can also be used to address omics changes related to changes in the 

mechanical properties of cells41,42 — a context much closer to our study. 

Here we extend the concept of mechanomics to a data-driven methodology for de novo 

identification of genes contributing to the mechanical phenotype based on omics data 

(Figure 1). To demonstrate this approach, we perform a machine learning-based 

discriminative network analysis termed PC-corr41 on transcriptomics data from two 

unrelated biological systems with known mechanical phenotype changes42,43 and elucidate a 

conserved functional module of five candidate genes putatively involved in the regulation of 

cell mechanics. We then test the ability of each gene to classify cell states according to cell 

stiffness in silico on four further datasets. Finally, we verify experimentally that the gene with 

the highest discriminative power, caveolin 1 (CAV1), has the capacity to alter the mechanical 

phenotype in the predicted direction when downregulated or overexpressed. The systematic 

approach presented here, combining omics data with mechanical phenotypes across 

different systems, has the power to identify genes that ubiquitously contribute to cell 

mechanical phenotype in a hypothesis-free manner. Such genes can, in the future, be used 

as knobs for adjusting mechanical cell properties to explore their role in the homeostasis of 

multicellular systems or to therapeutically intervene in relevant pathologies.  
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Results 

Cross-system identification of genes involved in cell mechanical changes 

We introduce an inference approach for de novo identification of genes involved in cell 

mechanical changes across different systems from transcriptomic data that we refer to as 

mechanomics. The general workflow of this approach is presented in Figure 1 and consists 

of four following steps: data curation, target prediction, in silico validation and experimental 

validation. 

 

Figure 1| Overview of a mechanomics approach for the de novo identification of genes involved 
in cell mechanics regulation. a, Data curation. Datasets originating from different biological systems 
encompassing cell states with distinct mechanical phenotypes, as characterized by RT-DC, and 
associated transcriptomics profiles are collected. b, Target prediction. A subset of collected datasets 
is used to perform machine learning-based network analysis on transcriptomic data and identify 
conserved module of genes associated with cell mechanics changes. PC – principal component. c, In 
silico validation. The classification performance of individual genes from module identified in (b) is 
evaluated in silico on remaining datasets. TPR – true positive rate, FPR – false positive rate, AUC – area 
under the curve. d, Experimental validation. Targets with highest classification performance in silico 
are verified experimentally in perturbation experiments.  
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In the first step, datasets representing a broad spectrum of biological systems are collected 

(Figure 1a). Each dataset encompasses two or more distinct cell states characterized by a 

change in the mechanical phenotype, and for which transcriptomic data is available. For the 

particular execution presented in this study, we curated six datasets originating from various 

mouse and human tissues (Table 1). The mechanical phenotypes of the different cell states 

within each dataset were characterized using real-time deformability cytometry (RT-DC), a 

microfluidics-based method that enables rapid analysis of thousands of cells44 — a feature 

particularly useful when setting out to explore a large variety of systems and states. The 

transcriptional profiles related to each system, generated by either RNA sequencing 

(RNAseq) or microarray analysis, were retrieved from entries previously deposited in online 

databases (Table 1). 

In the second step, the transcriptomic data from a subset of collected datasets is used to 

identify a conserved network module of putative target genes involved in the regulation of 

cell mechanical phenotype (Figure 1b). For this purpose, we implemented an inference 

approach termed PC-corr41, which predicts a network of features that explain the sample 

segregation along the principal component (PC) associated with a phenotypic change. 

PC-corr is performed individually on each discovery dataset and the juxtaposition of the 

results from individual sets yields a conserved module of genes that are the predicted targets 

potentially involved in the regulation cell mechanics. In our study, we have included two 

datasets from unrelated systems in the target prediction step and obtained a conserved 

module of 5 genes. 

The ability of the obtained target genes to correctly classify soft and stiff cell states is next 

tested in silico on the validation datasets (Figure 1c) using the area under the curve of the 

receiver-operator characteristics (AUC-ROC)45. The best scoring targets are validated 

experimentally by monitoring mechanical phenotype changes upon their overexpression 

and downregulation in the cells of choice (Figure 1d).  
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Model systems characterized by mechanical phenotype changes 

To curate the datasets, we screened the projects ongoing in our group and identified 

biological systems for which published transcriptomic data were available, and the 

concomitant mechanical phenotype changes were either already documented or implicated 

(Table 1). The mechanical phenotype of the different cell states in each system was 

characterized using RT-DC. RT-DC is a microfluidic method that relies on flowing cells through 

a narrow constriction of a microfluidic channel and high-speed imaging to assess the ensuing 

cell deformation44 (Supplementary Figure 1a–b). In the context of this method, the 

mechanical phenotype is understood as whole-cell elasticity quantified by an apparent 

Young’s modulus, E, deduced from cell size and deformation under given experimental 

conditions46 (Supplementary Figure 1c–d). Young’s modulus quantifies how much stress 

(force per unit area) is necessary to deform a cell to a certain extent (i.e., strain), thus higher 

Young’s modulus values indicate that a cell is harder to deform, or stiffer.  

The first system included in our analysis encompassed patient-derived glioblastoma cell lines 

cultured in conditions supporting different levels of activation of the STAT3-Ser/Hes3 

signaling axis involved in cancer growth regulation. As previously demonstrated, the higher 

the STAT3-Ser/Hes3 activation in the characterized states, the stiffer the measured 

phenotype of glioblastoma cells42 (Figure 2a). The second system included small-cell and 

non-small-cell human carcinoma cell lines originating from intestine, lung, and stomach. 

Consistently across tissues, small cell-carcinoma cells had a lower apparent Young’s modulus 

compared to their non-small-cell counterparts (Figure 2b). Small-cell carcinomas have 

relatively small cell sizes, short doubling times and higher metastatic potential connected 

with poor clinical prognosis in patients47,48. In the third studied system, CD34-positive human 

hematopoietic stem and progenitor cells (HSPCs) isolated from mobilized peripheral blood 

showed a decrease in the apparent Young’s modulus upon treatment with a histone 

deacetylase inhibitor, valproic acid (VPA), that allows for extensive expansion of HSPCs in 

vitro49 (Figure 2c). In the fourth studied system, two non-tumorigenic breast epithelium 

MCF10A cell lines bearing single-allele oncogenic mutations in the catalytic subunit alpha of 
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the phosphatidylinositol-4,5-bisphosphate 3-kinase (PIK3CA)50 showed increased stiffness 

compared to wild type control cells (Figure 2d). The studied mutations (E545K in exon 9 and 

H1047R in exon 20) lead to constitutive activation of PIK3CA and an aberrant triggering of 

the PI3K–AKT–mTOR signaling pathway leading to growth factor-independent 

proliferation51,52. In the fifth system, the fuzzy-colony forming (F-class) state of iPSCs had a 

lower stiffness as compared to the bone-fide compact-colony forming (C-class) state43 

(Figure 2e). C-class cells establish endogenous expression of reprogramming factors at 

moderate levels towards the end of reprogramming, while F-class cells depend on the 

ectopic expression of the pluripotency factors and are characterized by a fast proliferation 

rate53. Finally, we characterized three stages of developing neurons isolated from embryonic 

mouse brain54, and observed that the stiffness of the cells increased progressively with 

increasing neurogenic commitment; with differentiating progenitors (DPs) exhibiting a 

higher apparent Young’s modulus than proliferating progenitors (PPs) and newborn neurons 

(NNs) exhibiting the highest apparent Young’s modulus (Figure 2f). Cell areas and 

deformations used for Young’s modulus extraction in all datasets are visualized in 

Supplementary Figure 2. 

The six mechano-transcriptomic datasets collected within the framework of our study 

(Table 1) represent a broad spectrum of biological systems encompassing distinct cell states 

associated with mechanical phenotype changes. The included systems come from two 

different species (human and mouse), several tissues (brain, intestine, lung, stomach, bone 

marrow, breast, as well as embryonic tissue) and are associated with processes ranging from 

cancerogenic transformations to cell morphogenesis. This high diversity is important for 

focusing the analysis on genes universally connected to the change in mechanical properties, 

rather than on genes specific for processes captured by individual datasets.  
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Figure 2| Mechanical properties of divergent cell states in six biological systems. Schematic 
overviews of the systems used in the mechanomics study, alongside with the cell stiffness of individual 
cell states parametrized by Young’s moduli E. a, Human patient-derived glioblastoma cells with three 
distinct signaling states maintained by indicated culture conditions. b, Small-cell and two non-small-
cell human carcinoma cell types (squamous cell carcinoma, sq, and adenocarcinoma, ad) originating 
from intestine, lung, and stomach. c, CD34-positive HSPCs mobilized from human bone marrow 
treated with valproic acid (VPA) or PBS as control. d, Human breast epithelium MCF10A cell lines 
bearing single-allele mutation in the PIK3CA gene in the exon 9 (E545K) or exon 20 (H1047R), together 
with parental wild type (wt) as a control. e, F- and C-class murine iPSCs cultured in the presence or 
absence of doxycycline (dox) activating ectopic expression of OSKM factors (Oct4, Sox2, Klf4, and 
cMyc). f, Developing neurons isolated from murine embryonic brains at three stages of neural 
commitment: proliferating progenitors (PPs), differentiating progenitors (DPs) and newborn neurons 
(NNs).  Horizontal lines delineate medians with mean absolute deviation (MAD) as error, datapoints 
represent medians of the individual replicates, the number of independent biological replicates is 
indicated below each box. Statistical analysis was performed using generalized linear mixed effects 
model. Data in a and e were previously published in ref 42 and 43, respectively. 
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Table 1| Mechano-transcriptomic datasets used in this study. P – prediction, V – validation, HT Seq – high-throughput RNA sequencing, 
CAGE – cap analysis gene expression, AFM – atomic force microscopy, sq – squamous cell carcinoma, adeno – adenocarcinoma, wt – wild 
type, PP – proliferating progenitors, DP – differentiating progenitors, NNs – newborn neurons. 

 general information   transcriptomic data   mechanics data  

source dataset name 
used 

for 
cell states 

accession 

number 
reference technology 

unique 

entries 

total 

samples 
method reference 

hu
m

an
 

   

glioblastoma P FGFJI | EGF | serum 
GEO: 

GSE77751 
Poser et al.42 HT seq 39400 27 RT-DC Poser et al.42 

carcinoma V small-cell | sq | adeno* 
DDBJ: 

DRA000991§ 

FANTOM 

consorptium55 
CAGE 18821 8 RT-DC | AFM this paper 

HSPCs V untreated | VPA-treated 
GEO: 

GSE90552 

Arulmozhivarman 

et al.49 
HT seq 40101 6 RT-DC this paper 

MCF10A V wt | PIK3CA mutation 
GEO: 

GSE69822 
Kiselev et al.56 HT seq 38508 6 RT-DC this paper 

m
ou

se
 

 

iPSCs P F-class | C-class 
GEO: 

GSE49940 
Tonge et al.53 microarray 18118 28 RT-DC | AFM Urbanska et al.43 

developing 

neurons 
V PPs | DPs | NNs 

GEO: 

GSE51606 
Aprea et al.54 HT seq 21110 9 RT-DC this paper 

*from 3 tissues: intestine, lung, stomach 
§the data for samples of interest was extracted using TET tool from the FANTOM5 website https://fantom.gsc.riken.jp/5/ 
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Discriminative network analysis on discovery datasets 

After characterizing the mechanical phenotype of the cell states, we set out to use the 

accompanying transcriptomic datasets to elucidate genes associated with the mechanical 

phenotype changes across the different model systems. To this end, we applied a method 

for inferring phenotype-associated functional network modules from  omics datasets termed 

PC-Corr41 on two discovery datasets, and overlayed the results to obtain a conserved module 

of genes. Thanks to the combination of Pearson’s correlation and the discriminative 

information included in the PC loadings, the PC-corr analysis does not only consider gene 

co-expression — as is the case for classical co-expression network analysis57,58 — but also 

incorporates the relative relevance of each feature for discriminating between two or more 

conditions — in our case, the conditions representing soft and stiff mechanical phenotypes. 

For the network construction, we chose two datasets that originate from different species, 

concern unrelated biological processes, and have the highest number of samples included 

in the transcriptional analysis: human glioblastoma and murine iPSCs (Table 1). PC-corr 

analysis was performed on these discovery datasets individually using a subset of transcripts 

at which the two datasets intersect (Figure 3a). First, the 9,452 unique genes from the 

intersection were used to perform principal component analysis (PCA) (Figure 3b–c). Next, 

the PC loadings for the component showing good separation between the different cell 

states (PC1 for both of presented datasets) were normalized and scaled. The processed PC 

loadings, !, were then combined with Pearson’s correlation coefficients, ", to obtain a 

#$-"&'' value for each pair of genes (, * for every n-th dataset according to the following 

formula: 

 #$-"&''!,#$ = sgn/"!,#$ 0	min/|!!$|, 5!#$5, 5"!,#$ 50. (1)  

The sign of the #$-"&'' value corresponds to the correlated or anti-correlated expression of 

genes (, *, and the magnitude of #$-"&'' conveys the combined information about the 

strength of the expression correlation and the contribution of the individual genes to the 

phenotype-based separation of samples. 
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To combine the PC-corr results obtained for the discovery datasets, a combined #$-"&'' 

value, #$-"&''!,#%&'(, was calculated either as a mean or as a minimum of the individual values. 

For 6 datasets: 

 #$-"&''!,#%&'( = 7δ!,# 	
)
*∑ 5#$-"&''!,#$ 5*

$+) 																															
δ!,# 	min	/	5#$-"&''!,#) 5, … , 5#$-"&''!,#$ 5	0

	, (2)  

where δ!,# ∈ {−1,1} defines the sign of #$-"&''!,#%&'(, and is equal to the mode of #$-"&''!,# 

signs over all individual datasets. In our implementation on two datasets, gene pairs with 

opposing #$-"&'' signs were masked by setting their #$-"&''%&'( values to zero.  

To obtain the network of putative target genes, a cut-off was applied to the absolute value 

of #$-"&''%&'(. We explored several cut-off strategies in order to obtain a wide overview of 

the meaningful conserved network structures. By looking at #$-"&''%&'( calculated as mean 

and setting the threshold for its absolute value to 0.75, we obtained a network of 29 nodes 

connected by 30 edges (Figure 3e). The edges describe the connection between the genes 

in the network and their thickness is defined by the #$-"&''%&'( values (Supplementary 

Table 1). The node colors reflect the strength of the contribution of individual genes to the 

separation of the different classes as described by the mean of the processed PC loadings !. 

The obtained network can be made more conservative by using the minimum #$-"&''%&'( 

instead of the mean, or by changing the cut-off value. Utilizing the #$-"&''%&'( calculated as 

minimum value (Supplementary Table 2) and setting the cut-off value to 0.70, we obtained 

a network with 22 nodes connected by 29 edges (Figure 3f). Increasing the cut-off value to 

0.75 resulted in a network of 9 genes connected by 12 edges (Figure 3g). The list of genes 

from the three networks presented in Figure 3e–g, together with their full names and 

processed PC loading values, is presented in Supplementary Table 3. 

Finally, we performed gene ontology enrichment analysis for biological processes on the 

nodes of the network presented in Figure 3g, as well as the union of all nodes presented in 

Figures 3e–g (Supplementary Figure 3). The top two significantly enriched terms in the 9-

gene set were the negative regulation of transcription by polymerase II (GO:000122) and 
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negative regulation of endothelial cell proliferation (GO:0001937). In the 34-gene set, apart 

from a broad term of signal transduction (GO:0007165), the significantly enriched terms 

included negative regulation of transcription by polymerase II (GO:000122), regulation of cell 

growth (GO:0001558), and negative regulation of cell proliferation (GO:0008285), among 

others. The aforementioned categories included mostly genes showing high expression in 

the stiff states. Hence, these results point towards reduced transcriptional activity and 

reduced growth/proliferation in stiff compared to soft cells. 

The identified conserved functional network module comprises five genes 

Regardless of the strategy chosen for the selection of the network-building gene pairs, a 

strongly interconnected module of 5 genes (Table 1), highlighted in yellow in Figure 3e–g, 

emerged. We focused on the five genes from this conserved network module as putative 

targets for regulating cell mechanics: CAV1, FHL2, IGFBP7, TAGLN, and THBS1. Caveolin-1, CAV1, 

is a protein most prominently known for its role as a structural component of caveolae. 

Caveolae are small cup-shaped invaginations in the cell membrane that are involved, among 

other functions, in the mechanoprotective mechanism of buffering the plasma membrane 

tension59–61. Apart from membrane organization and membrane domain scaffolding, CAV1 

plays a role in an array of non-caveolar functions such as metabolic regulation or Rho-

signalling59,62,63. The second identified target, four and a half LIM domains 2, FHL2, is a 

multifaceted LIM domain protein with many binding partners and a transcription factor 

activity64. FHL2 has recently been shown to remain bound to actin filaments under high 

tension, and be shuttled to the nucleus under low cytoskeletal tension65,66 — a property 

conserved among many LIM domain-containing proteins66,67. The third target, Insulin-like 

growth factor binding protein 7, IGFBP7, is a secreted protein implicated in a variety of 

cancers. It is involved in the regulation of processes such as cell proliferation, adhesion, and 

senescence68. Transgelin, TGLN, is an actin-binding protein whose expression is up-regulated 

by high cytoskeletal tension69 and is also known to play a role in cancer70. Finally, 

thrombospondin 1, THBS1, is a matricellular, calcium-binding glycoprotein that mediates 

cell-cell and cell-matrix adhesions and has many regulatory functions71,72. 
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Figure 3| Identification of putative targets involved in cell mechanics regulation. 
a, Glioblastoma and iPSC transcriptomes used for the target prediction intersect at 9,452 genes. b–
c, PCA separation along two first principal components of the mechanically distinct cell states in the 
glioblastoma (b) and iPSC (c) datasets. The analysis was performed using the gene expression data 
from the intersection presented in (a). d, Schematic representation of PC-corr analysis and the 
combination of the PC-corr results for two systems. e–g, Gene networks based on filtering gene pairs 
by the combined PC-corr score. The presented networks were obtained by setting the cut-off value to 
0.75, when using the mean PC-corr approach (e), and to 0.70 (f) and 0.75 (g), when using the minimum 
value approach. In e–g edge thicknesses represent the |"#-%&''!"#$| and the colors of the nodes 
represent the average processed PC loadings. 
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Table 2| List of identified target genes comprising the conserved module. 

symbol gene description HGNC ID MGI ID 

CAV1 caveolin 1 HGNC:1527 MGI:102709 

FHL2 four and a half LIM domains 2 HGNC:3703 MGI:1338762 

IGFBP7 insulin like growth factor binding protein 7 HGNC:5476 MGI:1352480 

TAGLN transgelin HGNC:11553 MGI:106012 

THBS1 thrombospondin 1 HGNC:11785 MGI:98737 

Before validating the performance of the five target genes, we inspected their expression 

across the divergent cell states in the collected datasets. The target genes show clear 

differences in expression levels between the soft and stiff cell states and provide for fairly 

good clustering of the samples corresponding to different cell stiffnesses in both discovery 

and validation datasets (Supplementary Figure 4). The relation between normalized 

apparent Young’s modulus change and fold-change in the expression of the target genes is 

presented in Supplementary Figure 5. Of note, the direction of changes in the expression 

levels between the soft and stiff cell states in the validation datasets was not always following 

the same direction (Supplementary Figure 4c-f, Supplementary Figure 5). This suggests 

that the genes involved in cell mechanics regulation may not have a monotonic relationship 

with cell stiffness, but rather are characterized by different expression regimes in which the 

expression change in opposite directions can have the same effect on cell stiffness. 

CAV1 performs best at classifying soft and stiff cell states in validation datasets 

Next, we used the four remaining datasets (carcinoma, HSPCs, MCF10A and developing 

neurons) to computationally test the performance of the five identified genes in classifying 

the individual samples into soft or stiff phenotypes based on their transcription levels. For 

this purpose, we implemented the AUC–ROC analysis45. The ROC curve is a graphical plot 

that illustrates the classification ability of a binary classifier system. On the x axis of an ROC 

plot, the false positive rate (FPR) is represented, and on the y axis the true positive rate (TPR). 

We built ROC curves for every soft-stiff pair of cell states from individual datasets by swiping 

through different thresholds of the expression of a given gene and calculating the TPR and 
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FPR for classifying the soft and stiff cell states based on these thresholds (Supplementary 

Figure 6). We then used the area under the ROC curve as a proxy for the performance of 

these one-feature classifiers. AUC–ROC takes values from 0 to 1, with 1 corresponding to a 

perfect classifier and 0.5 to a random classifier. The AUC–ROC values obtained for each gene 

from the conserved module in the respective validation datasets are summarized in Table 3. 

We found that CAV1, with an average AUC–ROC score of 0.95, was the best performing 

classifier. Thus, we set out to test experimentally if modifying the levels of CAV1 in cells could 

elicit the predicted change in their mechanical phenotype. 

Table 3|In silico validation of the genes from the conserved functional network module using 
AUC-ROC. The table contains values of AUC-ROC for target genes obtained for every soft-stiff cell state 
pair. The average of AUC-ROC values obtained for all validation systems is included in the last table 
row. sc – small cell carcinoma, sq – squamous cell carcinoma, adeno – adenocarcinoma, wt, wild type, 
cnt – untreated control, VPA – valproic acid, PPs – proliferating progenitors, DPs – differentiating 
progenitors, NNs – newborn neurons. 

dataset state CAV1 FHL2 IGFBP7 TAGLN THBS1 

carcinoma 

sc vs sq 1 0.84 0.87 0.77 1 

sq vs adeno 0.84 0.61 0.51 0.72 0.61 

sc vs adeno 1 0.90 0.82 0.91 0.74 

MCF10A wt vs H1047R 0.78 1 1 1 1 

HSPCs cnt vs VPA 1 0.94 1 0.84 0.63 

developing neurons 

PPs vs DPs 1 1 0.78 0.50 1 

DPs vs NNs 1 1 0.78 0.67 1 

PPs vs NNs 1 1 0.89 1 1 

 mean 0.95 0.91 0.83 0.80 0.87 
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Perturbing expression levels of CAV1 changes cells stiffness 

The increase in apparent Young’s modulus was accompanied by an increase in CAV1 levels 

in most of our datasets (Supplementary Figure 5a). Additionally, we observed that mouse 

embryonic fibroblasts isolated from CAV1 knock out mice (CAV1KO) are softer than the wild 

type cells (WT) (Supplementary Figure 7). Thus, we hypothesized that artificially decreasing 

the levels of CAV1 should cause cell softening, and conversely, increasing the level of CAV1 

should result in higher cell stiffness (Figure 4a). To test this hypothesis, we perturbed the 

levels of CAV1 in the cell lines representing two intestine carcinoma types: ECC4, the small-

cell carcinoma with a comparably soft phenotype, and TGBC18TKB (TGBC), the 

adenocarcinoma with a comparatively stiff phenotype. We confirmed that TGBC cells have a 

higher level of CAV1 as compared to ECC4 on a protein level (Supplementary Figure 8a) and 

that they are characterized by a stiffer phenotype, not only when measured with RT-DC 

(Figure 1b), but also with atomic force microscopy (AFM) using both standard indentation 

experiments, as well as oscillatory indentation at different frequencies, referred to as AFM 

microrheology (Supplementary Figure 8b–c). 

To decrease the levels of CAV1 in the TGBC cells, we performed knock-down experiments 

using two RNA interference (RNAi) systems, endoribonuclease-prepared siRNA (esiRNA) 

targeting three different parts of CAV1 transcript (esiCAV1-1, esiCAV1-2, and esiCAV1-3), and 

a pool of conventional siRNAs (CAV1-pool). All the RNAi approaches resulted in the decrease 

of the apparent Young’s modulus of TGBC cells as measured by RT-DC (Figure 4b–c, 

Supplementary Figure 9a–b), the most prominent effect was observed using esiCAV1-1. We 

further confirmed that CAV1 knock-down with esiCAV1-1 resulted in decreased stiffness of 

TGBC cells using AFM indentation and AFM microrheology measurements (Supplementary 

Figure 10). 

To investigate the influence of increased CAV1 levels on cell stiffness, we performed transient 

overexpression experiments of CAV1 with a dTomato reporter under independent ribosomal 

entry site, IRES, (CAV1iT) in both ECC4 and TGBC cell lines. At 72 hours post transfection, we 

observed elevated levels of CAV1 in both cell lines on a protein level in bulk (Figure 4d). Since 
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in the transient overexpression experiments not all of the cells are transfected, we leveraged 

the possibility to monitor the fluorescence of single cells in parallel with their mechanical 

phenotype offered by real-time fluorescence and deformability cytometry (RT-FDC)73 to gate 

for the fluorescence-positive cells (T+, gate marked in magenta in Figure 4e). The 

fluorescence-positive cells in the CAV1-transfected sample, CAV1iT+, showed higher 

apparent Young’s moduli as compared to fluorescence-negative cells in both control sample 

(mock) and CAV1-transfected sample (CAV1iT–, internal control) (Figure 4f, Supplementary 

Figure 9c–d). The effect was observed in ECC4 as well as TGBC cells, however, it was more 

pronounced in the TGBC cells, suggesting that the cells may be more responsive to the 

artificial increase in CAV1 levels when natively expressing a basal level of this protein. 

Finally, we performed CAV1 perturbation experiments in a breast epithelial cell model of 

cancerous transformation, MCF10A-ER-Src cells, in which the Src proto-oncogene can be 

induced by treatment with tamoxifen (TAM). As previously shown, TAM addition triggers Src 

phosphorylation and  cellular transformation74, which is associated with F-actin cytoskeletal 

changes and, after a transient stiffening, the acquisition of a soft phenotype evident at 

36 hours post induction75. We inspected a previously published microarray dataset and 

determined that the expression of CAV1 diminishes over time after TAM treatment76 

(Supplementary Figure 11a). We then showed that the decrease of CAV1 could be observed 

on protein level at 72 hours post induction (Supplementary Figure 11b), a timepoint at 

which the TAM-induced MCF10A-ER-Src cells show a significant decrease in cell stiffness (ref75 

and Supplementary Figure 11c). We next showed that decreasing the level of CAV1 by 

knock-down caused a decrease in stiffness of uninduced MCF10A-ER-Src cells similar to that 

caused by TAM induction (Supplementary Figure 11d). We then performed an inverse 

experiment, in which we rescued the CAV1 levels in TAM-induced MCF10A-ER-Src cells by 

transient overexpression. The cells with CAV1 overexpression showed a stiff phenotype, 

similar to the one of uninduced cells (Supplementary Figure 11e). 
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Taken together, the results obtained with the intestine carcinoma cell lines and 

MCF10A-ER-Src cells show that CAV1 not only correlates with, but also is causative of 

mechanical phenotype change. 

Figure 4| Perturbing levels of CAV1 affects the mechanical phenotype of intestine carcinoma 
cells. a, Putative relationship between the CAV1 levels and the mechanical phenotype. b, Verification 
of CAV1 knock-down in TGBC cells using Western blot analysis, representative blot (top) as well as 
quantification (bottom, n = 4) are shown. c, Apparent Young’s modulus of TGBC cells upon CAV1 
knock-down as measured by RT-DC, normalized to respective non-targeting controls (n = 5 and 4 for 
set 1 and 2, respectively). d, Verification of CAV1 overexpression in ECC4 and TGBC cells using WB 
analysis, representative blot (top) as well as quantification (bottom, n = 3 and 9, for ECC4 and TGBC, 
respectively) are shown. e, Gating for fluorescence positive and negative cells based on dTomato 
expression in ECC4 (top) and TGBC (bottom) cells. Fluorescence positive cells correspond to cells 
expressing CAV1-IRES-dTomato. f, Apparent Young’s modulus of ECC4 and TGBC cells upon CAV1 
overexpression as measured by RT-DC, normalized to mock controls (n = 5 and 9 for ECC4 and TGBC, 
respectively). The bar plots in b and d show means with standard deviation as error. In c and f, 
horizontal lines delineate medians with mean absolute deviation (MAD) as error, datapoints represent 
medians of the individual replicates. Statistical analysis was performed using two-sided two-sample 
t-tests in b and d, and generalized linear mixed effects models in c and f.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.26.441418doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441418


 Urbanska, Ge, et al. | BioRχiv 2021| 19 

Discussion 

The mechanical phenotype of cells is recognized as a hallmark of many physiological and 

pathological processes. Understanding how to control it is a necessary next step that will 

facilitate exploring the impact of cell mechanics perturbations on cell and tissue function4. 

The increasing availability of transcriptional profiles accompanying cell state changes, has 

recently been complemented by the ease of screening for mechanical phenotypes of cells 

thanks to the advent of high-throughput microfluidic methods77. This provides an 

opportunity for data-driven identification of genes involved in the control of mechanical cell 

phenotype in a hypothesis-free manner. Here we leveraged this opportunity by performing 

discriminative network analysis on transcriptomes associated with mechanical phenotype 

changes to elucidate a conserved module of five genes potentially involved in cell mechanical 

phenotype regulation. We evaluated the prediction performance of individual genes when 

classifying cells into soft and stiff states in silico, and demonstrated on the example of best 

performing gene, CAV1, that its experimental up- and downregulation impacts the stiffness 

of the measured cells. This demonstrates that the level of CAV1 not only correlates with, but 

also is causative of mechanical phenotype change.  

The workflow presented here is a blueprint for data-driven discovery of cell mechanics 

regulators. Its key features are the hypothesis-free modus operandi and the integration of 

information from a breadth of biological systems, that allows to focus on genes that play a 

relatively general role in cell mechanics rather than on genes specific to the individual 

experimental models. Noteworthy, by including the PC loadings in the scores used for 

thresholding, the PC-corr method implemented for network analysis in our study offers a 

multivariate alternative to classical co-expression analysis57,58, that highlights not only the 

correlation between the genes but also their relative importance for separating samples 

based on their mechanical phenotype. Despite its simplicity, PC-corr offers a robust 

performance on different types of omics data, and has already proven its efficacy in several 

studies41,42,78. 
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Among the target genes elucidated in our analysis, we did not observe enrichment of gene 

ontology terms related to actin cytoskeleton organization, actomyosin contractility, cell 

adhesion or cell migration — processes that are typically associated with cell mechanics 

(Supplementary Figure 3). This can be partially explained by looking at the mRNA rather 

than the protein level, its supramolecular assembly, activation state or localization. Upon 

closer inspection of the obtained gene targets individually, we found some links connecting 

them with cell mechanics in the literature. CAV1, apart from its role in buffering plasma 

membrane tension60,61, has been shown to be involved in cross-talk with Rho-signalling and 

actin-related processes59,62,63, and to correlate with cell stiffness in Ras-transformed 

fibroblasts79. Furthermore, CAV1 was recently shown to modulate the activation of 

transcriptional cofactor yes-associated protein, YAP, in response to changes in stiffness of 

cell substrate80 and in the mechanical stretch-induced mesothelial to mesenchymal 

transition81. YAP is an established transducer of not only various mechanical stimuli, but also 

of cell shape and the changes in the actin cytoskeleton tension82, the latter being an 

important determinant of cell stiffness. Conversely, YAP is an essential co-activator of CAV1 

expression83. In the extended networks (Figure 3e,f), we found three further genes that are 

identified (CYR61, ANKRD1)84,85 or implicated (THBS1)82 as transcriptional targets of YAP. The 

next target, transgelin, TGLN (also known as SM22α) is an actin-binding protein, that 

stabilizes actin filaments and is positively correlated with cytoskeletal tension86. Transgelin is 

a member of the calponin protein family, one further member of which, calponin 2, CNN2, is 

present in the broader sets of genes identified in this study (Figure 3e,f, 

Supplementary Table 3). The expression of calponin 2, likewise, stabilizes actin filaments 

and is increased in cells with high cytoskeletal tension87,88. Finally, FHL2 is a transcriptional 

coactivator that is found, together with other LIM domain protein families such as zyxin and 

paxillin, to localize to actin filaments that are under stress65–67. When the cytoskeletal tension 

is low, FHL2 translocates to the nucleus, thus serving as a nuclear transducer of actomyosin 

contractility65. 
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As seen from the example of the target genes included in the conserved module, their 

change is correlated with cell mechanics across all datasets, but it does not always follow the 

same trend (Supplementary Figure 4 and 5). This non-monotonic relationship between 

gene expression and the mechanical phenotype change suggests that there may be different 

regimes at which the expression change in the same direction has an opposite effect on the 

property of interest. Furthermore, the effect of expression change may be contextual and 

depend on the state of cells. This observation carries some parallels to the role of several of 

our target genes in cancer progression. For example, CAV1 has been indicated as both 

promoting and suppressing cancer progression in a variety of tissues. One way in which this 

can be reconciled is that the change in CAV1 expression may have different roles depending 

on the stage of caner progression62,89,90. A similar ambiguity of their role in cancer 

progression was indicated for THBS172 and IGFBP768. Apart from characterizing the response 

regimes, it will be also important to consider the temporal dynamics of cell response to the 

change in expression of a given gene. Trying to push the cell out of its equilibrium may cause 

the system to respond actively to counterbalance the induced change, which, in turn, may 

lead to oscillations in both expression levels of manipulated protein and its effectors, as well 

as the mechanical properties of the cell.  

Among all different types of omics data, looking at the transcriptome is advantageous and 

disadvantageous at the same time. Its limitation is that mRNA levels do not necessarily reflect 

protein content in cells. Furthermore, for many proteins it is not the absolute level that has 

a functional relevance, but rather the protein activation by, for example, phosphorylation or 

binding with co-activators, or its localization. However, identifying the players at the 

transcriptome level has the advantage of easy implementation in perturbation experiments 

with established genetic tools, such as CRISPR-Cas technology or RNAi. Furthermore, the 

presented analysis framework is readily applicable to other types of omics data, including 

proteomic, metabolomic, lipidomic, or glycomic data, the analysis of which would 

complement our study and provide different insights into the regulation of cell mechanics. 
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Lipidomic data, for example, could reveal possible contributors to cell mechanics related to 

the composition of cell membrane.  

For the approaches such as the one pioneered in this study to flourish, it is necessary that 

the mechanical datasets become routinely published and annotated in a manner similar to 

omics datasets. With the recent advent of high-throughput cell mechanical characterization 

techniques, such as deformability cytometry methods77, the establishment of a database for 

cell mechanics gains immediate relevance. In our group alone, within the timespan of five 

years since the RT-DC method was originally published44, we have accumulated over 100,000 

individual mechanical characterization experiments, comprising roughly a billion of single 

cells measured. Once a vast number of mechanics datasets connected to omics profiles is 

available, it will be straightforward to develop a next generation artificial intelligence 

algorithm predicting cell stiffness from given omics profiles. Apart from analyzing divergent 

cell states, the search for mechanical regulators could be complemented by looking into 

omics data of cells from unimodal populations sorted by their mechanical properties — a 

pursuit that with the advent of high-throughput methods for mechanics-based sorting of 

cells, such as sorting RT-DC91 or passive filtration-based approaches92, becomes a realistic 

objective. 

In conclusion, this work brings together machine learning-driven discriminative network 

analysis and high-throughput mechanical phenotyping to establish a blueprint workflow for 

data-driven de novo identification of genes involved in the regulation of cell mechanics. 

Ultimately, providing the ways to tune the mechanical properties on demand will enable 

turning cell mechanics from a correlative phenomenological parameter to a controllable 

property. Such control will, in turn, allow us to interfere with important processes such as 

tissue morphogenesis, cell migration, or circulation through vasculature. 
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Online Methods 

CELL CULTURE 

Glioblastoma cell lines  

The glioblastoma dataset contained three primary human brain tumour cell lines (X01, X04, 

and X08) in three distinct signalling states. The cells were cultured and characterized within 

a framework of a previous study42. In brief, the three signalling states characterized by low, 

medium, and high activation of STAT3-Ser/Hes3 signalling axis, were maintained by growth 

media containing fetal bovine serum (serum), epidermal growth factor (EGF), or basic 

fibroblast growth factor combined with a JAK inhibitor (FGFJI), respectively. Upon thawing, 

cells were expanded in a serum-free DMEM/F12 medium (10-090-CV, Mediatech, Corning, 

NY, USA) containing N2 supplement and 20 ng ml−1 EGF (R&D Systems, MN, USA) at 37°C in 

a 5% oxygen incubator. Each cell line was then plated into three separate flasks and cultured 

in the DMEM/F12 medium containing N2 supplement and additional supplementation of 

either serum (10%), EGF (20 ng ml−1), or FGFJI (20 ng ml−1, bFGF, R&D Systems; and 200 nM 

JAK inhibitor, Calbiochem, Merck Millipore, Germany). Cells were collected for mechanical 

characterization and RNA sequencing after 5-day exposure to the respective culture 

conditions42. 

Carcinoma cell lines 

Small-cell and non-small-cell carcinoma cell lines from intestine, stomach and lung were 

acquired from RIKEN BioResource Research Center, Japan (see Supplementary Table 4 for 

the list of cell lines and media). Cells were cultured in growth media supplemented with 5% 

(TGBC) or 10% (rest) heat-inactivated fetal bovine serum (10270106, Gibco, ThermoFisher 

Scientific, MA, USA) and 100 U ml−1/100 µg ml−1 penicillin/streptavidin (15140122, Gibco), at 

37°C and 5% CO2. Sub-culturing was performed using trypsin (25200072, Gibco). Cells were 

collected for mechanical characterization at 70% confluency. The RNAseq data was obtained 

from FANTOM5 consortium55. 
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MCF10A cell lines with PIK3CA mutations 

MCF10A cell lines with single-allele PIK3CA mutation E545K in exon 9 (ex9) or H1024R in exon 

20 (ex20) were previously generated by homologous recombination by Horizon Discovery 

LTD, UK50 and were kindly provided, together with an isogenic wild type (wt) control, by 

L.R. Stephens (Babraham Institute, UK). Cells used for mechanical characterization were 

cultured in DMEM/F12 medium (31330038, Gibco) supplemented with 5% horse serum (PAA 

Laboratories), 10 μg ml−1 insulin (I9278, Sigma-Aldrich, MO, USA), 0.2 μg ml−1 hydrocortisone 

(H0888, Sigma-Aldrich), 0.1 μg ml−1 cholera toxin (C8052, Sigma-Aldrich), and 

100 U ml−1/100 µg ml−1 penicillin/streptomycin (15140122, Gibco). The wt cells were 

additionally supplemented with 10 ng ml−1 EGF (E9644, Sigma-Aldrich), while mutant cell 

liens were maintained without EGF. Sub-confluent cells were collected for mechanical 

characterization using trypsin (25200056, Gibco). Mechanical data were collected from two 

biological replicates with three technical repetitions each. The RNAseq data for ex20 and wt 

cells were retrieved from a previous study56, in which cells were cultured in a reduced 

medium (DMEM/F12 supplemented with 1% charcoal dextran treated fetal bovine serum, 

0.2 μg ml−1 hydrocortisone and 0.1 μg ml−1 cholera toxin). 

CD34+ hematopoietic stem and progenitor cells  

For isolation of hematopoietic stem and progenitor cells, leukapheresis samples were 

obtained from G-CSF (granulocyte colony-stimulating factor) mobilized peripheral blood of 

healthy donors after informed consent (ethical approval no. EK221102004, EK47022007). 

CD34+ cells were isolated via magnetic-activated cell sorting (MACS) and cultured ex vivo as 

described in detail elsewhere93. 1 mM VPA, or PBS as a control, were administered to CD34+ 

cells after 24 h in culture. Cells were collected for mechanical characterization and RNA 

sequencing after 5-day exposure.  

Induced pluripotent stem cells 

F- and C-class iPSCs were derived through reprogramming of murine fetal neural progenitor 

cells with Tet-On system for doxycycline-inducible expression of OSKM (Oct4, Sox2, Klf4, 
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cMyc) factors in a previous study43. Both iPSCs classes were cultured on 0.1% gelatin-coated 

dishes in FCS/LIF medium (DMEM+Glutamax (61965059, Gibco), 15% fetal calf serum 

(Pansera ES, PAN-Biotech, Germany), 100 μM β-mercaptoethanol (PAN-Biotech), 2 mM 

L-glutamine, 1 mM sodium pyruvate, 1× nonessential amino acids, 15 ng ml−1 recombinant 

LIF (MPI-CBG, Dresden, Germany)). The F-class iPSCs were additionally supplemented with 

1 μg ml−1 doxycycline, and the C-class iPSCs with a mixture of two inhibitors (2i): 1 μM MEK 

inhibitor (PD0325901, Calbiochem) and 3 μM GSK3 inhibitor (CH99021, Calbiochem). Cells 

were passaged and harvested using 0.1% trypsin solution. The mechanical characterization 

was performed not earlier than at the 27th day of reprogramming43. The microarray 

expression profiles were retrieved from a previous study, in which the F- and C-class iPSCs 

were derived from embryonic fibroblasts using similar doxycycline-inducible OSKM 

expression system53. 

Developing Neurons 

For isolation of neurons at different developmental stages, we used a double-reporter 

mouse line Btg2RFP/Tubb3GFP. This line enables discrimination of proliferating progenitors 

(RFP−/GFP−), differentiating progenitors (RFP+/GFP−), and newborn neurons (RFP+/GFP+). 

Lateral cortices dissected from E14.5 murine embryos were dissociated using a 

papain-based neural dissociation kit (Miltenyi Biotech, Germany) and the cell populations of 

interest were separated based on the RFP/GFP expression using FACS as described in detail 

elsewhere54. The three types of sorted cells were then subjected to RNA sequencing54 and 

mechanical characterization. 

Mouse embryonic fibroblasts 

Previously established, immortalized WT and CAV1KO mouse embryonic fibroblasts derived 

from WT and CAV1KO littermate C57BL/9 mice94 were used in this study. Cells were cultured 

in DMEM medium (11960044, Gibco), supplemented with 10% fetal bovine serum (10270106, 

Gibco), 2 mM glutamine (25030081, Gibco), 100 U ml−1/100 µg ml−1 penicillin/streptomycin 
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(15070063, Gibco), at 37°C and 5% CO2. Sub-confluent cells were collected for mechanical 

measurements by trypsinization (25200056, Gibco). 

MCF10A ER-Src cell line 

The MCF10A ER-Src cells were a kind gift from K. Struhl (Harvard Medical School, MA, USA). 

ER-Src is a fusion of the v-Src (viral non-receptor tyrosine kinase) with the ligand-binding 

domain of the estrogen receptor, that can be induced by cell treatment with tamoxifen 

(TAM)74. Cells were grown at 37°C under 5% CO2 in DMEM/F12 medium (11039047, Gibco), 

supplemented with 5% charcoal (C6241, Sigma-Aldrich)-stripped horse serum (16050122, 

Gibco), 20 ng ml−1 EGF (AF-100-15, Peprotech), 10 mg ml−1 insulin (I9278, Sigma-Aldrich), 0.5 

mg ml−1 hydrocortisone (H0888, Sigma-Aldrich), 100 ng ml−1 cholera toxin (C8052, Sigma-

Aldrich), and 100 U ml−1/100 µg ml−1 penicillin/streptomycin (15070063, Gibco). To induce the 

Src expression cells were plated at 50% confluency, and after allowing to adhere for 24 h, 

treated with 1 µM 4OH-TAM (H7904, Sigma-Aldrich) or with identical volume of ethanol as a 

control. Cells were characterized in adherent state using AFM at timepoints specified in the 

text. 

MECHANICAL MEASUREMENTS 

Mechanical characterization of cells using RT-DC 

RT-DC measurements for mechanical characterization of cells were performed at room 

temperature according to previously established procedures95. In brief, cells were harvested 

by trypsinization (adherent cells) and/or centrifugation at 400 g for 3–5 min, and suspended 

in a measurement buffer (MB). MB (osmolarity 310–315 mOsm kg−1, pH 7.4) was based on 

phosphate buffered saline without Mg2+ and Ca2+ and contained 0.5% or 0.6% (w/w) 

methylcellulose (4000 cPs, Alfa Aesar, Germany) for increased viscosity. Cells were 

introduced into a microfluidic chip using a syringe pump (NemeSys, Cetoni, Germany), and 

focused into a 300-μm long channel constriction (with a square cross-section of 20 × 20 or 

30 × 30 μm) by sheath flow infused at a flow rate three times as high as that of the cell 

suspension. The imaging was performed at the end of the channel constriction 
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(Supplementary Figure 1b) at 2,000 frames s−1. The cell area and deformation were derived 

from the fitted cell contours in real-time by the acquisition software (ShapeIn2; Zellmechanik 

Dresden, Germany). Apparent Young’s modulus values were assigned to each cell based on 

its area and deformation under given experimental conditions (flow rate, channel size, 

viscosity of the medium, temperature) using a look-up table obtained through numerical 

simulations of an elastic solid46 with the aid of ShapeOut (ShapeOut 1.0.1; 

https://github.com/ZELLMECHANIK-DRESDEN/ShapeOut; Zellmechanik Dresden). The 

events were filtered for area ratio (the ratio between the area enclosed by the convex hull of 

the cell contour and the raw area enclosed by the contour) to discard incomplete contours 

or cells with rough surface, and for cell area and aspect ratio to discard derbies and doublets. 

Experimental details (channel sizes, flow rates, measurement buffers) and gates used for 

filtration in respective datasets are listed in Supplementary Table 5. 

Mechanical characterization of cells using AFM 

For AFM measurements, cells were seeded on glass bottom dishes (FluoroDish; FD35100, 

WPI, FL, USA) at least one day in advance. Mechanical characterization was performed on 

adherent cells in a sub-confluent culture in CO2-independent medium (18045054, Gibco) at 

37°C (temperature was maintained by a petri dish heater, JPK Instruments, Germany). AFM 

measurements on TGBC and ECC4 cell lines were conducted on a Nanowizard 4 (JPK 

Instruments). Tip-less cantilevers (PNP-TR-TL, nominal spring constant k = 0.08 N m−1, 

Nanoworld, Switzerland) decorated a polystyrene bead of 5-µm diameter (PS-R-5.0, 

microParticles, Germany) each were used as the indenters. The cantilever spring constants 

were measured prior to each experiment using the thermal noise method implemented in 

the JPK SPM software (JPK Instruments). For each cell three indentation curves were recorded 

with a piezo extension speed of 5 μm s−1 to a maximum set force of 2 nN. For the 

microrheology analysis, the cantilever was lowered using a piezo extension speed of 5 μm s−1 

until a force set point of 1 nN was reached, corresponding to an approximate indentation 

depth @, of 1 µm. The lowered cantilever was then oscillated by a sinusoidal motion of the 

piezo elements at an amplitude of 10 nm for a period of 10 cycles. The oscillations were 
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performed sequentially at different frequencies in the range of 3–200 Hz. Indentation 

experiments on MCF10A ER-Src cells were conducted as described above, except different 

tip-less cantilevers (Arrow TL1, nominal spring constant k	= 0.35–0.45 N m−1, Nanoworld) 

with a 5-µm bead glued at the end were used as the indenter. 

AFM indentation data analysis 

Recorded force-distance curves were converted into force-indentation curves and fitted in 

JPK data processing software (JPK DP, JPK Instruments) using Sneddon’s modification of the 

Hertz model for a spherical indenter96: 

 B = C
1 − D- E

F- + '-
2 ln ' + F' − F − F'J, (3)  

with 

 @ = F
2 ln

' + F
' − F, (4)  

where B denotes the indentation force, C the elastic modulus, D the Poisson's ratio, F the 

radius of the projected contact area formed between the sample and the indenter, ' the 

radius of the indenter, and δ the indentation depth. Poisson ratio was set to 0.5.  

AFM microrheology data analysis 

The force and indentation signals from oscillatory measurements were fitted using a 

sinusoidal function to extract the amplitude and phase angle of each signal. Data were 

analyzed analogously to the procedure described by Alcaraz et al.97 but for a spherical not a 

pyramidal indenter. Briefly, the method relies on the linearization of the Hertz model for a 

spherical indenter due to small oscillations by using the first term of the Taylor expansion 

and subsequent transformation to the frequency domain: 

 B(L) = 2 C∗(L)
(1 − N-)OP@,@(L), (5)  

where B(L) and @(L) are the force and indentation signals in the frequency domain, 

respectively, C∗(L) is the complex Young’s modulus, N is the Poisson’s ratio assumed to be 
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0.5, P is the radius of the indenter and L is the angular frequency. The complex shear 

modulus Q∗(L)	can be written using Q∗(L) = /∗(1)
-()34)

98: 

 Q∗(L) = 	Q5(L) + (Q55(L) = (1 − N)
4OP@,

B(L)
@(L), (6)  

where Q5(L) is the storage modulus and Q55(L) is the loss modulus. The ratio of the force 

B(L) and indentation @(L) is calculated from the measured amplitudes S6(L) and S7(L) and 

the phase shifts T6(L) and T7(L) of the oscillatory signals 99: 

 
B(L)
@(L) = 	

S6(L)	
S7(L) U

!89"(1):9#(1);, 

 

(7)  

where the difference of the phase shifts VT6(L) − T7(L)W is in the range of 0º (elastic solid) 

and 90º (viscous fluid). Furthermore, the hydrodynamic drag contribution on the cantilever 

oscillation was estimated and subtracted from the complex shear modulus as previously 

described 100: 

 Q∗(L) = (1 − N)
4OP@,

XB(L)@(L) − (LY(0)[, 

 

(8)  

where Y(ℎ) is the hydrodynamic drag coefficient function measured from non-contact 

oscillations of the cantilever at different distances ℎ from the sample, and Y(0) is the 

extrapolation to distance 0 from the sample. For PNP-TR-TL cantilevers, the hydrodynamic 

drag coefficient was estimated to be Y(0) = 5.28	µN	s	m:). 

PERTURBATION EXPERIMENTS 

CAV1 knock-down 

For RNAi experiments, cells were transfected using RNAiMax reagent (13778030, Thermo 

Fisher Scientific) and a reverse transfection protocol. Per transfection, 200 ng of esiRNA 

(Eupheria Biotech, Germany) or 300 ng of ON-TARGETplus siRNA (Dharmacon, CO, USA) and 

2 μl RNAiMax were prepared in OptiMEM (31985062, Gibco) according to the manufacturer’s 

instructions and pipetted onto 12-well plates (see Supplementary Table 6 for full list of 

siRNAs used). Cells in 1 ml of culture medium were plated on top of the transfection mix at 
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a density allowing for sub-confluent growth within the experimental timeframe. 72 h post 

transfection, cells were collected for the mechanical characterization and Western blot 

analysis.  

Plasmid for CAV1 overexpression 

The cDNA of CAV1 was amplified by PCR, introducing NheI and XhoI restriction sites in the 

flanking regions. The PCR product was then cloned into the pCGIT destination vector (a kind 

gift from P. Serup, University of Copenhagen, Denmark) under the CAG promoter and with 

dTomato fluorescent marker under internal ribosomal entry site (IRES) downstream of CAV1. 

Transient CAV1 overexpression in ECC4 and TGBC cells 

ECC4 and TGBC cells were transiently transfected with the CAV1 overexpression plasmid by 

electroporation (Neon Transfection System, MPK5000, Thermo Fisher Scientific). Per 

transfection 0.3 × 106 ECC4 cells, or 0.2 × 106 TGBC cells were mixed with 1 μg of plasmid 

DNA in PBS. Electroporation was conducted using 10 μl Neon tips (MPK1096, Thermo Fisher 

Scientific) and a program of two pulses of 1050 V and 30 ms duration each. Electroporated 

cells were transferred to 500 μl of fresh culture medium in a 24-well plate. The cells were 

collected for mechanical characterization and Western blot analysis 72 h post transfection. 

To identify fluorescent cells during mechanical characterization, the combined real-time 

fluorescence and deformability cytometry (RT-FDC)73 setup was used, and the maximum 

intensity of the fluorescence signal from channel 2 (excitation 561 nm, 10% laser power; 

collection 700/75) was utilized for gating. 

Transient CAV1 overexpression in MCF10A-ER-src cells 

MCF10A-ER-src cells were transiently transfected with the CAV1 overexpressing plasmid 

using Effectene transfection reagent (301425, Qiagen). One day before transfection, cells 

were seeded on glass bottom 35-mm dishes (FluoroDish; FD35100, WPI, FL, USA) at a density 

of 20,000 cells per well. Transfection was performed according to the manufacturer’s 

instruction using 75 μl EC buffer, 0.6 μg plasmid DNA, 4.8 μl Enhancer and 6 μl Effectene 
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reagent per well. 24 h post transfection cells were induced with 1 μM TAM. Mechanical 

analysis was performed after additional 72 h of culture. 

Western blotting 

For Western blot analysis of carcinoma and MCF10A-ER-Src cell lines, cell pellets were 

collected in parallel with mechanical measurements and lysed using ice-cold RIPA buffer 

(89900, ThermoFisher Scientific) supplemented with protease/phosphatase inhibitor cocktail 

(78441, ThermoFisher Scientific) and benzonase (E1014, Sigma-Aldrich). The lysates were 

cleared at 4°C by 10-minute sonication followed by 10-minute centrifugation at 16,900 g. 

Obtained supernatants were mixed with Laemmli buffer (final concertation: 62.5 mM Tris-

HCl (pH 6.8), 2% SDS, 10% glycerol, 5% β-mercaptoethanol, 0.01% bromophenol blue), boiled 

(5 min at 95°C), and separated by SDS-PAGE electrophoresis on 4–20% gradient gels (Mini-

PROTEAN TGX Precast Gels; 4561093, Biorad, CA, USA) in MOPS SDS Running buffer (B0001, 

ThermoFisher Scientific). After transferring the proteins onto a PVDF membrane (Merck 

Millipore), the membranes were blocked in TBS-T (20 mM Tris, 137 mM NaCl, 0.1% Tween) 

containing 5% w/v skimmed milk powder (T145.1, Carl Roth, Germany) for 40 minutes. Next, 

membranes were incubated with the primary anti-Cav1 (1:1000; D46G3; #3267, Cell Signaling 

Technology, MA, USA) and anti-GAPDH (1:5000; ab9485, Abcam, UK) antibodies at 4°C 

overnight in 5% milk/TBS-T, washed, and incubated with anti-rabbit HRP-conjugated 

secondary antibody (1:4000; ab97069, Abcam). Chemiluminescence detection was 

performed using Pierce Enhanced Chemi-Luminescence (ECL) substrate (32109, 

ThermoFisher Scientific) and ECL films (GE28-9068-37, Merck Millipore). Films were 

developed in an OptiMax X-ray film processor (KODAK, NY, USA). Quantitative analysis was 

performed on scanned films using the gel analysis tool in JmageJ version 2.0.0-rc-69/1.52p 

(https://imagej.nih.gov/). For western blot analysis of MEFs the same anti-Cav1 antibody 

(1:1000; D46G3; #3267, Cell Signaling) was used, and anti-tubulin antibody (1:2000; DM1A; 

#3873, Cell Signaling) was used as a loading control. Goat anti-mouse 680 and goat anti-

rabbit 800 (1:2000; A28183 and A32735, ThermoFisher Scientific) antibodies were used for 
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secondary detection. Membranes were scanned with the Odyssey imaging system (LI-COR 

Biosciences, NE, USA). 

COMPUTATIONAL ANALYSIS 

Transcriptomic datasets 

Transcriptomic datasets were retrieved from online databases (Gene Expression Omnibus, 

GEO and DNA Data Bank of Japan, DDBJ) with accession numbers listed in Table 1. Overview 

of experimental detail for RNA profiling procedures and data analysis in individual datasets 

is presented in Supplementary Table 7. The IDs of samples used in respective categories in 

each dataset are listed in Supplementary Table 8. In case of multiple entries for the same 

gene in a given transcriptomic dataset, the expression values were averaged, so that only 

one entry per gene and sample was available. 

PC-corr analysis 

Before performing the PC-corr analysis, the glioblastoma and iPSC datasets were intersected 

and normalized by taking the log10 (glioblastomna) or zscore (iPSC) of the subset of 9,452 

overlapping genes. The PC-corr analysis was conducted on individual datasets as described 

in detail elsewhere41. In brief, PCA was performed using svd function in MATLAB (R2020a, 

MathWorks, MA, USA) on normalized datasets. The original PC loadings from the component 

providing good separation of sample categories (PC1 for both analyzed datasets) were 

processed in a two-step procedure including the normalization and scaling. The processing 

of the PC loadings is performed to adjust the distribution of the loadings to the range of 

Pearson’s correlation values [–1,1], so that they are comparable when computing the PC-corr 

value. The normalization was performed using a custom function developed previously41 of 

the following formula: 

 !!∗ = sgn/!!,0	log), E1 +
5!!,5
〈|!,|〉J 	 

 

(9)  
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where !!∗ denotes the normalized loading corresponding to the (-th feauture, !!, the original 

loading corresponding to the (-th feauture, and 〈|!,|〉 the average of all absolute loadings of 

the vector !,. 

The normalized loadings were then scaled to fall on the interval [–1,1] using a previously 

developed custom function41: 

 !! = sgn(!!∗)	
|!!∗| − min	(|!∗|)

max(|!∗|) − min	(|!∗|) 	 

 

(10)  

where !! denotes the processed loading corresponding to the i-th feature, and |!∗| the vector 

containing absolute values of all normalized loadings.  

The PC-corr values for each pair of features were computed according to Equation 1. The 

PC-corr results of the glioblastoma and iPSC datasets were combined as described in the 

results section. Gene pairs showing different #$-"&'' signs were masked by setting the 

#$-"&''%&'( to zero. The genes and edges comprising the network were obtained via 

thresholding strategies described in the main text. The network was visualized using 

cytoscape (cytoscape 3.8.0; https://cytoscape.org/)101. 

Statistical analysis 

The RT-DC datasets were compared using generalized linear mixed effects models with the 

aid of ShapeOut (ShapeOut 1.0.1; https://github.com/ZELLMECHANIK-DRESDEN/ShapeOut; 

Zellmechanik Dresden) as described in detail elsewhere102. AFM datasets were compared 

using two-sided Wilcoxon rank sum test in MATLAB (R2020a, MathWorks). Western blot 

results were compared using a two-sided two-sample t-test in MATLAB (R2020a, MathWorks).   
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