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Abstract
Temperature affects all biological rates and has far reaching consequences from bioengi-

neering [1] to predicting ecological shifts under a changing climate [2-3], and more recently,
to pandemic spread [4]. Temperature response in biological systems is characteristically
asymmetric and nonlinear, with an exponential phase of increase followed by a concave up-
ward or downward phase [5]. Current models for quantitatively describing the temperature
response include simple but empirical equations (such as Arrhenius’) or models derived from
first principles which are often overly complicated (i.e. with many parameters). Moreover,
their theoretical framework does not include how parameters vary, nor their applicability
across multiple scales and taxa, or whether they exhibit universality [1-7]. Here, we derive a
new mechanistic, yet simple, model for the temperature dependence of biological rates based
on the Eyring-Evans-Polanyi theory governing chemical reaction rates, which is applicable
across all scales from the micro to the macro. Assuming only that the conformational entropy
of molecules changes with temperature, we derive a model for the temperature dependence
which takes the form of an exponential function modified by a power-law. Data for a wide
variety of biological rates from molecular to ecological scales and across multiple taxonomic
groups agree well with our predictions. Furthermore, our framework predicts values for the
thermodynamic parameters, and leads to a single parameterless universal scaling curve on
which data across all scales and taxa collapse.
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Main Text

Temperature dependence models and the Eyring-Evans-Polanyi (EEP) the-
ory. Temperature affects reaction rates of enzymes, which regulate processes that manifest
at all levels of biological organization from molecules to ecosystems [1-7]. The classic Ar-
rhenius equation [8-9] for the temperature dependence of chemical reaction rates (k), has
become the standard mathematical description of temperature responses used by biologists
and ecologists, as epitomized, for example, by the Metabolic Theory of Ecology (MTE), [7]
and is given by

k = ae−E/kBT (1)

where kB is Boltzmann’s constant, T is absolute temperature, E is an effective activation
energy for the process of interest, and a is an overall normalization constant characteristic of
the process. Consequently, a plot of log k vs. 1/T should yield a straight line, often referred
to as an Arrhenius plot. This equation was originally an empirical formulation, but was
later motivated heuristically from chemical reaction theory [10] (see Supplementary Text
S1). Although it has been instrumental in explaining the approximately universal tempera-
ture dependence across many diverse biological rates [5, 7], it cannot account for deviations
that occur beyond certain temperature ranges in, for example, the metabolic rates of en-
dotherms, thermophiles and hyperthermophiles [3, 5, 11]. Furthermore, experiments and
observations have established that the form of the temperature response has an asymmetric
concave upward or downward pattern relative to a canonical straight-line Arrhenius plot [1-7].

Despite the widespread use of the Arrhenius equation in biology, the EEP Transition
State Theory (TST) [12-13] is the widely accepted model of enzyme chemical kinetics, as it
is grounded in the underlying principles of equilibrium thermodynamics, kinetic theory and
statistical physics [14]. The framework of the TST conceives of a chemical reaction as a flux
of molecules with a distribution of energies and a partition function given by the Planck
distribution, flowing through a potential energy surface (PES) which effectively simulates
their interaction. The configuration of molecules flowing through this surface proceeds from
i) a separate metabolite and enzyme to ii) an unstable metabolite-enzyme complex, which,
iii) after crossing a critical energy threshold barrier, or transition state, then forms the final
product (the transformed metabolite). EEP thereby derived the following equation for the
reaction rate (see Supplementary Text S2):

k =
kB
h
Te−∆G/RT (2)

where h is Planck’s constant, ∆G is the change in Gibbs energy or free enthalpy, R = NkB is
the universal gas constant and N Avogadro’s number. An overall coefficient of transmission
also is originally part of (2) but is usually assumed to be 1. The change in Gibbs free
energy is the energy (heat) transferred from the environment to do chemical work. It can
be expressed in terms of enthalpy (∆H) and the temperature-dependent change in entropy,
or dissipated energy (∆S) [15], as ∆G = ∆H − T∆S. Eq. (2) can then be written as:

k =
kB
h
Te∆S/Re−∆H/RT (3)
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Analogous to the Arrhenius expression, Eqs. (2) and (3) describe an exponential response
in the rate k to temperature provided there is no temperature dependence of the thermo-
dynamic parameters. Models have been developed for including this additional temperature
dependence, but they typically invoke several additional assumptions and new parameters
[16-17] (Supplementary Text S1). Furthermore, unlike the widespread use of the Arrhenius
equation in the MTE, most models for temperature response have been conceived for a single
level of biological organization (commonly at the enzymatic molecular level) [6, 17] or for
specific taxonomic groups; e.g. only for mesophilic ectotherms [18], for endotherms [19], or
thermophiles [20]. Here, we present a relatively simple general mechanistic model for these
temperature effects in biology [3, 6, 11] which is applicable across multiple levels of biological
organization and taxa (see discussion in Supplementary Text S1) and which gives a natu-
ral explanation for the concave/convex deviations from the classic Arrhenius straight line.
Furthermore, we show how the parameters of the model can be quantitatively derived and
how data for various variables can be collapsed onto a single “universal” curve, reflecting the
generality of the underlying mechanism for how organisms respond to temperature change.

Model derivation. Temperature changes the conformational entropy of proteins [22],
which in turn determines the binding affinity of enzymes [23-24] and affects the flexibil-
ity/rigidity and stability of the activated enzyme-substrate complex and hence the reaction
rate [24]. The resulting temperature dependence of the change in entropy, ∆S (with en-
thalpy and heat capacity remaining constant), is the simplest mechanism for giving rise to
curvature in an Arrhenius plot and naturally leads via Eq. (3) to power law deviations from
the simple exponential form [21]. Following [15], the change of entropy for a given change
in temperature can be expressed as Td∆S/dT = ∆C, where ∆C is the heat capacity of
proteins. Integrating over temperature gives ∆S = ∆S0 + ∆C ln (T/T0), where ∆S0 is the
entropy when T = T0, an arbitrary reference temperature, commonly taken to be 298.15 K
(25◦C) (see Supplementary Text S3). Using this expression for ∆S in eq. (3), and after
simplifying, we straightforwardly obtain (Supplementary Text S4):

k =

(
kB
h

)[
e

∆S0
R T0

−∆C
R

]( 1

T

)−( ∆C
R

+1)

e
−∆H
RT (4)

Eq. (4) has the form of a classic Arrhenius-like exponential term, modified by a power-
law, but with a different interpretation of the “effective activation energy” in terms of the
change in enthalpy. The pattern described by Eq. (4) is a curved temperature response in
an Arrhenius plot of ln k vs. T−1:

ln k = ln

(
kB
h

)[
e

∆S0
R T0

−∆C
R

]
−
(

∆H

R

)
T−1 −

(
∆C

R
+ 1

)
lnT−1 (5)

Consequently, d ln k/dT−1 = −∆H/R − (∆C/R + 1)/T−1, leading to the extrema of ln k
occurring at T−1 = T−1

ext = −(∆C + R)/∆H (see Supplementary Text S6). This is a mini-
mum, i.e., the curve is concave upwards, or a “happy mouth”, if ∆C > −R, whereas it is a
maximum, or a convex downwards “sad mouth”, if ∆C < −R. Furthermore, for T−1

ext to be
positive this requires ∆H < 0 for a minimum or ∆H > 0 for a maximum.
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Several important points should be noted about our result:

First, its simple mathematical form, namely an exponential modified by a power law,
coincides mathematically with an empirical phenomenological equation suggested by Kooij
in 1893 [25]. However, our derivation provides an underlying mechanism for the origin of
the expression and, consequently, for how its parameters are related to the thermodynamic
variables. Our approach differs from previous expressions derived from considerations of
chemical kinetics (Supplementary Text S1). For instance, a heuristic derivation inspired by
a Maxwell-Boltzmann distribution predicts a similar expression but with a power law mod-
ification of T 1/2 rather than T

∆C
R

+1 [12, 13]; apart from not having a mechanistic basis, this
is unable to explain concave deviations.

Second. An important consequence of our derivation is that it shows that a change of
entropy with temperature is both sufficient and necessary for simultaneously explaining both
the convex and concave curvatures commonly observed in Arrhenius plots. Under a thermo-
dynamic/informational interpretation, the decrease in enzyme rate with increasing entropy
due to increasing temperature beyond the optimal, means that the disorder of the enzyme,
and particularly of the active site, has reached a state that causes a decrease in the binding
affinity to the ligands. In contrast, changes in enthalpy alone can only explain convex cur-
vature but not concave. To see this explicitly, we express ∆H in terms of heat capacity in

eq. (3), ∆H = ∆H0 −∆C(T − T0), to obtain k = kB
h
e∆S/R

(
1
T

)−1
e

[
∆H0−∆C(T−T0)

R

]
( 1
T ), which

leads to ln k ∝ ln
(

1
T

)
−
[

∆H0+T0∆C
R

] (
1
T

)
. Regardless of the sign of both ∆C and/or ∆H0,

this always results in a convex downwards curve and so cannot explain, nor accommodate,
concavity. Hobbs et al. [26] included changes in both enthalpy and entropy with temper-
ature and derived a significantly more complicated expression than ours based on TST. In
contrast, the minimalist scenario developed here is one in which only changes in entropy
with temperature need be considered.

Third. The above derivation was for reaction rates at the microscopic enzymatic scale.
Following the argument in the MTE we now show how it can be extended to biological vari-
ables at multiple scales up through multicellular organisms to ecosystems. The most salient
example is metabolic rate, B. In general, this is derived by appropriately summing and
averaging over all enzymatic reaction rates contributing to metabolism - some connected
in series, some in parallel - and then summing and averaging over all cells: symbolically,
B ∝

∑
k ≈ k. Assuming there is a dominant set of rate limiting reactions contributing to

the production of ATP [18], then the temperature dependence of k, and therefore B, can be
approximated by an equation of the form of Eq. (4), but with the parameters being inter-

preted as averages, ∆H and ∆C. This results in: B ≈ B0

(
T0

T

)−∆C
R
−1
e
−∆H
RT0

(T0
T ), where B0 is

a normalization constant (see Supplementary Text 8).

Fourth. Care, however, has to be taken with the normalization constants, such as B0 in
the case of metabolic rate, since from Eq. (4), these would naively be proportional to the
ratio of the two fundamental constants, kB and h. The presence of Planck’s constant, h,
for microscopic enzymatic reactions appropriately reflects the essential role of quantum me-
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chanics in molecular dynamics. On the other hand, for macroscopic processes, such as whole
body metabolic rate, the averaging and summing over macroscopic spatio-temporal scales
which are much larger than microscopic molecular scales must lead to a classical description
decoupled from the underlying quantum mechanics and, therefore, must be independent of
h. This is analogous to the way that the motion of macroscopic objects, such as animals or
planets, are determined by Newton’s laws and not by quantum mechanics, and therefore do
not involve h. Formally, the macroscopic classical limit is, in fact, realised when h→ 0. The
situation here is resolved by recognising that the partition function for the distribution of
energies in the transition state of the reaction has not been explicitly included in Eq. (2).
This is given by a Planck distribution which leads to an additional factor (1−e−hν/kBT ) where
ν is the vibrational frequency of the bond, as first pointed out by Herzfeld [27]. For purely
enzymatic reactions discussed above this has no significant effect since kBT << hν, resulting
in Eq. (2). Multicellular organisms, however, correspond to the classical limit where h→ 0
so kBT >> hν and (1 − e−hν/kBT ) → hν/kBT . Consequently, the resulting temperature
dependence of macroscopic processes, such as metabolic rate, become independent of h, as
they must, but lose a factor of T relative to the microscopic result, Eq. (4), so that

B ≈ B̃0

(
1

T

)−∆C
R

e
−∆H
RT (6)

with the normalization constant, B̃0, no longer depending on h. The corresponding extrema
(either minima or maxima) in an Arrhenius plot now occur at T−1 = T−1

ext = −∆C/∆H.

Fifth. The micro and macro results, Eqs. (4) and (6), can be combined into a single
expression for the temperature dependence of any variable, Y (T ):

Y (T ) ≈ Y0

(
1

T

)−∆C
R
−α

e
−∆H
RT (7)

where α = 1 for the molecular level and 0 otherwise (for reaction rates, Y0 is given by Eq.
(4)). The extrema occur at T−1 = T−1

ext = −(∆C + αR)/∆H. It should be noted that the
thermodynamic parameters may have additional dependencies that make the forms of Eqs.
(6) and (7) more complicated (see Supplementary Text S8).

In addition to quantitatively explaining the origin and systematic curvature of the Ar-
rhenius plot, our model makes several further testable predictions that interrelate the key
features of thermodynamic parameters (e.g. enthalpy and heat capacity), biological traits
(e.g growth and metabolic rates), classic thermal traits (e.g. thermal range and optimum
temperature), and environmental features (e.g. pH and salinity). These various predictions,
exhibited in Extended Data Fig. 1, are summarized as follows:

i. The maximum (or minimum) value of any biological trait as a function of temperature.

ii. The scaling relationship between differences in rates (e.g., Y (T2)/Y (T1)) and differences
in temperatures (T2 − T1); see Extended Data Fig. 2.
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iii. The scaling relationship between heat capacity and enthalpy resulting from the opti-
mization of the rates (Extended Data Fig. 4).

iv. The linear relationship amongst all pairs of the key thermal traits of the temperature
response curve such as the minimum, maximum, and optimum temperatures or thermal
range (Extended Data Fig. 6).

v. The linear relationships between a given thermal trait and fundamental thermodynamic
parameters such as enthalpy (Extended Data Fig. 7)

vi. The linear-log relationship between thermodynamic parameters and a variety of other
environmental features such as pH and salinity (Extended Data Fig. 9).

vii. The relationship between thermal traits and environmental features such as between
the optimal temperature and conductivity (Extended Data Fig. 9).

viii. All temperature response curves collapse onto a single universal curve after the appro-
priate rescaling given by our theoretical framework (see discussion below and Supple-
mentary Text S7; Fig. 2; Extended Data Fig. 10).

Fitting the predictions of the model to temperature response curves data
across levels of biological organization and taxa. To assess these predictions, we com-
piled a database of 57 studies encompassing 118 temperature-response curves including those
which are explicitly predicted by biological theories such as the MTE. Our survey included
data of different rates/times/properties in different environments ranging from psychrophilic
to hyperthermophilic organisms and across all domains of life, including viruses, bacteria, ar-
chaea and unicellular and multicellular eukaryotes covering both ectotherms and endotherms
(see Supplementary Methods). rescaled

We found that our model provides an excellent fit to a wide variety of temperature re-
sponse data for rates and times, spanning individual to ecosystem-level traits across viruses,
unicellular prokaryotes, and mammals (see Supplementary Table 2). Fig. 1 shows some rep-
resentative examples of fits to convex patterns with long tails at low and high temperatures
(Figs. 1a-f) as well as concave patterns (such as the temperature dependence of endotherm
metabolism and biological times) also with tails at both ends. As discussed below, it should
also be noted that the temperature response curve can be represented as a linear relationship
using the rescaled form given in Equation S5.2 which compares well with data (Extended
Data Fig. 2).

The values of the parameters ∆S0, ∆H, and ∆C had skewed distributions (Extended
Data Figure 3, Supplementary Table 2, 3). Prediction ii) also fits the data well showing that
curved temperature responses can be simplified to a linear relationship for discrete measures
of both rates and temperatures (Extended Data Fig. 2). Predictions iv-v) are well supported
by a subset of the overall data (Extended Data Figs. 5, 6, and 7) and, below, we refer in
more detail to predictions vi-viii.

Derivation of general equations for the variation in the parameters. In general,
thermodynamic properties such as ∆S0, ∆H, and ∆C are extensive variables which scale
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with the size (e.g. mass) of a system. As such, they are expected to vary across taxa and
levels of biological organization which we address in the Supplementary Material (see the
Supplementary Text S10 and Tables S3-S5). In addition, these thermodynamic properties
are expected to depend on factors other than temperature, as are the associated biological
rates. We now show that our model can be extended to derive a general expression that
predicts the dependency of biological rates and thermodynamic parameters on factors such
as conductivity and pH. Keeping temperature constant in Eq. (4) (Supplementary Text S9)
we express the biological rate as a function of an environmental variable, Z, such as pH or
salinity: k = f(Z). Thermodynamic parameters depend on Z in such a way that the generic
form of the dependence of a thermal trait, τ , on Z is given by

τ ∝ b lnZ (8)

ep = ebZa (9)

where p is a thermodynamic parameter, and a and b are parameters of the system. This
relationship is motivated by examples for conductivity and salinity. For instance, from
chemical kinetic theory k depends on salt concentration and in turn salt affects the electrical
conductivity σ, a relationship that can be expressed as a power law: k = mσn where the
normalisation m and the exponent n are derived from molecular properties [28]. This leads
via Eq. (5) to ep = eb(σ)a = ebmaσna. To evaluate this prediction, we used six empirical
curves for the temperature response of maximum plant germination rates at different con-
ductivities (12.2-37.2 dS/m) [29] (Extended Data Fig. 8). For each of the thermodynamic
parameters the fit of Eqs. (5) and (6) was significant (P < 0.05); Extended data figure 9,
demonstrates that the variation commonly observed in the values of parameters that account
for temperature responses can be explained by the action of a second explanatory variable,
in this case conductivity (Supplementary Table S6). In general, the final form of Equations
(8) and (9) would depend on the specific relationship between an environmental variable and
k.

Universal scaling and data collapse. A powerful, but classic, method for exhibiting
and testing the generality of a theory is to express it in terms of dimensionless variables
which collapse the data onto a single ”universal” curve across all scales. [e.g. 30]. To do
so here, we introduce dimensionless rates, Y ∗, and temperatures, T ∗, by rescaling them by
their values at the extremum, Text, where Y takes on either its minimum or maximum value,
Yext = Y (Text):

Y ∗(T ∗) =
Y (T )

Yext
; T ∗ =

T

Text
(10)

In terms of these rescaled variables, Eq. (4) reduces to the simple dimensionless form

Y ∗1/a = T ∗e1/T ∗−1. (11)

where a = ∆C/R + α with α = 0 or 1, depending on whether the system is macro- or
microscopic. Note that the extrema are given by Yext = Y0T

a
exte

−b/Text and Text = −b/a,
where b = ∆H/R (see Supplementary Material).
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Our theory therefore predicts that when Y ∗1/a is plotted against 1/T ∗ all of the various
rates regardless of the specific processes collapse onto a single parameterless curve whose
simple functional form is given by Eq. (11). Notice that this optimises at T ∗ = 1 and
encompasses in the same curve both the convex and concave behaviours predicted in the
original Arrhenius plot as a function of T . In that regard, note also that the function
Ŷ ∗(T ∗) ≡ (e/T ∗)aY ∗(T ∗) = ea/T

∗
is predicted to be of a ”pure” Arrhenius form as a function

of T ∗. Thus, a plot of ln Ŷ ∗(T ∗) vs. 1/T ∗ should yield a straight line with slope a (see
Supplementary Material).

Our prediction of the universal curve is very well supported by data, as illustrated in
Figs. 2a, b where the collapse of all the data from this study for both convex and concave
patterns regardless of organizational level, temperature range or taxa are shown. This result
strongly supports the idea that our model captures all of the meaningful dimensions of ther-
modynamic and temperature variation for diverse biological properties, which can ultimately
be viewed as a single exponential relationship.

Conclusion. In conclusion, we have derived a mechanistic yet simple model for bio-
logical temperature responses. Our model is a general extension of the EEP equation, but
unlike previous models requires only entropy to vary with temperature, presumably due to
an optimization. We do not imply that temperature is the only variable determining bi-
ological rates. We acknowledge the importance of including other variables that could be
more limiting than temperature in certain environments, such as pH and salinity, which also
determine enzymatic and other rates at higher levels of organization [31]. However, we have
shown how these features can be incorporated into our framework. Importantly, our model
applies to any biological rate at any biological scale. It provides a good fit to data across or-
ganization level, environment and taxa, including groups such as endotherms, thermophiles,
and hyperthermophiles. This framework is scalable. For example, further extensions could
include time, other variables to predict the thermodynamic parameters or vice versa (i.e.
the parameters could explain biological traits), and future connections could and should be
made with non-equilibrium thermodynamics [32].
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durch säuren. Z Phys Chem 4: 226–248.

9. Laidler KJ (1984) The development of the Arrhenius equation. J Chem Educ
61(6):494.

10. Laidler KJ, and King MC (1983) The development of transition-state theory. J Phys
Chem 87(15)2657–2664.

11. Price CA, Weitz JS, Savage VM, Stegen J, Clarke A, Coomes DA, et al. (2012)
Testing the metabolic theory of ecology. Ecol Lett 15(12):1465-74.

12. Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3: 107.
13. Evans MG, Polanyi M (1935) Some applications of the transition state method to

the calculation of reaction velocities, especially in solution. Trans Faraday Soc 31: 875.
14. Zhou HX (2010) Rate theories for biologists. Q Rev Biophys 43(2):219–293.
15. Prabhu NV and Sharp KA (2005) Heat capacity in proteins. Annu Rev Phys Chem

56:521-48.
16. Daniel RM, Danson MJ, Eisenthal R (2001) The temperature optima of enzymes: a

new perspective on an old phenomenon. Trends Biochem Sci 26: 223–225.
17. DeLong JP, Gibert JP, Luhring TM, Bachman G, Reed B, Neyer A et al (2017)

The combined effects of reactant kinetics and enzyme stability explain the temperature
dependence of metabolic rates. Ecol Evol 7(11):3940–3950.

18. Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size
and temperature on metabolic rate. Science 293(5538):2248-51.

19. Porter WP, Kearney M (2009) Size, shape, and the thermal niche of endotherms.
Proc Natl Acad Sci U S A 106 Suppl 2:19666-72.

20. Klales A, Duncan J, Nett EJ, Kane SA (2012) Biophysical model of prokaryotic
diversity in geothermal hot springs. Phys Rev E Stat Nonlin Soft Matter Phys 85(2 Pt
1):021911.

21. Sturtevant JM (1977) Heat capacity and entropy changes in processes involving
proteins. Proc Natl Acad Sci U S A 74(6):2236–2240.

22. Wallin S and Chan HS (2009) Conformational entropic barriers in topology-dependent
protein folding: perspectives from a simple native-centric polymer model. J Phys Condens
Matter 21 329801.

23. Frederick KK, Marlow MS, Valentine KG, Wand AJ (2007) Conformational entropy
in molecular recognition by proteins. Nature 448: 325–329.

24. Tzeng S-R and Kalodimos CG (2012) Protein activity regulation by conformational
entropy. Nature 488(7410):236-40.

25. Kooij DM (1893) Uber die zersetzung des gasförmigen phosphorwasserstoffs. Z Phys
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Methods
Details on mathematical derivation, database compilation and estimation of parameters for
the models are in Supplementary Methods.

Data and code availability
The database and (R) code will be available in a public repository after acceptance. During
the review process, data and code can be provided upon request.
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Figure 1. Temperature response curves fitted to Eq.5 for a wide diversity of biological
examples. (a)-(c) convex patterns and (d)-(f) concave patterns. (a) metabolic rate in the
multicellular insect Blatella germanica, (b) maximum relative germination in alfalfa (for
a conductivity of 32.1 dS/m), (c) growth rate in S. cerevisiae, (d) mortality rate in the
fruit fly (Drosophila sukii), (e) generation time in strain 121, (f) metabolic rate in the
rodent Spermophilus parryii. The abscissa is in units of (1/T ) ∗ 10−3. For references see
Supplementary Methods.
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Figure 2. Universal patterns of temperature response in non-linear (right panels) and
linear (left panels) forms. (a) concave patterns at the molecular (enzymatic) level, and (b)
convex patterns at the molecular level, (c) concave patterns above the molecular level, and
(d) convex patterns above the molecular level. Rescaling based on Eq. 11 showing the
universal temperature-dependence of data from Fig.1 combined with additional compiled
studies. All curves regardless of variable, environment and taxa collapse onto a single curve.
Inner panels depict an alternative linear data collapse based on Eq. S7.14.
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