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Abstract:  10 

Classical potentials are widely used to describe protein physics, due to their simplicity and 

accuracy, but they are continuously challenged as real applications become more demanding with 

time. Deep neural networks could help generating alternative ways of describing protein physics. 

Here we propose an unsupervised learning method to derive a neural network energy function for 

proteins. The energy function is a probability density model learned from plenty of 3D local 15 

structures which have been extensively explored by evolution. We tested this model on a few 

applications (assessment of protein structures, protein dynamics and protein sequence design), 

showing that the neural network can correctly recognize patterns in protein structures. In other 

words, the neural network learned some aspects of protein physics from experimental data.  

 20 
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Introduction 

 

The best possible description of protein molecules should involve Quantum Mechanics (QM) and 

the solution of the Schrödinger equation. However, in the study of biological systems, models 

based on approximate classical potential have been successful to understand how proteins and 5 

other biological molecules interact. Two main categories of simplified potentials have emerged to 

describe proteins: physics-based potentials and knowledge-based potentials. Both methods rely on 

physical intuition to map interactions between atoms into simple functional forms that depend on 

various parameters. In the first case, the parameters are derived by comparison with high precision 

QM calculations or experiments. These potentials take often the name of force fields and are 10 

mainly used to perform molecular dynamics (MD) simulations of biological systems (1–3). In the 

second case, probability distribution of observables (e.g. distances, angles, native contacts etc.) are 

directly obtained from experimental information and transformed into a statistical potential (4, 5). 

These potentials are mainly used for applications that are too much computationally expensive for 

MD simulations. The two approaches are not antithetic and their boundary is blurred as many 15 

hybrid potentials are developed (6, 7).  

Approximate classical potential, however, still present some limitations that goes in two opposite 

directions. For some applications, their simple functional form is not able to consider all the details 

required for an accurate description of the system, meanwhile, in other cases they are too 

computationally complex and cannot reach time and size scales directly comparable with 20 

experiments. Although QM calculations and hybrid methods (8–10) can be used to improve the 

accuracy of the calculations, and enhanced sampling methods (11) or coarse grained force fields 

(12, 13) can be used to scale up in both time and size scales, the core problems still exist.  

Deep neural networks (14) are emerging as new ways to approximate complex physical energy 

functions and opening new opportunities to compute molecular properties accurately and fast. In 25 

this approach, the energy function has not a fixed functional form, but is represented by a neural 

network. This strategy has been applied to fit the potential energy surface calculated with density 

functional theory for small molecules (15, 16) . More recent works have developed neural network 

energy functions for multi-scale modeling of molecules following a bottom-up approach, e.g. 

fitting  potentials at atomic resolution to QM calculations (17), or fit coarse grained potentials to 30 

atomic molecular dynamics simulations (18). These energy functions are still not transferable to 

general proteins but could lead to a paradigm shift in the field of force fields in the future. 

In this paper we use an unsupervised deep learning method to construct a neural network energy 

function for proteins, using a top-down approach, i.e., from experimental data or protein structures 

and sequences. We want to construct an energy function that is general enough to be applied to 35 

various tasks in pair with other standard methodology (for example to run MD simulations, or 

discriminate decoys from native configurations). The energy function should depend only on the 

protein configuration, be time independent and differentiable, possess rotational and translational 

invariance, so that it could correctly reproduce protein physics. 

 40 

Design of the neural network energy function based on protein building blocks  

 

In the construction of a data-driven energy function for proteins, the idea is to use data sampled by 

evolution to approximate the physical energy landscape, because evolution has sampled a 
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repertoire of diverse proteins by tinkering and reusing building blocks with low energies (19).  The 

choice of the evolutionary data sets is critical and a naive training of the network with all the 

known experimental protein structures and sequences will likely fail to reproduce correctly protein 

physics. In an ideal case, we would like to have a large sample of unbiased sequence-structure 

pairs, but in reality, when looked from the point of view of their physical properties, the set of 5 

proteins with known experimental structures is both small and redundant. The known folding 

domains (20, 21) are incomplete i.e. structures that appear legitimate from an energetic point of 

view may have not yet  been selected or explored by evolution (22). However, we can hypothesize 

that evolution had enough time to extensively explore the configuration space of smaller 3D local 

structures (23), and that this information is already contained in the available protein databases. 10 

For this reason, we describe a protein as a collection of small-scale structures (building blocks) 

paired with their sequence information. In the training phase, the building blocks are selected from 

a non-redundant set of protein structures and their homologous sequences (see Fig. 1 and 

Methods). We assume that the set is complete, i.e. small-scale structures that are not represented 

in this set are improbable and have high energies. We then assume that the energy function of the 15 

whole protein is the sum of the contributions of each building block. The energy function obtained 

in this way will be local and addictive and, if trained properly, the neural network will be able to 

recognize alternative local minima, which corresponds to alternative configurations or active states 

etc. 

 20 

Protein building blocks 

Definition and representation of building blocks rely on human intuitions. They can be pairs of 

residues, peptide fragments, groups of residues, etc. They can be represented by atoms, virtual 

beads, and various geometric and/or chemical features. Furthermore, the size of the building blocks 

should be small enough in order to minimize the risk of learning from under sampled sets, but 25 

large enough, so that they can represent complex tertiary structures. 

In our current model, we define a building block as the local structure of 15 amino acids around a 

residue. This includes the residue itself, its 4 nearest residues along the sequence and the 10 other 

nearest residues in the 3D space (Fig. 1B and fig. S2). With this definition, building blocks are 

typically composed by a few noncontiguous segments. As we will show, the energy function can 30 

be used to run MD simulations, and in this particular case the building blocks change dynamically 

with time. To represent the structure of building blocks, we use very simple low resolution 

geometric features i.e., the coordinates of beads at the 𝐶𝛽  positions (𝐶𝛼  for Glycine), and the 

connectivity of these beads based on the protein sequence. More geometric features, such as the 

positions of backbone atoms, the side chain positions, and hydrogen bonds can be added as needed. 35 

To make the energies rotational-translational invariant (as it should be for a Hamiltonian function), 

the coordinates of all the beads composing each building block are rotated to the same local internal 

coordinate system (fig. S1).  

 

Machine learning model 40 

After decomposing the proteins into building blocks and extracting their features, we characterize 

the evolutionary landscape of building blocks by fitting a probability density function, and set for 

each building block 𝑋, 𝐸(𝑋) = −𝑙𝑜𝑔𝑃(𝑋). The total energy of a protein 𝑌  is the sum of the 

energies of all building blocks composing 𝑌: 𝐸(𝑌) = ∑ 𝐸(𝑋𝑖)𝑋𝑖∈𝑌 . The probability function 𝑃(𝑋) 
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is obtained with an auto-regressive model and maximum-likelihood training from a set of 𝑁 

building blocks {𝑋}. Each building block 𝑋 can be viewed as a list of k variables 𝑥1, 𝑥2, … , 𝑥𝑘 

ordered in a given scheme, and its probability 𝑃(𝑋) can be expanded according to the Bayesian 

rule as 𝑃(𝑋) = 𝛱𝑗𝑝(𝑥𝑗|𝑥<𝑗). In the ordering scheme, we separate the structural and sequence 

features, so that  𝑃(𝑋) = 𝑝(𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒(𝑋)) ∙ 𝑝(𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝑋) | 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒(𝑋)) . With 𝑃(𝑋) 5 

expanded as a chain of conditional probability functions, each conditional probability 𝑝(𝑥𝑗|𝑥<𝑗) is 

represented as a neural network that shares parameters with other conditional probability functions. 

The neural network architecture of the auto-regressive model is shown in Fig. 1E and detailed in 

the Methods section.  

 10 

Understanding the neural network energy function 

 

To understand whether the Neural Network Energy Function (NNEF) is able to grasp correctly the 

protein physics, we test it in several tasks described hereafter.  

 15 

Scoring decoys generated by modifications of the native structures 

A good energy function should be able to discriminate native-like from non-native conformations. 

We tested the energy function against the 3DRobot decoy set (24) and a second set of decoys that 

we generated by sampling normal modes of protein structures. The 3DRobot decoy set includes 

200 non-homologous single domain proteins (48 in the alpha class, 40 in the beta class, and 112 20 

in the alpha/beta class) and 300 structural decoys for each of these proteins, with root-mean-square 

deviation (RMSD) ranging from 0 to 12 Å. The second set was generated for a test sample of 18 

small (<120 residues) proteins which comprises 4 alpha proteins, 7 beta proteins, and 7 alpha/beta 

proteins. In all proteins of both decoy sets, the energy tends to increase with the distance from the 

native, with native-like decoys having low energies and decoys with large RMSD having high 25 

energies (a typical result for each set is shown in Fig. 2). 

 

Scoring structure predictions  

Another way in which we tested the quality of the NNEF is to score predictions generated in the 

14th Critical Assessment of Techniques for Protein Structure Prediction (CASP14) contest. This 30 

is a bigger challenge than scoring the decoy sets generated by modifications of native structures, 

because such predicted structures cover more diverse conformations and are optimized according 

to some other scoring functions. Each of the 97 protein domains in CASP14 has about 200-500 

structural models. We evaluate the NNEF for each of these predictions and measured its correlation 

with the CASP14 Global Distance Test Total Score (𝐺𝐷𝑇𝑇𝑆), which measures the overall quality 35 

of the prediction. For about 70% of the sets, we obtain a Pearson correlation coefficients |𝜌| >
0.75 (Fig. 3A, B). In the remaining cases (many of which are proteins that belong to complexes 

and for which their tertiary native structures could depend on the environment), the energy of the 

best CASP prediction is always near the global minimum of the evaluated NNEF for the whole 

set. In other words, the energy function appears to be quite successful in detecting good 40 

configurations but could be fooled by reasonable bad configurations (Fig. 3C, D).   
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Evaluating the energy of configurations within a MD trajectory 

The scoring of decoys and model predictions indicate that the learned energy function can be 

generalized to non-native configurations, despite having been trained only with native structures. 

To further explore this feature, we use the NNEF to score a conformation ensemble of a small 

protein (Fip35) sampled over a 100-microsecond long MD trajectory (3). In this time window 5 

Fip35 explores regions of the phase space far from the native configuration and undergoes multiple 

folding and unfolding events. We compare the RMSD and the energy evaluated with NNEF along 

the MD trajectory. As shown in Fig. 4, the folded states have low energy scores, while the unfold 

states generally have higher energy scores, which further shows the energy function can generalize 

to non-native conformations. 10 

 

Performing MD simulations  

The energy function can be interpreted as a Hamiltonian function, and can be used to study protein 

dynamics with an implicit solvent (Langevin dynamics). In the dynamics, the Cartesian 

coordinates (�⃗�) of the residue beads are updated at each step as �⃗�(𝑡 + 1) = �⃗�(𝑡) − 𝛼 ∙ 𝛻𝐸 +15 

𝛽𝛤(𝑡), where 𝐸 is the NNEF for the protein at time 𝑡 and 𝛤(𝑡) is a Gaussian noise with null 

average and unitary variance. The coefficients 𝛼  and 𝛽  are related to the physical friction 

coefficients, the integration time steps, the temperature of the system, and the physical units of 

energy values. With a proper choice of their values (see Methods) we can observe that the 

dynamics generated by this method produce protein fluctuations consistent with those found with 20 

classical MD based on force fields. After fixing values for 𝛼 and 𝛽, we  generated  a 30000 steps 

Langevin dynamics for the test set of 18 small proteins and compared it to MD simulations 

obtained with amber14SB force field (2) using openMM (25). We can observe that the root-mean-

square fluctuations (RMSFs) calculated for each residue across the whole set of protein obtained 

by the two methods have comparable distribution, and their difference stays lower than 0.5 Å in 25 

most cases. For most proteins in the sample, the two dynamics produce RMSFs in good correlation 

across the whole sequence (see Fig. 5 and fig. S5). A complete assessment of the validity of the 

NNEF as a force field deserves a much more exhaustive analysis, which is out of the scope of this 

article, however, these preliminary results indicate that the NNEF can understand how a protein 

should behave when it is excited by thermal fluctuation. 30 

 

Importance of the sequence in the energy function 

The next question we want to address is whether the energy function have learned the difference 

between the various amino acids or if it only learned local structural properties of a protein chain. 

This is not a given, since it is possible to construct protein models that correctly describe local 35 

pattern without any sequence information (26). To investigate this point, we fix the structure and 

evaluate the energy of a sample of 100 proteins after making changes to its sequence. The “decoy” 

sequences were generated in four different ways: (1) substituting residues with chemically similar 

residues, (2) shuffling the residues in the sequence, (3) mutating residues to random ones, (4) 

mutating all residues to the same residue type. In most of the cases, the energies of the mutated 40 

sequences are higher than the native ones, and random mutations produce higher energies than 

mutations to similar amino acids (fig. S3). However, sequences that are rich in alanine appear to 

be favored by the network and almost all poly-alanine decoys have a better energy than the real 
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sequence (fig. S4). This happens, to a lesser extent, also to poly-leucine and poly-histidine, but not 

for the other amino acid. 

 

Protein sequence design 

To further explore the interplay between sequence and structure in the NNEF, we redesigned the 5 

full sequences from their backbone structures for the test sample of 18 small proteins. Starting 

from a random sequence, we run simulated annealing to obtain a sequence that should fold to the 

desired structure. At each step of the annealing process, we propose a random point mutation for 

the protein sequence. The mutation is accepted or rejected according to a Metropolis algorithm. In 

most of the cases, the simulations converge to sequences having energies lower than the native 10 

after a few thousands of steps. We designed in this way 100 sequences for each target protein 

within the mentioned test sample. Amino acid frequencies for these 1800 designed sequences are 

shown in Fig. 6A. As we can observe, the annealing process converges to sequences that favor 10 

amino acids (Ala, Val, Leu, Gly, Pro, Ser, Thr, Arg, Glu, and Asp). These 10 amino acids have 

relatively high frequencies in natural protein sequences, and may be the first 10 that joined 15 

biological proteins early in evolution according to the theory on temporal order of amino acids in 

evolution (27). Overall, the average sequence recovery fraction is about 25% for the total sample 

of 1800 designed sequences. We also analyzed the differences between core and surface residues 

of the designed sequences (Fig. 6B). Core residues are mostly hydrophobic (Ala, Val, Leu), while 

the polar residues are more likely to be exposed. Moreover, core residues are more conserved 20 

compared to surface residues, when considering all the 100 designed sequences for each structure. 

Finally, to give a measure of the reliability of the protein design method, we selected two random 

designed sequences for each protein and predicted their structures using TrRosetta (28). For about 

two thirds of the designed sequences, the predicted structures match the target structures well (Fig. 

6C and fig. S6). 25 

 

Discussion 

 

In this paper we explored the idea of using a neural network energy function to describe Protein 

physics without explicitly fixing its functional form. We describe the local environment of each 30 

residue as a building block that takes into account also residues far in the sequence but near in the 

3D structure, and hypothesize that evolution had enough time to extensively explore the 

configuration space of building blocks. Then we use unsupervised machine learning methods to 

learn a NNEF from the structure and sequence data of building blocks. Our results indicate that 

the learned NNEF is general and transferrable to various problems (albeit with various degree of 35 

success), without being aimed at any of those. This suggests that the network has learned some 

physical characteristics of local patterns in proteins.  

 

Comparison to related works 

Deep learning has been widely used to model proteins in the past. However, the approach presented 40 

here is taking a different point of view compared with previous studies. In many studies, a scientific 

question is translated into a specific supervised learning task. While from the unified perspective 

of energy based model (29), all these supervised models can be viewed as energy functions, they 
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are usually only applicable to the particular task for which they are trained and they are not required 

to be a realistic approximation of the physical energy function of proteins.  

Recent works have shown that it is possible to successfully predict protein structures using deep 

learning methods (28, 30). These models could have implicitly learned some aspects of protein 

physics. For example, deep learning models trained to predict protein structures from multiple 5 

sequence alignments can also be used to design protein sequences and evaluate protein stability 

(31, 32). The generality and transferability of these models still need further studies.  

A different approach has been to exploit the massive number of sequences, and apply unsupervised 

methods, developed for natural language processing, to protein sequences (33–35). The learned 

energy functions can be used to predict secondary structure and contacts in tertiary structure. The 10 

discrete sequence data is very sparse and makes this approach very difficult. Adding structures to 

the learning can make the model more data efficient.  

 

Moving forward from here 

Neural network energy function (or energy-based model) is very flexible, and our current 15 

implementation is far from realizing its full potential. We can improve the method by extensively 

testing different ways to combine structures and sequences, different representations of the 

proteins and building blocks, and better training methods and loss functions. It is also possible to 

refine the parameters of the energy function by supervised fitting to multiple tasks, after the 

unsupervised training. Furthermore, the always increasing availability of experimental data could 20 

also lead to better NNEF in the future. 

Another important advantage, compared to more traditional methods to parameterize an energy 

function, is that we are not restrained to a single resolution. The protein description could be fully 

atomistic, coarse grained, or mixed, without any loss of generality. The network can learn how 

different resolutions should merge.  It is foreseeable to use a neural network energy function to 25 

build simulations in which some parts have the desired level of details and other less interesting 

parts are at a lower resolution.  

 

Conclusions 

Is it possible for a neural network to understand protein physics from biological examples? In this 30 

paper we used unsupervised deep learning methods to derive a neural network energy function for 

describing amino acids interactions within proteins. The learned energy function can discriminate 

decoys, assess qualities of structural models, sample structural conformations, and design new 

protein sequences. Altogether, this suggests that a high-level approximation of protein physics can 

be learned from data and this methodology can lead to a completely new way to parameterize 35 

protein energy function.  
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Materials and methods 

 

Structure and sequence dataset 

As explained in the results section, to train the network we want to curate a non-redundant sample 

of structures and associate each structure to a family of homologous sequences. To reduce the 5 

redundancy in the structures, we use a sample of PDB chains in a version of the PISCES 

CulledPDB (36), in which the percentage identity cutoff is 50%, the resolution cutoff is 3.0 Å, the 

R-factor cutoff is 1.0, and the total number of chains is about 29,000. Only structures solved by 

X-ray crystallography are used. Then, all the chains are matched to the HH-suite PDB70 database 

(37) to get the aligned sequence data. The number of matched chains is about 19,000. We filter the 10 

aligned sequences using hhfilter by requiring <50% sequence identity to the PDB sequence and 

>50% sequence coverage. After the filtering, we generate homologous structures by simply 

mapping the aligned sequences to the coordinates of the structure. Given a sequence A in a PDB 

chain and an aligned homologous sequence B, we ignore insertions in sequence B, and substitute 

gaps in sequence B with the aligned sites in sequence A. In this way, the resulting chimeric 15 

sequence has the same length as sequence A and can be mapped to the coordinates of A.  

To test the transferability of the energy function, we use a radical partition of the dataset. All chains 

are matched to the structural classifications in the CATH 4.2 database (20). Each chain can include 

more than one CATH domains. In the classification, a chain is classified as one class (e.g., 

alpha/beta) if all the CATH domains in the chain are classified as that class (alpha/beta). The 20 

training data includes only the alpha/beta chains. We get a total of about 7500 alpha/beta chains, 

and use 7000 chains as the training dataset, and 500 chains as the validation dataset. The trained 

energy function is tested on all protein classes, including alpha/beta, mainly alpha, and mainly 

beta proteins. 

 25 

Neural network model 

Building blocks.  

To make the energies rotational-translational invariant the coordinates are rotated to the same local 

internal coordinate system of the central residue (fig. S1). The coordinate system is defined so that 

the residue 𝑎 − 1 is on X-axis, and the residues 𝑎 − 1 and 𝑎 + 1 are on X-Y plane. The Cartesian 30 

coordinates of all beads are then converted to Polar coordinates. 

Ordering scheme in the autoregressive model.  

In the autoregressive model, the variables in both the structural and sequence features are ordered 

based on the same beads order (fig. S2), according to the following rule. Each building block X 

can be viewed as a graph with the central bead 𝑎 as the root node. The central segment is visited 35 

first with the order (𝑎, 𝑎 − 1, 𝑎 + 1, 𝑎 − 2, 𝑎 + 2). Then the other segments are visited in an order 

of increasing distance to the central bead. Within each surrounding segment, the beads are visited 

in an order of increasing primary sequence number. 

Neural network architecture.  

The neural network architecture of the auto-regressive model is shown in Fig. 1E. The input data 40 

includes the coordinates, the bond connections, and the residue types of the 15 residues belonging 

to a building block. Bond connections, residue types, and positional labels 1 − 15  are then 

converted to vectors by learned embeddings. After this step the coordinates, bond connection 
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vectors and positional vectors are concatenated as structural features, while residue types and 

positional labels are concatenated as sequence features. The encoder for structural features has 4 

standard transformer encoder layers. The outputs after 2 encoder layers are used as the latent codes 

of the structural features and passed to the decoder. The decoder for sequence features has 4 

standard transformer decoder layers. Both the encoder and decoder layers use the standard 5 

transformer layer (38). The attentions are masked by position-based causal masks, i.e., each 

position can only pay attention to positions before it.  

Neural network training.  

For the predictions of the discrete labels, such as the bond connections and the residue types, we 

use softmax function to get the probabilities. For the predictions of the continuous variables, such 10 

as the radius and angles in the coordinates, we calculate the probabilities using mixtures of 

Gaussian functions: 𝑝(𝑥) = ∑ 𝑐𝑗𝐺(𝑥, 𝜇𝑗, 𝜎𝑗)𝑗 , where 𝐺(𝑥, 𝜇𝑗 , 𝜎𝑗) is a Gaussian function of the 

variable 𝑥 with average 𝜇𝑗 and variance 𝜎𝑗 , and 𝑐𝑗, 𝜇𝑗, 𝜎𝑗  are outputs of the neural network. Thus, 

the network calculates the conditional probabilities of the next residue’s coordinate given the 

coordinates of previous residues. It also calculates the conditional probabilities of the next residue 15 

type given previous residue types and the coordinates of all residues. After getting the conditional 

probabilities, we calculate the energy terms as the negative log of the probabilities. The energy of 

the building block is the weighted sum of all the energy terms. We train the network to minimize 

the energies, i.e., the loss function is simply the energy values. During training, we use mini-batch 

training, Adam optimizer with starting learning rate 5 × 10−5 and 𝑏𝑒𝑡𝑎𝑠 = (0.9, 0.99), and L2 20 

regularization with weight 10−6.  

 

Langevin dynamics 

In the results section, we showed that we can use the NNEF to run Langevin dynamics, according 

to the following equation: �⃗�(𝑡 + 1) = �⃗�(𝑡) − 𝛼 ∙ 𝛻𝐸 + 𝛽𝛤(𝑡) , where 𝐸  is the NNEF for the 25 

protein at time 𝑡 and 𝛤(𝑡) is a Gaussian noise with null average and unitary variance, 𝛼 and 𝛽 are 

physical parameters of the simulation. To decide proper values for these two parameters, we run a 

grid search using short simulations (𝛼 = [1e-3, 3e-3, 5e-3, 7e-3, 0.01, 0.015, 0.02, 0.04], 𝛽 = [0.01, 

0.03, 0.06, 0.1, 0.15]). When 𝛼 and 𝛽 are small, the dynamics is very slow and the residues in the 

protein are almost locked in the initial position. When 𝛽 is large, the protein unfolds after a small 30 

number of time steps quickly. We decide to use fixed values in the middle (𝛼 = 0.01 and 𝛽=0.05) 

to run simulations.  

 

The code will be publicly available at http://github.com/lahplover/nnef/. 

 35 

  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.26.441401doi: bioRxiv preprint 

http://github.com/lahplover/nnef/
https://doi.org/10.1101/2021.04.26.441401
http://creativecommons.org/licenses/by-nc/4.0/


 

10 

 

 

 

Fig. 1. Overview of the NNEF model. (A) We use a sample of non-redundant protein structures 

and augment the training data with their homologous sequences. (B) The local structure around 

each residue defines the building block and is used as the input of the energy model. Each building 5 

block 𝑋  includes the residue itself, its 4 nearest residues along the sequence and the 10 other 

nearest residues in the 3D space. Each residue is represented as one bead. (C) The energy model 

is illustrated in (E), where we fit a probability density function and calculate the energy as  𝐸(𝑋) =
−𝑙𝑜𝑔𝑃(𝑋). The total energy of the protein is the sum of energies of all building blocks. In the 

auto-regressive model, we separate the structural and sequence features, and calculate  𝑃(𝑋) =10 

𝑝(𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒(𝑋)) ∙ 𝑝(𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝑋) | 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒(𝑋))  using the transformer network 

architecture. We use softmax function to calculate the probabilities of discrete features and use 

Gaussian mixtures to calculate the probabilities of continuous features. (D) The learned energy 

function can be applied for various tasks, such as decoys scoring, conformations sampling, and 

sequence design without explicitly trained for any of those. 15 
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Fig. 2. Scoring decoys generated by modifications of the native structures. The left panel 5 

shows one typical example protein in the 3DRobot decoy set. The right panel shows one typical 

example protein in the normal modes decoy set. Red square is the native structure and blue dots 

are decoys. In all proteins of both decoy sets, the energy increases with the distance from the 

native. 
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Fig. 3. Scoring structure predictions in CASP14. Panel (A) shows the histogram of Pearson 

correlation coefficients 𝜌 between the energy score and CASP GDT_TS score for proteins in 5 

CASP14. About 70% of proteins have Pearson correlation coefficients |𝜌| > 0.75. Panels B, C, 

and D show three particular cases. 3D structures of some decoys are shown with indicators of 

their positions in the plot of energy vs. GDT_TS. Panel (B) shows an example of good 

correlation between the NNEF energy and CASP GDT_TS score.. Panel (C) shows an example 

case of a protein with simple alpha helices fold. In this case, some models with non-native helix 10 

organizations have comparable energies to native-like models. Panel (D) shows an example case 

of a protein involved in complex context. Some models with wrong folds have energies lower 

than the native-like models. 
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Fig. 4. Evaluating the energy of configurations within a MD trajectory for a small protein 5 

Fip35. The protein undergoes multiple folding and unfolding events. The RMSD and the energy 

along the MD trajectory are in a good correlation, suggesting the energy function can generalize 

to non-native conformations. 
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Fig. 5. RMSFs resulted from Langevin dynamics simulations using the NNEF. We compare 

the RMSFs of the trajectories from the NNEF (blue squares) with the RMSFs of the trajectories 5 

from classical MD simulations obtained with amber14SB force field (green dots). Two examples 

with high correlation are shown here. For most proteins in the sample, the two dynamics produce 

RMSFs in good correlation across the whole sequence (see also fig. S5).  
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Fig. 6. Results of protein full sequence design given the backbone structure. (A) Amino acids 5 

frequencies of the 1800 designed sequences and the native sequences for the test sample of 18 

proteins (100 sequences for each protein). Designed sequences show preference for 10 amino acids 

(Ala, Val, Leu, Gly, Pro, Ser, Thr, Arg, Glu, and Asp). (B) Amino acids frequencies of the residues 

in the core and surface of the designed proteins. Core residues are mostly hydrophobic (Ala, Val, 

Leu), while the polar residues are mostly in the surface. (C) A few examples of the target structures 10 

and predicted structures using TrRosetta. For about two thirds of the designed sequences, the 

predicted structures can match the target structures.   
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Supplementary Materials 
 

PDB IDs of the 18 small proteins in the test sample: 1ZZK_A, 2MCM_A, 2VIM_A, 3FBL_A, 

3IPZ_A, 3KXT_A, 3NGP_A, 3P0C_A, 3SNY_A, 3SOL_A, 3VI6_A, 4M1X_A, 4O7Q_A, 

4QRL_A, 5CYB_A, 5JOE_A, 5ZGM_A, 6H8O_A 5 
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Fig. S1. 15 

This figure shows the local internal coordinate system of a building block around a central residue. 

The coordinate system is defined so that the residue 𝑎 − 1 is on X-axis, and the residues 𝑎 − 1 

and 𝑎 + 1 are on X-Y plane. 
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Fig. S2. 

A typical building block has a central segment of 5 residues and a few other segments around the 10 

central residue. In the ordering scheme of the autoregressive model, the central segment is visited 

first with the order (𝑎, 𝑎 − 1, 𝑎 + 1, 𝑎 − 2, 𝑎 + 2). Then the other segments are visited in an 

order of increasing distance to the central residue. Within each surrounding segment, the residues 

are visited in an order of increasing primary sequence number. 
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Fig. S3. 

Distributions of energy differences E(decoy)-E(native) for three sequence decoy dataset. The 

decoy sequences were generated in three different ways: (1) substituting residues with 5 

chemically similar residues (green histogram), (2) shuffling the residues in the sequence (yellow 

histogram), and (3) mutating residues to random ones (blue histogram). The energies of the 

mutated sequences are higher than the native ones, and random mutations produce higher 

energies than mutations to similar amino acids 
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Fig. S4. 

Comparison of the energies of native sequences and poly-X mutants (obtained by mutating every 

residue to the same one). In general, mutants have higher energies than native sequences, with the 5 

exception of poly-alanine decoys that systematically have lower energies compared to the 

respective native sequences. The same happens, to a lesser extent, also to poly-leucine and poly-

histidine decoys. 
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Fig. S5. 

Comparison of the RMSFs for dynamic trajectories for all the 18 proteins in the test sample. One 5 

trajectory is generated by Langevin dynamics sampling of the NNEF (RMSF shown as blue 

squares). The other reference trajectory is generated from classical molecular dynamics 

simulations using amber14SB force field (RMSF shown as green dots). 
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Fig. S5 continued. 
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Fig. S6. 

The distribution of RMSD between the predicted structure using TrRosetta and the target structure 5 

for 36 designed proteins. For about two thirds of the designed sequences, the predicted structures 

match the target structures with RMSD < 5.0 Å. 
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