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Abstract22

Background:Maize is not only one of the most important crops grown worldwide for23

food, forage, and biofuel, but also an important model organism for fundamental24
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research in genetics and genomics. Owing to its importance in crop science, genetics25

and genomics, several reference genomes of common maize inbred line (genetic26

material) have been released, but some genomes of important genetic germplasm27

resources in maize breeding research are still lacking. The maize cultivar Dan340 is28

an excellent backbone inbred line of the Luda Red Cob Group with several desirable29

characteristics, such as disease resistance, lodging resistance, high combining ability,30

and wide adaptability. Findings: In this study, we constructed a high-quality31

chromosome-level reference genome for Dan340 by combining PacBio long HiFi32

sequencing reads, Illumina short reads and chromosomal conformational capture33

(Hi-C) sequencing reads. The final assembly of the Dan340 genome was 2,348.72 Mb,34

including 2,738 contigs and 2,315 scaffolds with N50 of 41.49 Mb and 215.35 Mb,35

respectively. Repeat sequences accounted for 73.40% of the genome size and 39,73336

protein-coding genes were annotated. Analysis of genes in the Dan340 genome,37

together with those from B73, Mo17 and SK, were clustered into 27,654 gene families.38

There were 1,806 genes from 359 gene families that were specific to Dan340, of39

which many had functional gene ontology annotations relating to40

“porphyrin-containing compound metabolic process”, “tetrapyrrole biosynthetic41

process”, and “tetrapyrrole metabolic process”. Conclusions: The completeness and42

continuity of the genome were comparable to those of other important maize inbred43

lines. The assembly and annotation of this genome not only facilitates our44

understanding about of intraspecific genome diversity in maize, but also provides a45

novel resource for maize breeding improvement.46

Research Areas:47
Genetics and Genomics; Agriculture, Plant Genetics48

49

Data Description50
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Background51

Maize (Zea mays ssp. mays L., NCBI:txid381124) is one of the most important crops52

grown worldwide for food, forage, and biofuel, with an annual production of more53

than 1 billion tons [1]. Owing to rapid human population growth and economic54

demand, maize has been predicted to account for 45% of total cereal demand by the55

year 2050 [2]. In addition, it is an important model organism for fundamental research56

in genetics and genomics [3].57

Because of its importance in crop science, genetics and genomics, several reference58

genomes of common maize inbred lines used in breeding have been released since59

2009 [4-8]. However, comparative genomic analyses have found that maize genomes60

exhibit high levels of genetic diversity among different inbred lines [1, 7, 9].61

Meanwhile, accumulating studies have suggested that one or a few reference genomes62

cannot fully represent the genetic diversity of a species [7, 10, 11].63

The maize cultivar Dan340 is an excellent backbone inbred line of the Luda Red Cob64

Group that has several desirable characteristics, such as disease resistance, lodging65

resistance, high combining ability, and wide adaptability. More than 50 maize hybrid66

breeds have been derived from Dan340 since 2000, and their planting area has67

reached 19 million ha. It is considered that Dan340 originated from a landrace in68

China and exhibits large genetic differences from other maize germplasms that69

represent the most important core maize germplasms in China [12]. Therefore, it70
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could serve as a model inbred line for the genetic dissection of desirable agronomic71

traits, combining ability, heterosis, and breeding history.72

In the present study, we constructed a high-quality chromosome-level reference73

genome for Dan340 by combining PacBio long HiFi sequencing reads, Illumina short74

reads and chromosomal conformational capture (Hi-C) sequencing reads. The75

completeness and continuity of the genome were comparable with those of other76

important maize inbred lines, B73 [4], Mo17 [7], SK [13], PH207 [5], and HZS [8].77

Furthermore, comparative genomic analyses were performed between Dan340 and78

other maize lines, and genes and gene families that were specific to Dan340 were79

identified. In addition, large numbers of structural variations between Dan340 and80

other maize inbred lines were detected. The assembly and annotation of this genome81

will not only facilitate our understanding of intraspecific genomic diversity in maize,82

but also provides a novel resource for maize breeding improvement.83

Plant materials and DNA sequencing84

Inbred line Dan340 (Fig. 1) was selected for genome sequencing and assembly85

because it is an elite maize cultivar, that plays an important role in maize breeding and86

genetic research. The plants were grown at 25°C in a greenhouse of the Beijing87

Academy of Agriculture and Forestry Sciences, Beijing, China. Fresh and tender88

leaves were harvested from the best-growing individual and immediately frozen in89

liquid nitrogen, followed by preservation at -80 °C in the laboratory prior to DNA90

extraction. Genomic DNA was extracted from the leaf tissue of a single plant using91
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the DNAsecure Plant Kit (Tiangen Biotech Co., Ltd., Beijing, China). To ensure that92

DNA extracts were useable for all types of genomic libraries, the quality and quantity93

were evaluated using a NanoDrop 2000 spectrophotometer (NanoDrop Technologies,94

Wilmington, DE, USA) and electrophoresis on a 0.8% agarose gel, respectively.95

In recent years, third-generation DNA sequencing technologies have undergone rapid96

technological innovation and are now widely used in genome assembly. In this study,97

PacBio CCS libraries were prepared using the SMRTbell Express Template Prep Kit98

2.0 (Pacific Biosciences, Menlo Park, CA, USA; Ref. No. 101-685-400), following99

the manufacturer’s protocols, and they were subsequently sequenced on the PacBio100

sequel II platform (Pacific Biosciences, RRID:SCR_017990). As a result, 63.53 Gb101

(approximately 27× coverage) of HiFi reads was generated and used for the genome102

assembly.103

In addition, one Illumina paired-end sequencing library, with an insert size of 350 bp,104

was generated using the NEB Next Ultra DNA Library Prep Kit (NEB, Ipswich, MA,105

USA) following the manufacturer’s protocol, and it was subsequently sequenced106

using an Illumina HiSeq X Ten platform (Illumina, San Diego, CA, USA,107

RRID:SCR_016385) at the Novogene Bioinformatics Institute, Beijing, China.108

Approximately 80.66 Gb (~34×) of Illumina sequencing data were obtained.109

One Hi-C library was constructed using young leaves following previously published110

procedures, with slight modifications [14]. In brief, approximately 5-g leaf samples111

from seedling were cut into minute pieces and cross-linked by 4% formaldehyde112
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solution at room temperature in a vacuum for 30 min. Then, each sample was mixed113

with excess 2.5 M glycine to quench the crosslinking reaction for 5 min and then114

placed on ice for 15 min. The cross-linked DNA was extracted and then digested for115

12 h with 20 units of DpnII restriction enzyme (NEB) at 37 °C, and the resuspended116

mixture was incubated at 62 °C for 20 min to inactivate the restriction enzyme. The117

sticky ends of the digested fragments were biotinylated and proximity ligated to form118

enriched ligation junctions and then ultrasonically sheared to a size of 200 - 600 bp.119

The biotin-labelled DNA fragments were pulled down and ligated with Illumina120

paired-end adapters, and then amplified by PCR to produce the Hi-C sequencing121

library. The library was sequenced using an Illumina HiSeq X Ten platform with 2 ×122

150 bp paired-end reads (Illumina, San Diego, CA, USA). After removing low-quality123

sequences and trimming adapter sequences, 304.37 Gb (approximately 130×) of124

clean data were generated and used for the genome assembly.125

Genome assembly126

To obtain a high-quality genome assembly of Dan340, we employed both PacBio127

HiFi reads and Illumina short reads, with scaffolding informed by high-throughput128

chromosomal conformation capture (Hi-C).129

The assembly was performed in a stepwise fashion. First, de novo assembly of the130

long CCS reads generated from PacBio SMRT sequencing was performed using131

Hifiasm [15] (RRID:SCR_021069)(https://github.com/chhylp123/hifiasm). A total of132

two SMRT cells produced 4,073,418 subreads, with an average length of 15,598 bp133
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and a read N50 of 15,715 bp. Generation of HiFi reads and adapter trimming were134

performed using PacBio SMRTLink v8.0 [16] with default parameters, followed by135

the deduplication of reads with pbmarkdup v0.2.0 [17] as recommended by PacBio.136

Next, HiFi reads were aligned to each other and assembled into genomic contigs using137

Hifiasm [15] with default parameters. The produced primary contigs (p-contigs) were138

then polished using Quiver [18] by aligning SMRT reads. Then, Pilon [19]139

(RRID:SCR_014731) was used to perform the second round of error correction with140

short paired-end reads generated from Illumina Hiseq platforms. Subsequently, the141

Purge Haplotigs pipeline [20] was used to remove redundant sequences formed as a142

result of heterozygosity. The draft genome assembly was 2348.68 Mb, which reached143

a high level of continuity, with a contig N50 length of 45.11 Mb.144

For Hi-C reads, to avoid reads having an artificial bias, we removed the following145

type of reads using HICUP software [21]146

(RRID:SCR_005569)(http://www.bioinformatics.babraham.ac.uk/projects/hicup/): (a)147

Reads with ≥ 10% unidentified nucleotides (N); (b) Reads with > 10 nt aligned to the148

adapter, allowing ≤ 10% mismatches; and (c) Reads with > 50% bases having a phred149

quality < 5. The filtered Hi-C reads were aligned against the contig assemblies using150

BWA (version 0.7.8, RRID:SCR_010910)(http://bio-bwa.sourceforge.net/). Reads151

were excluded from subsequent analyses if they did not align within 500 bp of a152

restriction site or did not uniquely map, and the number of Hi-C read pairs linking153

each pair of scaffolds was tabulated. ALLHiC v0.8.12 [22] was used in simple diploid154
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mode to scaffold the genome and optimize the ordering and orientation of each155

clustered group, producing a chromosome-level assembly. Juicebox Assembly Tools156

v1.9.8 [23] (RRID:SCR_021172) was used to visualize and manually correct the157

large-scale inversions and translocations to obtain the final pseudo-chromosomes (Fig.158

2). Finally, a total of 2315 scaffolds (representing 91.30% of the total length) were159

anchored to 10 chromosomes (Fig. 3).160

The final assembly of the Dan340 genome was 2,348.72 Mb, including 2,738 contigs161

and 2,315 scaffolds, with N50 of 41.49 Mb and 215.35 Mb, respectively (Table 1).162

Evaluation of assembly quality163

We assessed the quality of the assembly using several independent methods. First, the164

short reads obtained from the Illumina sequencing data were aligned to the final165

assembly using BWA version 0.7.8 [24]. Our result showed that the percent of reads166

mapped to the reference genome was up to 97.48%. Second, a total of 248167

conservative genes existing in six eukaryotic model organisms were selected to form168

the core gene library for the CEGMA (Core Eukaryotic Genes Mapping Approach)169

[25] (RRID:SCR_015055) evaluation. Our assembled Dan340 genome was aligned to170

this core gene library using TBLASTN [26] (RRID:SCR_011822), Genewise version171

2.2.0 [27] (RRID:SCR_015054), and Geneid v1.4 [28] (RRID:SCR_021639) software172

tools to evaluate its integrity. The result showed that 238 complete (95.97%) and 243173

partial (97.98%) genes were detected in our assembly. Third, the completeness was174

assessed using the benchmarking universal single-copy orthologs (BUSCO) [29]175
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(RRID:SCR_015008). The final assembly was tested against the database176

embryophyta_odb10, which includes 1,614 conserved core genes. The result showed177

that 98.08% (1,583), 1.11 % (18), and 0.81% (13) of the plant single-copy orthologs178

were present in the assembled Dan340 genome as complete, fragmented, and missing179

genes, respectively. Fourth, the long-terminal repeat (LTR) Assembly Index (LAI)180

metric was used to evaluate assembly continuity in Dan340 and three other maize181

genomes (B73, Mo17 and SK, Fig. 4). Intact LTR retrotransposons in the four182

genomes were identified using LTRharvest v1.6.1 [30] (RRID:SCR_018970),183

LTR_FINDER v1.07 [31] (RRID:SCR_015247), and LTR_retriever v2.9.0 [32]184

(RRID:SCR_017623). The LAI pipeline was executed using the following parameter185

settings: -t 20 -intact genome.fasta.pass.list -all genome.ltr.fasta.out. Our Dan340186

genome had a LAI score of 25.13, which was relatively high among the four maize187

genomes compared in this study. B73, Mo17, and SK produced scores of 24.94, 24.45,188

and 27.12, respectively (Fig. 4 and Table 2). A higher LAI score indicates more189

complete genome assembly because more intact LTR retrotransposons are identified,190

as in our Dan340 genome. Furthermore, whole-genome sequence alignments of191

Dan340 to the genomes of the other three maize inbred lines demonstrated that our192

assembly has highly collinear relationships with other published maize genomes (Fig.193

5). Taken together, the assessment results suggested that the Dan340 genome194

assembly was of high quality.195

Genome annotation196
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Repeat sequences of the Dan340 genome were annotated using both ab initio and197

homolog-based search methods. For the ab initio prediction, RepeatModeler v1.0.8198

[33] (RRID:SCR_015027), RepeatScout version 1.0.5 [34] (RRID:SCR_014653), and199

LTR_FINDER version 1.07 [31] were used to discover transposable elements (TEs)200

and to build TEs library. An integrated TEs library and a known repeat library201

(Repbase V15.02, homolog-based)(RRID:SCR_021169) were subjected to202

RepeatMasker v3.3.0 [35] (RRID:SCR_012954) to predict TEs. For homolog-based203

predictions, RepeatProteinMask was performed to detect TEs in the genome by204

comparing it against a TE protein database. Tandem repeats were ascertained in the205

genome using Tandem Repeats Finder (TRF, version 4.07b) [36]206

(RRID:SCR_022193). As a result, 1723.99 Mb of repeat sequences were identified,207

accounting 73.40% of the genome size. Among these repeat sequences, 1,555.57 Mb208

were predicted as to be long-terminal repeat (LTR) retrotransposons and 44.53 Mb209

were predicted as to be DNA transposons, accounting for 66.23% and 1.60% of the210

genome, respectively. Furthermore, among the LTR retrotransposons, the Gypsy and211

Copia superfamilies comprised 23.81% and 12.75% of the genome, respectively. Thus,212

retrotransposons accounted for a large proportion of the Dan340 genome, which was213

consistent with the genomic characteristics of other maize inbred lines (Table 2).214

All repetitive regions except tandem repeats were soft-masked for protein-coding215

gene annotation. Five ab initio gene prediction programs, Augustus v3.0.2 [37-39]216

(RRID:SCR_008417), Genscan v1.0 [40] (RRID:SCR_013362), Geneid v1.4 [28],217
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GlimmerHMM v3.0.2 [41] (RRID:SCR_002654) and SNAP v2013-02-16 [42]218

(RRID:SCR_007936), were used to predict genes. In addition, the protein sequences219

of five homologous species (Sorghum bicolor, Setaria italica, Hordeum vulgare,220

Triticum aestivum, and Oryza sativa) were downloaded from Ensembl and NCBI.221

Homologous sequences were aligned against the genome using TBLASTN (E-value222

1E-05). Genewise version 2.2.0 [27] was employed to predict gene models on the223

basis of the sequence alignment results.224

For RNA-seq prediction, fresh samples of six tissues (stem, endosperm, embryo, bract,225

silk, and ear tip) were collected. Total RNA was extracted from each sample using an226

RNAprep Pure Plant Kit (Tiangen Biotech Co., Ltd., Beijing, China). Isolated purified227

RNA was the template for the construction of a cDNA library, having fragment228

lengths of approximately 300 bp, using the NEBNext Ultra RNA Library Prep Kit for229

Illumina (New England Biolabs, Ipswich, MA, USA) in accordance with the230

manufacturer’s instructions. Sequencing was performed on an Illumina HiSeq X Ten231

platform and 150-bp paired-end reads were generated. Raw reads were trimmed by232

removing adapter sequences, reads with more than 5% of unknown base calls (N), and233

low-quality bases (base quality less than 5, Q ≤ 5). Clean paired-end reads were234

aligned to the genome using Tophat version 2.0.13 [43] (RRID:SCR_013035) to235

identify exon regions and splice positions. The alignment results were then used as236

input for cufflinks version 2.1.1 [44] (RRID:SCR_014597) to assemble transcripts to237

the gene models. In addition, RNA-seq data were assembled using Trinity version238
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2.1.1 [45] (RRID:SCR_013048), creating several pseudo-ESTs. These pseudo-ESTs239

were also mapped to the assembled genome using BLAT and gene models were240

predicted using PASA [46] (RRID:SCR_014656). A weighted and non-redundant241

gene set was generated using EVidenceModeler (EVM, version 1.1.1) [47]242

(RRID:SCR_014659), which merged all the gene models predicted by the above three243

approaches. Finally, PASA was used to adjust the gene models generated by EVM.244

As a result, a total of 39,733 protein-coding genes were annotated in the final set. To245

better understand gene functions, we used all 39,733 protein-coding genes as query246

against public protein databases, including NCBI non-redundant protein sequences247

(Nr), Swiss-Prot, Protein family (Pfam), Kyoto Encyclopedia of Genes and Genomes248

(KEGG), InterPro, and Gene Ontology (GO). In total, 39,646 genes (99.8%) could be249

annotated from these databases and 24,402 genes (61.41%) were supported by250

RNA-seq data. Furthermore, the gene number, gene length distribution, and exon251

length distribution were all comparable to those of other maize inbred lines and252

common crop species (Table 3).253

Transfer RNA (tRNA) genes were predicted using tRNAscan-SE software v. 1.4 [48]254

(RRID:SCR_010835) with the default parameters. Ribosomal RNAs (rRNAs) were255

annotated on the basis of their homology levels with the rRNAs of several species of256

higher plants using BLASTN with an E-value of 1e-5. The microRNA (miRNA) and257

small nuclear RNA (snRNA) fragments were identified by searching the Rfam258

database v. 11.0 (RRID:SCR_007891) using INFERNAL v. 1.1 software259
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(RRID:SCR_011809) [49, 50]. Finally, 4,547 miRNAs, 5,963 tRNAs, 63,564 rRNAs,260

and 1,422 snRNAs were identified, which had average lengths of 126.79, 75.25,261

309.47, and 132.10 bp, respectively (Table 4).262

Comparative genomic analysis between Dan340 and other maize lines263

We applied the OrthoMCL pipeline [51] to identify orthologous gene families among264

the four maize inbred lines, including Dan340, B73, Mo17, and SK. The longest265

protein from each gene was selected, and the proteins with a length less than 30 amino266

acids were removed. Subsequently, pairwise sequence similarities between all input267

protein sequences were calculated using BLASTP with an E value cut-off of 1×10-5.268

Markov clustering (MCL) of the resulting similarity matrix was used to define the269

ortholog cluster structure of the proteins, using an inflation value (-I) of 1.5 (default270

setting in OrthoMCL). Next, comparative analyses were performed among Dan340,271

B73, Mo17, and SK (Fig. 6A).272

Analysis of genes in the Dan340 genome, together with those from B73, Mo17 and273

SK, were clustered into 27,654 gene families. Of these, 15,690 families were shared274

among the four maize inbred lines, representing a core set of genes across these maize275

genomes. There were 1,806 genes from 359 gene families that were specific to276

Dan340, of which many had functional gene ontology annotations relating to “protein277

phosphorylation”, “single-organism catabolic process”, and “pheromone binding”278

(Fig. 6B). In KEGG functional enrichment, the most enriched pathway of Dan340279
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specific genes were “antifolate resistance”, “epithelial cell signaling in helicobacter280

pylori infection”, and “pentose and glucuronate interconversions” (Fig. 6C).281

In addition, OrthoMCL was used to identify the core and dispensable gene sets on the282

basis of gene family. The gene families that were shared among the four inbred lines283

were defined as core gene families. Furthermore, gene families that were shared284

among three inbred lines, between two inbred lines, and those that were only present285

in one inbred line (private gene families) were also displayed in Fig 6D.286

Genetic variation analysis287

To investigate the genetic variations between Dan340 and other maize inbred lines,288

we used PBSV version 2.2.2 [52] to detect structural variations. First, PacBio reads of289

B73 and Mo17 were downloaded from MaizeGDB [53], and PacBio reads of SK were290

obtained from the National Genomics Data Center [54]. Next, subreads were aligned291

to the Dan340 reference genome assembled in this study using pbmm2 to generate a292

bam file. Then, Samtools v1.7 [55] (RRID:SCR_002105) was used to identify and293

split the bam file on the basis of chromosomes and scaffolds. Afterwards, pbsv294

discover was used to generate svsig result files for different chromosomes and295

scaffolds. The svsig files of multiple samples were then used together to perform the296

SV joint calling with “pbsv call”, and finally, the vcf files were obtained.297

The high-quality Dan340 reference genome allowed us to identify large SVs298

presented in different maize inbred lines. By mapping the PacBio long-reads of B73299

to Dan340 genome, we identified a total of 8,289 structural variations (length longer300
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than 500 bp) between the two representative maize genomes, including 1,653301

insertions, 6,537 deletions, 36 inversions, and 63 duplications (Table 5). Furthermore,302

the structural variations presented in Mo17 and SK were also detected in this study303

(Table 6 & 7). This dataset provides abundant variation resources for molecular304

improvement and breeding in maize in the future.305

Conclusions306

We assembled the chromosome-level genome of the maize elite inbred line Dan340307

using long CCS reads from the third-generation PacBio Sequel II sequencing platform,308

with scaffolding informed by chromosomal conformation capture (Hi-C). The final309

assembly of the Dan340 genome was 2,348.72 Mb, including 2,738 contigs and 2,315310

scaffolds with N50 of 41.49 Mb and 215.35 Mb, respectively. Comparisons of the311

Dan340 genome with the reference genomes of three other common maize inbred312

lines identified 1,806 genes from 359 gene families that were specific to Dan340. In313

addition, we also obtained large numbers of structural variants between Dan340 and314

other maize inbred lines, and these may be underlying the mechanisms responsible for315

the phenotypic discrepancies between Dan340 and other maize varieties. Therefore,316

the assembly and annotation of this genome not only facilitates our understanding of317

the intraspecific genomic diversity in maize, but they also serve as novel resources for318

maize breeding improvement.319

320

Data Availability321
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The raw sequence data have been deposited in NCBI under project accession No.322

PRJNA795201. Data is also available in the GigaScience GigaDB repository [56].323
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Figure legends540

Figure 1. Ear appearances of the maize inbred lines Dan340, B73, Mo17, and SK.541

Figure 2: Hi-C contact heat map displaying the inter- and intra-chromosomal542

interactions in maize inbred line Dan340 genome.543

Figure 3. Circos plot of genomic features. Outer-to-inner tracks indicate the following:544

A, Chromosome numbers of Dan340 and B73; B, Repeat density; C, Histogram of545

gene density distributions along the chromosomes; D, Histogram of GC content546

distributions along the chromosomes; E, Syntenic relationships of gene pairs between547

Dan340 and B73 genomes identified using the best-hit method.548
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Figure 4. Genome-wide LTR Assembly Index (LAI) scores for Dan340, B73, Mo17549

and SK.550

Figure 5. Pairwise comparison of genome sequences using a dot plot between the551

Dan340 line and B73 (23,350 gene pairs), Mo17 (21,913 gene pairs), SK (23,016552

gene pairs). The horizontal axis represents the target species, the vertical axis553

represents the reference species, C1–C10 represent the respective chromosomes 1–554

10, 0–35 k represent the chromosome length scale marks, which mainly reflect the555

lengths of the chromosomes, and a point represents a pair of common genes.556

Figure 6. Gene family analyses and core- and pan-genomes of maize. A, Comparisons557

of gene families in Dan340, B73, Mo17, and SK. The Venn diagram illustrates shared558

and unique gene families among the four maize inbred lines. B, Gene ontology559

enrichment analysis of Dan340-specific genes. C, Kyoto Encyclopedia of Genes and560

Genomes analysis of Dan340-specific genes. D, Core- and pan-genome of maize. The561

histograms show the core-gene clusters (shared in all four genomes), dispensable gene562

clusters (present in three or two genomes) and specific gene clusters (present only in563

one genome).564
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Figure 1565
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Figure 2: Hi-C contact heat map displaying the inter- and intra-chromosomal568

interactions in maize inbred line Dan340 genome.569
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Figure 3582
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Figure 4585
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Figure 5589

590

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 20, 2022. ; https://doi.org/10.1101/2021.04.26.441299doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441299
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6591
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Table 1 Genome assembly and annotation statistics for the four tested maize inbred595

lines.596

Genomic features Dan340 B73 Mo17 SK

assembled genome size (bp) 2,348,678,871 2,182,075,994 2,104,465,715 2,161,392,594

Number of scaffolds 2315 687 2203 671

Total length of scaffolds (Mb) 2,348.72 2,182 2,182 2,162

Scaffold N50 222,765,871 226,353,449 220,382,597 73,237,962

Number of contigs 2,738 1,395 9,040 1,090

Total length of contigs (Mb) 2,144,444 2,178,268 2,147,495 2,150,874

Contig N50 45,109,016 47,037,903 1,491,782 15,776,512

Number of genes 39,733 39,756 38,620 43,271

597

598
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Table 2. LAI scores of the four tested maize inbred lines.599

Lines D340 Dan340 B73 Mo17 SK

LAI 25.13 24.94 24.45 27.12

600

601

Table 3 Summary statistics of annotated protein-coding genes in Dan340 and other602

maize inbred lines and common crop species.603

Species Number

Average

transcript

length(bp)

Average

CDS

length(bp)

Average

exons per

gene

Average

exon

length(bp)

Average

intron

length(bp)

Dan340 39,733 3,793.47 1,140.91 4.69 243.47 719.61

B73 39756 3511.78 1102.11 4.58 240.64 673.10

Mo17 38620 3362.68 1140.26 4.69 242.98 601.83

SK 42942 3857.18 1179.17 4.83 243.93 698.48

Hvu 24,286 2,116.13 1,093.77 4.1 267.02 330.19

Osa 35,679 2,165.58 991.55 3.78 262.57 422.87

Sbi 34,008 2,626.44 1,164.14 4.31 270.09 441.76

Sit 27,233 2,982.22 1,336.29 5.14 260.2 397.98

Tae 103,539 3,087.61 1,277.31 4.51 283.23 515.78

Abbreviations: Hvu: Hordeum vulgare; Osa: Oryza sativa; Sbi: Sorghum bicolor; Sit:604

Setaria italica; Tae: Triticum aestivum.605
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Table 4. Annotation statistics of non-coding RNAs in the Dan340 genome using606

different databases.607

Type Copy(w*)

Average

length(bp)

Total

length(bp)

miRNA 4,547 126.79 576,516 0.024546

tRNA 5,963 75.25 448,705 0.019104

rRNA

rRNA 63,564 309.47 19,671,118 0.84

18S 6,607 1,727.38 11,412,778 0.49

28S 25,188 143.61 3,617,315 0.15

5.8S 25,181 153.48 3,864,710 0.16

5S 6,588 117.84 776,315 0.033053

snRNA

snRNA 1,422 132.1 187,845 0.007998

CD-box 647 103.2 66,768 0.002843

HACA-box 123 126.27 15,531 0.000661

splicing 651 161.72 105,278 0.004482

608

609

610

611

612

613
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Table 5 Structural variations between Dan340 and B73.614

Chr.
Number

Insertion Deletion Inversion Duplication

Number
Length
(bp)

Number
Length
(bp)

Number
Length
(bp)

Number
Length
(bp)

1 266 432723 998 13194452 7 120136 8 311433

2 183 316530 743 10075332 7 177706 9 261774

3 201 381536 838 11475573 5 24457 7 37754

4 183 303142 698 9809218 2 113807 7 255958
5 181 330690 651 9519227 3 108429 6 121490
6 122 252117 527 7723482 3 55199 8 300610
7 140 226942 512 7146020 2 49011 4 122886
8 140 204697 577 7720113 1 80400 3 42148
9 121 219627 569 7539785 3 17955 9 114595
10 116 209091 424 6256310 3 130724 2 40306

615

616

617

618

619

620

621

622

623

624

625

626
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627

Table 6 Structural variations between Dan340 and Mo17.628

Chr.
Numbe

r

Insertion Deletion Inversion Duplication

Number
Length
(bp)

Number
Length
(bp)

Number
Length
(bp)

Number
Length
(bp)

1 171 226204 1049 14591535 10 223256 6 157653
2 102 164536 668 9437198 4 40341 5 149456
3 121 196809 767 11363033 0 0 4 26512
4 96 146230 628 8996741 3 50713 10 169360
5 102 147883 660 9449523 3 190422 7 85046
6 75 101725 567 8423089 3 130693 3 20573
7 84 119614 521 7784957 4 159203 6 275006
8 83 123397 603 8751739 2 30781 5 214099
9 61 83589 529 7194721 1 10328 3 55228
10 75 126350 497 6832836 5 227243 4 159642

629

630

631

632

633

634

635

636

637

638

639

640
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641

Table 7 Structural variations between Dan340 and SK.642

Chr.
Numbe

r

Insertion Deletion Inversion Duplication

Number
Length
(bp)

Number
Length
(bp)

Number
Length
(bp)

Number
Length
(bp)

1 244 355348 1226 17656467 15 228724 16 404487
2 133 220966 842 12542190 6 244805 5 76672
3 173 286569 894 12961969 4 7657 6 96601
4 211 338458 1012 14231859 3 70762 14 315182
5 160 248233 786 10660145 8 280670 5 206286
6 93 118612 588 8923936 4 55606 2 1760
7 115 175971 622 8865791 1 30856 9 233675
8 143 210185 685 10443437 2 3061 6 152412
9 114 186005 647 8682441 4 9595 7 37664
10 109 159668 559 8726188 4 132337 4 95237

643

644

645

646

647

648

649

650

651

652

653

654
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