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Abstract 10 

Stressful events trigger a complex physiological reaction – the fight-or-flight response – that 11 

can hamper flexible decision-making. Inspired by key neural and peripheral characteristics of 12 

the fight-or-flight response, here we ask whether acute stress changes how humans learn 13 

about costs and benefits. Participants were randomly exposed to an acute stress or no-stress 14 

control condition after which they completed a cost-benefit reinforcement learning task. 15 

Acute stress improved learning to maximize benefits (monetary rewards) relative to 16 

minimising energy expenditure (grip force). Using computational modelling, we demonstrate 17 

that costs and benefits can exert asymmetric effects on decisions when prediction errors that 18 

convey information about the reward value and cost of actions receive inappropriate 19 

importance; a process associated with distinct alterations in pupil size fluctuations. These 20 

results provide new insights into learning strategies under acute stress – which,  depending on 21 

the context, may be maladaptive or beneficial - and candidate neuromodulatory mechanisms 22 

that could underlie such behaviour.  23 
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Introduction 24 

Stress is ubiquitous in everyday life. From recurrent, brief, events (a work meeting, moving 25 

to a new house) to major life events (armed combat, pandemic, financial crisis), humans are 26 

continuously exposed to challenges in their daily environment. The immediate central and 27 

peripheral physiological cascade triggered by such events, collectively termed the fight-or-28 

flight (or acute stress) response (Cannon, 1915), serves an allostatic role that enables 29 

organisms to adequately respond to environmental demands (de Kloet, Joëls, & Holsboer, 30 

2005). Although beneficial for survival, this allostatic process comes at a cost: stress-induced 31 

redistributions of neural resources - e.g., towards vigilance or threat detection - may hamper 32 

the deployment of strategies that support adaptive and optimal decision-making (Hermans, 33 

Henckens, Joëls, & Fernández, 2014).  34 

 Optimal decisions essentially depend on the ability to rapidly learn from the positive 35 

and negative outcomes of previous actions, also known as reinforcement learning (Niv, 36 

2009). Considerable evidence now suggests that acute stress impairs aspects of reinforcement 37 

learning (Carvalheiro, Conceição, Mesquita, & Seara-Cardoso, 2020; de Berker et al., 2016; 38 

Raio, Hartley, Orederu, Li, & Phelps, 2017). Acute stress, among others, modulates the 39 

impact of positive outcomes on future decisions - both positively and negatively - (Berghorst, 40 

Bogdan, Frank, & Pizzagalli, 2013; Carvalheiro et al., 2020; Lighthall, Gorlick, Schoeke, 41 

Frank, & Mather, 2013; Petzold, Plessow, Goschke, & Kirschbaum, 2010), likely driven by 42 

changes in reward sensitivity and the signalling of reward prediction errors (RPEs) 43 

(Berghorst et al., 2013; Carvalheiro et al., 2020; Huys, Pizzagalli, Bogdan, & Dayan, 2013); 44 

putatively dopaminergic teaching signals that represent the mismatch between actual and 45 

expected outcomes, which are used to flexibly adjust behaviour (Niv, 2009; Rescorla, 1972). 46 

Alterations in the influence of RPEs on future decisions play a key role in the development of 47 
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motivational impairments, which are frequently observed in behavioural disorders associated 48 

with repeated and/or prolonged stress exposure (Huys et al., 2013). 49 

Intuitive as it is, the notion that the impact of acute stress on (potentially maladaptive) 50 

decisions primarily involves changes in how reward value influences action may be 51 

oversimplified. Decisions are not only motivated by appetitive properties; they equally 52 

depend on the – cognitive (e.g., mental effort) or physical (e.g., energy) – cost associated 53 

with actions (Hauser, Eldar, & Dolan, 2017; Pessiglione, Vinckier, Bouret, Daunizeau, & Le 54 

Bouc, 2017; Schmidt, Lebreton, Cléry-Melin, Daunizeau, & Pessiglione, 2012). Expectations 55 

about action costs are also updated according to a prediction error rule (Skvortsova, Degos, 56 

Welter, Vidailhet, & Pessiglione, 2017; Skvortsova, Palminteri, & Pessiglione, 2014) 57 

(henceforth “effort” prediction errors; EPEs), which due to the aversive and resource-58 

consuming nature of effort, optimal learners should utilize to minimize effort expenditure. 59 

When decisions involve a potential cost and benefit, the former is subtracted from the latter 60 

to compute a “net” or subjective decision value (i.e., effort-discounted reward value) (Klein-61 

Flügge, Kennerley, Friston, & Bestmann, 2016; Skvortsova et al., 2017; Skvortsova et al., 62 

2014). Notably, stress exposure impairs cost-benefit decisions in rodents when learning is not 63 

explicitly required (Friedman et al., 2017; Shafiei, Gray, Viau, & Floresco, 2012). Moreover, 64 

in a reinforcement learning context, acute stress blocks the flexible updating of aversive 65 

value (Raio et al., 2017), an inherent property of costly actions. These results suggest that 66 

decisions during acute stress may involve a complex shift in reinforcement learning strategies 67 

that serve to balance the cost versus benefits of decisions; a hypothesis that hitherto has 68 

remained unexplored. 69 

Although computationally similar in nature, distinct neural correlates of RPEs (e.g., 70 

striatal subdivisions, ventromedial prefrontal cortex [vmPFC]) and EPEs (e.g., parietal 71 

cortex, insula, dorsomedial PFC) can be observed in cost-benefit reinforcement learning 72 
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paradigms (Hauser et al., 2017; Skvortsova et al., 2014). The ascending dopaminergic (e.g., 73 

RPEs, action cost, reward value) (Schultz, Dayan, & Montague, 1997; Skvortsova et al., 74 

2017; Yohn et al., 2016), noradrenergic (e.g., mobilizing energy) (Pessiglione et al., 2017; 75 

Varazzani, San-Galli, Gilardeau, & Bouret, 2015) and serotonergic (e.g., aversive value, 76 

overcoming action costs) (H. E. den Ouden et al., 2015; Meyniel et al., 2016) 77 

neuromodulatory systems, moreover, encode partly dissociable aspects of goal-directed 78 

actions that involve learning about costs and benefits, which together support optimal 79 

decision-making. These observations are noteworthy because the initial fight-or-flight 80 

response triggers a large-scale reorganization of brain networks that is driven by alterations in 81 

the firing mode of midbrain dopaminergic ventral tegmental area and noradrenergic locus 82 

coeruleus neurons (Arnsten, 2015; Hermans et al., 2014); neurons that signal prediction 83 

errors (Steinberg et al., 2013) and that are also responsive to reward value, action cost and 84 

energy expenditure (Del Arco, Park, & Moghaddam, 2020; Varazzani et al., 2015). Thus, 85 

catecholaminergic mechanisms that are recruited by the fight-or-flight response may 86 

differentially impact cost and benefit reinforcement learning, resulting in a potential scenario 87 

in which costs and benefits exert asymmetric influences on decisions. 88 

As mentioned above, the central (i.e., neural) effects of acute stress trigger a shift in 89 

cognitive strategies, including reinforcement learning. The peripheral counterpart of the acute 90 

stress response, however, mobilizes the energy (i.e., adrenaline-mediated glucose release (de 91 

Kloet et al., 2005; Russell & Lightman, 2019)) that is required to exert effortful actions 92 

aimed at preserving homeostasis (Cannon, 1915). Therefore, decision-making and learning 93 

policies regarding physical costs may be especially susceptible to stress: both via 94 

computational (neural) mechanisms that support learning about and representation of action 95 

cost, as well as peripheral mechanisms that co-determine the amount of available energy that 96 

can be directed towards effortful actions. Indeed, preliminary evidence suggests that acute 97 
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stress alters the willingness to exert physical effort for rewards (Bryce & Floresco, 2016) and 98 

reward-associated cues in a Pavlovian-instrumental transfer context (Pool, Brosch, 99 

Delplanque, & Sander, 2015). 100 

How acute stress impacts reinforcement learning involving costs and benefits has not 101 

been investigated to date in humans. Based on the above considerations, we expect that 102 

computationally frugal learning strategies, in concert with increased energy availability, 103 

during acute stress should asymmetrically impact cost versus benefit learning. Using an acute 104 

stress-induction paradigm, a cost-benefit learning paradigm and computational model of cost-105 

benefit reinforcement learning (Skvortsova et al., 2017; Skvortsova et al., 2014), we 106 

demonstrate that acute stress asymmetrically prioritizes reward (maximization) learning over 107 

physical effort (minimization) learning. Better benefit versus cost learning results from a 108 

stress-induced change in the influence of RPEs versus EPEs on future decisions, and is 109 

associated with altered pupil encoding of RPEs, EPEs, and subjective decision value. These 110 

results reveal how neural and peripheral mechanisms that support the fight-or-flight response 111 

may facilitate a shift in reinforcement learning strategies that confers strategic benefits during 112 

acutely stressful situations (e.g., ignoring high action costs to achieve a desirable outcome), 113 

yet might also give rise to maladaptive behaviour (e.g., stress-induced relapse in substance 114 

users).  115 
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Results 116 

Experiment design  117 

Healthy human participants were randomly assigned to the acute stress (19 males/21 females; 118 

age M=23.48, SD=3.94) or no-stress control condition (18 males/22 females; age M=23.80, 119 

SD=4.23) of the Maastricht Acute Stress Task (MAST) (Smeets et al., 2012), a validated 120 

psychological and physical stress-induction paradigm (see Materials and Methods). 121 

Immediately post-MAST and within the confines of the acute stress response (Hermans et al., 122 

2014), all participants completed a ~40 minute probabilistic cost-benefit reinforcement 123 

learning paradigm, adapted from Skvortsova et al. (Skvortsova et al., 2017; Skvortsova et al., 124 

2014), in which they learned to select stimuli with high reward value (20 Eurocents) and 125 

avoid stimuli with high action cost (exerting grip force above a pre-calibrated individual 126 

threshold of 50% maximum voluntary contraction for 3000ms), followed by a surprise test 127 

phase. A detailed overview of the paradigm is provided in Figure 1 and the Materials and 128 

Methods. Pupil size was continuously recorded while participants performed the task (see 129 

Materials and Methods).  130 
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Figure 1  131 

 132 

Reward maximisation/action cost minimization reinforcement learning task. 133 

Visual depiction of the learning phase. Participants were presented with four distinct stimulus 134 

pairs, and all stimuli were associated with a predetermined chance of a €0.20 monetary 135 

reward (versus no reward) and a chance of having to exert physical effort (grip force) using a 136 

dynamometer (versus no grip force required). Stimulus-outcome probabilities were yoked in 137 

such a way that, for a given pair, two stimuli only differed in the probability of earning a 138 

reward (“reward learning”, RL, left) or the probability of having to exert effort (“effort 139 

learning”, EL, right). That is, for RL (left)/EL (right) pairs, reward/effort outcomes were 140 

choice-dependent, respectively (see “Reward feedback” for RL and “Effort feedback” for EL 141 

for outcome contingencies). For RL pairs, effort outcomes were independent of choice and 142 

fixed (see “Effort feedback” for RL), while for EL pairs, reward outcomes were independent 143 
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of choice and fixed (see “Reward feedback” for EL). Percentages in blue and red refer to 144 

outcomes for the Easy RL/EL and Hard RL/EL pair, respectively. 145 

 146 

Acute stress manipulation 147 

We first ascertained whether the acute stress manipulation was successful. Subjective stress, 148 

physiological and neuroendocrine measurements are displayed in Figure 2. Acute stress and 149 

no-stress control groups did not differ on physiological, subjective stress, or neuroendocrine 150 

measurements pre-MAST (all p-values>0.05). We observed significant Condition-by-Time 151 

interactions for subjective stress ratings [PANAS negative: F(1,78)=52.66, p<0.001, 152 

n2G=0.10; PANAS positive: F(1,78)=9.82 p=0.002, n2G=0.02] and physiological measures 153 

[systolic blood pressure (SBP): F(1,78)=15.50, p<0.001, n2G= 0.04; heart rate: F(1,78)=6.83, 154 

p=0.011, n2G= 0.02]. Simple main effect analyses revealed that only the acute stress group 155 

exhibited pre-to-post increases in negative affect [control pre-post: t(39)=4.21, p<0.001; 156 

stress pre-post: t(39)=-6.17, p<0.001; control-stress post-MAST: t(55.1)=-5.78, p<0.001], 157 

and greater pre-to-post decreases in positive affect [control pre-post: t(39)=4.09, p<0.001; 158 

stress pre-post: t(39)=6.45, p<0.001; control-stress post-MAST: t(72.8)=2.53, p=0.014] 159 

(Figure 2). Similarly, only the acute stress group exhibited stress-induced increases in SBP 160 

[control pre-post: t(39)=1.60, p<0.117; stress pre-post: t(39)=-3.66, p<0.001; control-stress 161 

post-MAST: t(69.1)=-3.27, p=0.002] and heart rate [control pre-post: t(39)=1.21, p=0.234; 162 

stress pre-post: t(39)=-2.78, p=0.008; control-stress post-MAST: t(76.9)=-3.14, p=0.002] 163 

(Figure 2a-d). 164 

An expected Condition-by-Time interaction was found for salivary cortisol (sCORT) 165 

responses [F(5,390)=18.05, p<0.001, n2G= 0.04], with the acute stress group displaying 166 

greater sCORT levels 10 min post-MAST and onwards (all p-values<0.01). We additionally 167 

observed a main effect of Condition on sCORT area-under-the-curve with respect to increase: 168 
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(AUCi) (Pruessner, Kirschbaum, Meinlschmid, & Hellhammer, 2003) (t(56.32)=-5.28, 169 

p<0.001) and salivary alpha-amylase (sAA) AUCi (t(67.45)=-2.50, p=0.015; after excluding 170 

one extreme outlier from the control group), suggesting greater sCORT and sAA levels in 171 

response to acute stress (Figure 2e-g). These results confirm that the MAST robustly induced 172 

stress on all levels of inquiry. 173 

 174 

Figure 2   175 

 176 

Neuroendocrine, physiological and subjective stress ratings.   177 

PANAS negative (a) and positive (b) subscale sum scores, systolic blood pressure (mmHg: 178 

millimetres of mercury; c) and heart rate (bpm: beats per minute; d) are displayed for no-179 

stress control (blue) and acute stress (red) groups separately for pre (light blue/red) and post 180 

(dark blue/red) MAST time points. SCORT responses for both conditions across the 6 181 

timepoints are displayed in panel e (“t+00” represents the first post-MAST measurement, and 182 

the start of the reward maximization/action cost reinforcement learning paradigm; “t-10” 183 

represent a baseline sample). Panel f and g show AUCi for sCORT (nmol/l: nanomoles per 184 

litre) and sAA (U/mL: Units per millilitre) responses for both MAST conditions. Significant 185 
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differences are denoted by asterisks (*: p < 0.05, **: p < 0.01, ***: p < 0.001). In the upper 186 

panel, the top line denotes a significant Condition-by-Time interaction; lower lines represent 187 

simple main effects of Condition or Time. 188 

 189 

Participants use reinforcement learning to optimize decisions 190 

Next, we investigated whether participants in both conditions exhibited evidence of 191 

reinforcement learning to optimize actions, which in this paradigm should be reflected by an 192 

increased tendency to select stimuli with high reward value and avoid stimuli with high 193 

action cost as a function of increasing number of stimulus pair presentations (i.e., “time”). 194 

This intuition was confirmed by a main effect of Time on two distinct trial types: trials on 195 

which participants could learn to accumulate frequent rewards while the probability of effort 196 

(action cost) was kept constant (RL; selecting the stimulus more frequently associated with 197 

€0.20) [control: F(2,78)=10.16, p<0.001, n2G= 0.06; stress: F(2,78)=20.44, p<0.001, n2G= 198 

0.17] and trials on which participants could learn to frequently avoid effort while the 199 

probability of reward was kept constant (EL; selecting the stimulus more frequently 200 

associated with avoidance of physical energy expenditure) [control: F(2,78)=12.35, p<0.001, 201 

n2G= 0.07; stress: F(2,78)=9.76, p<0.001, n2G= 0.05]. We additionally observed greater than 202 

chance-level performance (≥0.5) on both trial types during the final part of the task 203 

(presentation 21-30; all p-values<0.001 Figure Supplement 1). 204 

 205 

Asymmetric cost-benefit reinforcement learning during acute stress 206 

After having observed evidence for reward (maximization) learning and action cost 207 

(minimization) learning, we tested our key assumption; that acute stress would induce a 208 

reprioritization in learning to maximize reward value versus learning to minimize action cost. 209 

Crucially, we observed a significant Condition-by-Trial Type interaction [F(1,78)=6.53, 210 
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p=0.013, n2G= 0.039] (Figure 3a) with pairwise comparisons indicating that the acute stress 211 

group performed significantly better on RL than EL trials [t(39)=5.40, p<0.001], while the 212 

no-stress control group performed similarly on both trial types [t(39)=1.01, p=0.320]. A main 213 

effect of Condition on RL-EL accuracy difference scores [t(74.02)=-2.55, p=0.013] (Figure 214 

3b) and one-sample t-tests revealed that RL-EL accuracy difference scores were significantly 215 

greater than zero in the acute stress group but not in the no-stress controls. Simple main 216 

effects of Condition on RL [t(65.9)=-1.75, p=0.085] and EL [t(77.5)=1.80, p=0.076] 217 

performance showed numerical trends for group differences that failed to reach significance.  218 

When we included participants that still performed at chance level at the end of the 219 

learning phase (see Participants) in the Condition-by-Trial Type interaction analysis, the 220 

interaction remained significant [F(1,91)=7.30, p=0.035, n2G= 0.04], with the acute stress 221 

group displaying better RL vs. EL performance (t(46)=5.83, p<0.001), while no-stress 222 

controls performed similarly on both trial types (t(45)=1.24, p=0.22). Participants in the acute 223 

stress group outperformed participants in the no-stress control group on RL (t(91)=2.04, 224 

p=0.04), but no simple main effect of Condition was observed for EL (t(91)=-1.67, p=0.1). 225 

These participants were excluded for all other analyses reported below. 226 

The use of different reinforcement probabilities for each RL and EL pair (Figure 1) 227 

allowed us to discern whether the observed pattern of results reflected a specific change in 228 

cost (EL) versus benefit (RL) reinforcement learning, or a more general impairment in 229 

reinforcement learning for more difficult stimulus-response associations. We found no 230 

evidence for the latter scenario in Condition-by-Trial Type-by-Difficulty [F(1,78)=1.05, 231 

p=0.310] or Condition-by-Difficulty [F(1,78)=0.36, p=0.549; Figure Supplement 2] 232 

interaction analyses. 233 

 When we investigated the use of win-stay (resampling a stimulus following a positive 234 

outcome) and lose-shift (switching to the other stimulus following a negative outcome) 235 
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strategies (Hanneke E. M. den Ouden et al., 2013), we observed no significant Condition-by-236 

Strategy interaction [F(1,78)=2.99, p=0.087, n2G= 0.03]. However, post hoc comparisons 237 

revealed that participants in the acute stress condition [t(39)=-3.73, p<0.001] but not those in 238 

the no-stress control condition [t(39)=-1.30, p=0.200], exhibited different win-stay compared 239 

to lose-shift (difference) rates. Separate Condition (main effect) analyses indicated that acute 240 

stress participants compared to no-stress controls were more likely to win-stay for rewards 241 

(RL trials) than for avoidance of action cost (EL trials) [t(78)=-2.28, p=0.025], but not for 242 

lose-shifting for reward omissions (RL trials) compared to exerting effort (EL trials) 243 

[t(77.7)=-0.23, p=0.820]. Differences in win-stay rates for RL compared to EL trials (one-244 

sample t-test) were greater than zero for the acute stress [t(39)=4.91, p<0.001] but not the no-245 

stress control group [t(39)=1.68, p=0.101] (Figure 3c). 246 

Taken together, our model-free results indicate that acute stress leads to a 247 

reinforcement learning strategy that favours learning to maximise reward value over 248 

minimisation of action cost, which based on analyses of win-stay/lose-shift rates, could be 249 

attributed to increased sensitivity to positive reinforcement (i.e., reward delivery) compared 250 

to negative reinforcement (i.e., avoidance of physical effort).  251 
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Figure 3  252 

 253 

Acute stress leads to improved benefit versus cost learning. 254 

Panel a: Average accuracy (choices of the optimal stimulus) for RL and EL trials, for each 255 

condition separately. Panel b: RL-EL average accuracy difference scores. Panel c:  256 

Win-stay (WSRL-WSEL) and lose-shift (LSRL-LSEL) difference scores for each condition 257 

separately. Means ± SD, individual data points, distribution and frequency of the data are 258 

displayed. In panel a, the top line indicates a significant Condition-by-Trial type interaction. 259 

Significant differences are denoted by asterisks (*: p < 0.05, **: p < 0.01, ***: p < 0.001). 260 

Source files of task performance data used for the analyses are available in the Figure 3 – 261 

Source Data 1. 262 

 263 

Asymmetric cost-benefit reinforcement learning biases actions in acute stress subjects 264 

During a surprise 64-trial test phase (D. Hernaus, Gold, Waltz, & Frank, 2018), we asked 265 

participants to discriminate original and novel combinations of stimuli on the basis of reward 266 

value or action cost without receiving feedback (n=16 trials for original combinations; n=48 267 

for novel combinations; see Materials and Methods). The surprise test phase allowed us to 268 
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assess learned choice tendencies without having to arbitrarily choose a given number of final 269 

learning phase trials, during which participants may still learn. This approach also allowed us 270 

to assess the degree to which learned tendencies would carry over to novel contexts. 271 

First, both groups chose the optimal (most rewarding/effort avoiding) stimulus on 272 

surprise test phase trials involving the original four pairs [one-sample t-test against chance; 273 

controlRL: t(39)=8.73, p<0.001; controlEL: t(39)=3.72, p=0.002; stressRL: t(39)=13.54, 274 

p<0.001; stressEL: t(39)=4.47, p<0.001], confirming that both groups had developed a 275 

preference for the optimal stimulus. 276 

Although we observed no Condition-by-Trial type (reward value, action cost 277 

discrimination) interaction or main effects of Condition for novel stimulus combinations 278 

[F(1,78)=1.10, p=0.298, n2G= 0.01; stress vs. controls reward value discrimination: t(75.9)= 279 

0.15, p=0.878; stress vs. controls action cost discrimination: t(78)= 1.77, p=0.080], pairwise 280 

comparisons revealed that the acute stress group performed better on reward discrimination 281 

compared to action cost discrimination trials [t(39)=-2.23, p=0.032], while no-stress controls 282 

performed similarly on both trial types [t(39)=-0.87, p=0.387]. These results provide some 283 

evidence that a reward maximisation-over-action cost minimisation reinforcement learning 284 

policy might bias future actions in novel contexts (Figure Supplement 3). 285 

 286 

Computational cost-benefit reinforcement learning model: Model Fitting, Selection, 287 

Demonstrations, and Simulations 288 

To uncover latent mechanisms by which acute stress affects cost-benefit reinforcement 289 

learning, we turned to computational cognitive modelling. Trial-by-trial choices of 290 

participants were fit to all candidate models described in the Materials and Methods (see 291 

Model Space). To calculate model fit, log likelihood was updated trial-wise by the log of the 292 

probability of the observed choice, calculated via a softmax rule (see Materials and Methods, 293 
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equation 6), and best-fitting parameters were identified using fmincon in MATLAB  v.2019B 294 

(Mathworks, Natick, MA, USA). 295 

Bayesian Model Selection (BMS; spm_BMS function in SPM12, 296 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) using the Akaike Information Criterion 297 

(AIC) as a fit statistic that penalizes for the number of model parameters (Myung, Tang, & 298 

Pitt, 2009), suggested that the 2LR_γ model was the most likely model, as indicated by the 299 

protected exceedance probability (pxp, φ = 0.99) (Rigoux, Stephan, Friston, & Daunizeau, 300 

2014) and expectation of the posterior [p(r|y), 0.70] (Figure 4a for p(r|y) of all candidate 301 

models). We note that 2LR_γ remained the most likely model when we considered additional 302 

models with greater redundancy and/or lesser biological plausibility (e.g., models with all 303 

combinations of reward value/action cost discounting and weight parameters).  304 

The 2LR_γ model contains separate learning rates that weight the importance of RPEs 305 

and EPEs (αR, αE), an action cost discounting parameter (γ), and an inverse temperature 306 

parameter (β), which in previous work could account for performance on a conceptually 307 

similar cost-benefit learning task (Skvortsova et al., 2014). To demonstrate the effect of 308 

changes in parameters values on choice preferences within the 2LR_γ architecture, we first 309 

simulated choices from 50 artificial agents (averaged across 10 repetitions) performing the 310 

reward maximization/action cost minimization reinforcement learning task using a range of 311 

parameter values. As expected, greater values of αR and αE primarily impacted the speed of 312 

RL and EL choice preferences, while low values of γ lead to asymmetric choice preferences 313 

through discounting of action cost, and lower values of β lead to non-selective increases in 314 

random sampling (Figure 4b). 315 

In post hoc simulations, i.e., generating participant choices using the obtained 316 

parameters, we additionally observed moderate-to-high correlations between simulated and 317 

empirical RL/EL for the acute stress and no-stress control group [ρRL_control = 0.55, p < 0.01; 318 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.25.441347doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.25.441347
http://creativecommons.org/licenses/by/4.0/


 16 

ρRL_stress = 0.84, p < 0.01; ρEL_control = 0.56, p < 0.01; ρEL_stress = 0.77, p < 0.01; see Figure 319 

Supplement 4], although the canonical performance difference in RL versus EL accuracy was 320 

not selective to the acute stress group [tcontrol(39)=-6.72, p<0.001; tstress(39)=-6.01, p<0.001]. 321 

However, after we fixed β and γ to group-level averages, to better demonstrate the effect of 322 

group differences in the learning rate parameters, we recovered a small but significant 323 

simulated difference in RL versus EL performance for the acute stress group [t(39)=2.27, 324 

p=0.029], which was not predicted in the no-stress control group [t(39)=0.91, p=0.367] 325 

(Condition-by-Trial Type interaction: [F(1,78)= 0.77, p=0.38, n2G= 0.006]) (Figure 4c for 326 

empirical versus simulated data, averaged across 100 repetitions per subject). 327 

Importantly, even if a given model is the most likely one based on model fitting and 328 

post hoc simulation results from the entire sample, there is still the possibility that different 329 

models can better explain task performance in the no-stress control and acute stress 330 

condition. When repeating BMS for each condition separately, 2LR_γ was the most likely 331 

model in the no-stress control group [φ=0.99, p(r|y)=0.83], while for acute stress subjects 332 

2LR_γ was not convincingly the most likely model [φ=0.47 p(r|y)=0.46]. Here, the 2LR 333 

model (containing αR, αE, and β parameters) was equally likely to be the optimal model 334 

[φ=0.53 p(r|y)=0.47]. Post-hoc simulations from the 2LR model also correlated with actual 335 

data, both for no-stress control [ρRL = 0.65, p < 0.001; ρEL = 0.60, p < 0.001] and acute stress 336 

participants [ρRL = 0.81, p < 0.001; ρEL = 0.75, p < 0.001]. 337 

Similar to the 2LR_ γ model (results discussed in next section), the 2LR model 338 

seemingly also explained stress-induced changes in cost-benefit reinforcement learning via 339 

changes in learning rates; in the 2LR model, the acute stress group exhibited greater values of 340 

αR versus αE (t(39)=2.65, p=0.01), while no-stress control subjects did not (t(39)=0.69, 341 

p=0.50) (Condition-by-Learning Rate interaction: [F(1,78)=2.88, p=0.094, n2G= 0.01]. The 342 

difference in learning rates between 2LR_γ (where αR and αE are similar for the acute stress 343 
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group, see next section) and 2LR (where αR > αE for the acute stress group) can be explained 344 

by the absence of discounting parameter γ: 2LR is a special case of 2LR_γ, where γ=1, and 345 

thus asymmetric effects of acute stress on reward value maximization and action cost 346 

minimization can only be explained by dissimilarity in learning rates. 347 

Although the effects of acute stress on reward value and action cost learning rates are 348 

opposite in 2LR_ γ versus 2LR architectures, these results bolster our confidence in the 349 

overall model space, as well as the interpretation that acute stress primarily impacts reward 350 

value and action cost learning rates, and not discounting. The observations that I) 2LR_ γ fit 351 

better in the entire group of participants, II) 2LR is fully contained within the 2LR_ γ model, 352 

and III) 2LR_ γ displayed good recoverability (see below) motivated our choice to focus on 353 

the 2LR_γ model. 354 

In model recoverability analyses i.e., re-fitting the simulated data from the model to 355 

all candidate models (Wilson & Collins, 2019), BMS confirmed that the simulated 2LR_γ 356 

data (that is, simulations without fixed parameters) were most likely to be generated from 357 

2LR_γ [φ=0.99, p(r|y)=0.71]. 358 

To assess the stability of 2LR_γ parameters, we repeated model fitting using a 359 

Bayesian hierarchical model fitting approach consisting of two steps, as described previously 360 

(Daw, 2011; Frey, Frank, & McCabe, 2019). In the first step we fit the 2LR_γ model to trial-361 

wise choices to obtain subject-specific parameters; in a second step we again fit the model to 362 

trial-wise choices, but this time we used the group-level average and covariance matrix of 363 

every parameter as priors, thereby shrinking the parameter search space. Motivated by recent 364 

work showing that group-specific priors, compared to a single prior for the entire sample, can 365 

better account for between-group differences in task performance, as well as improve 366 

parameter robustness and recoverability (Valton, Wise, & Robinson, 2020), we used separate 367 

mean and covariance matrices for the acute stress and no-stress control groups. 368 
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Highly similar parameter estimates were obtained after hierarchical fitting (for 369 

parameter estimates after Bayesian hierarchical model fitting see Figure Supplement 5). 370 

Similar to post hoc simulations using parameters from the non-hierarchically fit 2LR_γ 371 

model, we observed moderate-to-high correlations between empirical and simulated data 372 

using parameters obtained from the hierarchically fit model [ρRL_control = 0.65, p < 0.01; 373 

ρRL_stress = 0.84, p < 0.01; ρEL_control = 0.37, p =0.02; ρEL_stress = 0.78, p < 0.01; see Figure 374 

Supplement 6]. All in all, these results confirm parameter stability within the 2LR_γ 375 

architecture. 376 

In light of model fitting results, post-hoc simulations, model and parameter 377 

recoverability analyses, we used parameters and trial-by-trial predictions of the non-378 

hierarchically fit 2LR_ γ model in all analyses reported below.  379 
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Figure 4  380 

 381 

Model selection, demonstrations, and post hoc simulations of the winning model. 382 

Panel a: Expectation of the posterior for all candidate models. Panel b: Model 383 

demonstrations. To demonstrate how different parameter values within the 2LR_γ 384 

architecture impact choice preferences for the optimal stimulus (“accuracy”), αR, αE, and γ 385 

were set to 0.01/0.33/0.66/0.99, while β, a non-linear parameter, was set to 0.1/5/10/20. 386 

Parameter effects were always demonstrated for a single parameter (columns), while all other 387 

parameter values were kept constant (αR and αE=0.25, γ=1, β=25). Greater values of αR and 388 

αΕ selectively increase the speed with which the agent develops a preference for the optimal 389 

RL and EL stimulus, respectively. Lower values of γ produce an asymmetric decision-390 

making policy that emphasises reward value over action cost, leading to better performance 391 

on RL versus EL trials, while greater values of γ correct this asymmetric choice bias. Finally, 392 

greater β values lead to more deterministic sampling of optimal stimuli. Panel c: Post-hoc 393 
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simulations after fixing β and γ to group-level averages. Coloured lines represent mean ± SD. 394 

Dashed lines denote chance level (0.5). *: p < 0.05, **:p < 0.01, ***: p < 0.001. 395 

 396 

Acute stress selectively reduces the difference between reward and action cost learning 397 

rates 398 

Comparing 2LR_γ parameters between conditions, we observed a significant Condition-by-399 

Learning Rate (αR, αE) interaction [F(1,78)= 6.42, p=0.01, n2G= 0.03; 95% highest density 400 

interval (HDI) for Bayesian mixed ANOVA = -0.405 to -0.023, mean= -0.219]. with greater 401 

EPE relative to RPE learning rates in no-stress control participants [t(39)=-4.75, p<0.001], 402 

while learning rates in the acute stress group did not significantly differ [t(39)=-1.61, 403 

p=0.116]. No between-group differences in αR and αE or in the other parameters (γ, β) were 404 

observed (all p-values>0.05) (Figure 5). 405 

 Paradoxically, symmetric reward value and action cost learning rates in the presence 406 

of lower values of γ will lead to more efficient RL compared to EL. This is because lower 407 

values of γ bias decisions towards reward value (via greater discounting of action cost) and 408 

similar absolute values of αR/αE will not counteract this bias. Asymmetric learning rates 409 

(αE>αR) in combination with lower values of γ, however, will lead to more symmetric 410 

performance on RL and EL trials via more efficient updating of action cost versus reward 411 

expectations. This interpretation is supported by our demonstration of model parameters 412 

(Figure 4b) and post hoc simulations (Figure 4c), as well as the observation that lower values 413 

of γ (i.e., greater action cost discounting) were associated with greater learning rate 414 

asymmetry (αE>αR; more efficient EL) in no-stress controls (ρ=-0.40, p=0.040), who 415 

displayed similar RL and EL performance. These results demonstrate that, in a context where 416 

all decisions involve a potential cost and benefit, acute stress selectively reduces the 417 

difference between EPE and RPE learning rates, while leaving action cost discounting and 418 
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choice stochasticity unaffected. The direction of the change in learning rates (i.e., greater 419 

similarity) implies a stress-induced failure to modulate learning rates in the service of 420 

overcoming an asymmetric choice bias that emphasises reward value. 421 

In analyses using posterior parameters obtained from the hierarchically fit model, we 422 

recovered the key Condition-by-Learning Rate interaction (95% HDI for Bayesian mixed 423 

ANOVA = -0.406 to -0.128, mean=-0.269) [and acute stress and no-stress control subjects 424 

differed from each other on αE (95% HDI = 0.0841 to 0.281, mean=0.183) but not αR (95% 425 

HDI = -0.186 to 0.0102, mean=-0.0872)] (Figure Supplement 7). Similar to the non-426 

hierarchically fit parameters, acute stress and control subjects did not differ on posterior 427 

estimates of γ (95% HDI = -0.0914 to 0.139, mean=0.0182) and β (95% HDI = -0.0331 to 428 

0.213, mean=0.0895) . 429 

  430 
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Figure 5  431 

 432 

Acute stress reduces the difference between reward and effort prediction error learning 433 

rates. 434 

Free parameters (αR, αE, γ, β) of the winning 2LR_ γ model for both groups. Black lines 435 

denote means ± SD, dots represent individual data points, and the violin-like shape denotes 436 

distribution and frequency of the data. *: p < 0.05, **: p < 0.01, ***: p < 0.001. 437 

 438 

Pupil size fluctuations track asymmetric cost-benefit reinforcement learning during 439 

acute stress 440 

We employed pupillometry to better understand whether task-relevant computational 441 

processes may be encoded by fluctuations in pupil dilation, which are thought to be 442 

controlled by ascending midbrain modulatory systems that play a role in value-based 443 

decision-making and the acute stress response (Arnsten, 2015; Hermans et al., 2011; Joshi, 444 

Li, Kalwani, & Gold, 2016). 445 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.25.441347doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.25.441347
http://creativecommons.org/licenses/by/4.0/


 23 

In model-free analyses – that is, comparing bins of pupillometry data between 446 

conditions - we observed no main effect of Condition on pupil size fluctuations during 447 

choice, effort outcome, and reward outcome epochs, suggesting that acute stress was not 448 

associated with more general changes in pupil size (all bin-level p>0.05; Figure 6, a. Model-449 

free; Figure Supplement 8 for all effort trials). 450 

 Next, we conducted model-based pupillometry analyses (Lawson, Bisby, Nord, 451 

Burgess, & Rees, 2020) to understand how trial-wise estimates of computational processes of 452 

interest were encoded by fluctuations in pupil size. These analyses revealed effects of 453 

Condition on pupil encoding of subjective decision value, EPEs and RPEs (Figure 6, b. 454 

Model-based) in a manner commensurate with task performance results. First, immediately 455 

prior to the stimulus choice, acute stress reduced pupil encoding of subjective decision value, 456 

as evidenced by the absence of an association between pupil size and subjective decision 457 

value (control>stress; stress n.s., control>0). Second, briefly after the presentation of effort 458 

avoidance outcomes, both groups exhibited different pupil size-EPE associations, with no-459 

stress controls showing a non-significant numerically positive association between pupil size 460 

and action cost prediction errors (control>stress, both groups n.s. different from 0). In model-461 

based analyses using all effort outcome trials, we were not able to uncover group differences 462 

in pupil encoding of EPEs, which were likely eclipsed by prominent grip force-related effects 463 

on pupil size (Figure Supplement 8). Third, during the reward outcome phase, acute stress 464 

participants exhibited greater positive associations between pupil size and RPEs compared to 465 

no-stress controls (stress>control, stress>0, control n.s.). The average pupil size-RPE slope 466 

for bins in which no-stress control and acute stress participants differed (Figure 6b) correlated 467 

significantly with stress-induced changes in SBP [ρstress(38)= -0.41, p(permutation)=0.019] 468 

and PANAS negative affect changes [ρstress= -0.46, p(permutation)=0.005] in the stress group. 469 
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 Crucially, group differences in pupil encoding of subjective decision value, EPEs, and 470 

RPEs imply that the ascending neuromodulatory systems may have facilitated a stress-471 

induced shift in asymmetric cost versus benefit learning. 472 

 473 

Figure 6  474 

 475 

Model-based analysis reveals altered pupil encoding of prediction errors and decision 476 

value during acute stress . 477 

a. Model-free analyses of pupil size during choice, effort outcome, and reward outcome 478 

phase revealed no main effect of Condition (no-stress control, acute stress). b. Model-based 479 

analyses revealed a stress-induced shift in pupil encoding of subjective decision value (left), 480 

action cost prediction errors (middle) and reward prediction errors (right). Black line 481 

indicates significant main effect of Condition; blue and red line indicate significance against 482 

zero for no-stress control and acute stress groups, respectively (cluster and bin level 483 

apermute<0.05, 2000 permutations). Group differences in pupil encoding of action cost and 484 

reward prediction errors were observed at similar times (note the x-axis differences for effort 485 
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outcome and reward outcome epochs). Source files of pupillometry data used for the analyses 486 

are available in Figure 6 – Source Data 2. 487 

 488 

Discussion 489 

Stress-induced alterations in adaptive decision-making are commonly studied using 490 

paradigms that isolate positive and negative reinforcement, such as the receipt of a reward or 491 

avoidance of a loss. However, it remains poorly understood how acute stress affects the 492 

complex process that entails learning about costs and benefits, a critical and pervasive feature 493 

of everyday decisions. Participants completed a paradigm in which all actions (stimulus 494 

choices) contained a potential cost (exerting physical effort) and a financial benefit (€0.20). 495 

Crucially, acute stress induced a shift in reinforcement learning strategies that improved 496 

maximization of monetary rewards relative to minimisation of energy expenditure. When 497 

presented with novel stimulus arrangements and in the absence of feedback, individuals in 498 

the acute stress condition, moreover, exhibited better discrimination of stimulus reward value 499 

compared to action cost. 500 

Relative improvements in reward versus action cost learning align well with previous 501 

reports of enhanced reward learning during acute stress (Byrne, Cornwall, & Worthy, 2019; 502 

Lighthall et al., 2013; Petzold et al., 2010), although such effects may depend on stressor 503 

timing (Joëls, Pu, Wiegert, Oitzl, & Krugers, 2006), stressor type (Carvalheiro et al., 2020), 504 

and/or sample characteristics (Evans & Hampson, 2015; Morris & Rottenberg, 2015). While 505 

reports on action cost learning during acute stress are scarce, acute exposure to stress in 506 

rodents impairs cost-benefit decisions via a selective change in sensitivity to physical effort, a 507 

process mediated by corticotropin-releasing factor and dopamine (Bryce & Floresco, 2016). 508 

Our analyses of win-stay/lose-shift rates indicate that asymmetric cost-benefit learning can be 509 
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driven by a relative increase in the sensitivity to monetary gains compared to the avoidance 510 

of costly deterrents. 511 

How might maximization of reward value take precedence over minimisation of 512 

action cost? Acute stress leads to a redistribution of finite cognitive resources (Hermans et 513 

al., 2014): this process limits the availability of computationally intensive strategies, 514 

including working memory (Otto, Raio, Chiang, Phelps, & Daw, 2013; Qin, Hermans, van 515 

Marle, Luo, & Fernández, 2009) and goal-directed instrumental actions (Lars Schwabe & 516 

Wolf, 2011). Assuming that acute stress does not merely increase random responding - which 517 

we verified via the choice stochasticity model parameter - a computationally cheap heuristic 518 

in our task should present itself as better learning for one modality over the other. Increased 519 

energy availability (Hermans et al., 2014), insensitivity to aversive stimuli (Timmers et al., 520 

2018), and impaired aversive value updating (Raio et al., 2017) under stress may have 521 

reduced the ability – or urgency – to dedicate cognitive resources to strategies that minimize 522 

action cost. Importantly, effort expenditure increases the perceived value of rewards 523 

(Hernandez Lallement et al., 2014; Inzlicht, Shenhav, & Olivola, 2018). Thus, frequent 524 

expenditure of physical effort, due to suboptimal action cost learning, may increase the 525 

perceived value of rewards, and thus tilt learning towards the maximization of reward value. 526 

Using a computational model of reinforcement learning (Skvortsova et al., 2017; 527 

Skvortsova et al., 2014), we confirmed that biased cost-benefit learning can arise when 528 

inappropriate (i.e. more similar) importance is afforded to teaching signals that convey 529 

information about reward value (RPEs) and action cost (EPEs). Humans display presumably 530 

instinctive biases, such as more efficient learning from better-than-expected outcomes 531 

(Lefebvre, Lebreton, Meyniel, Bourgeois-Gironde, & Palminteri, 2017) (compared to worse-532 

than-expected outcomes) and asymmetric “Go”/approach learning (Guitart-Masip et al., 533 

2012) (compared to “No-Go”/avoidance learning), the latter being a bias that is also 534 
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modulated by acute stress (de Berker et al., 2016). From this perspective, no-stress controls, 535 

who assigned greater importance to EPEs than RPEs, may have used a computationally 536 

costly learning strategy that provides counterweight to a decision-making policy that is 537 

biased towards the reward value of actions (captured by action cost discounting parameter γ). 538 

Paradoxically, when decisions are by default tilted towards reward value, similar reward and 539 

action cost learning rates will facilitate reward learning but hamper action cost learning. 540 

Reduced learning rate asymmetry in the presence of action cost discounting may therefore 541 

represent a computational reformulation of a heuristic that is employed when cognitively 542 

demanding learning strategies are unavailable and the policy towards energy expenditure is 543 

more liberal, such as during acute stress. 544 

Importantly, stress-induced changes in task performance may crucially depend on the 545 

release of catecholamines in neural circuits that support motivation and learning. Dopamine’s 546 

actions at D1 and D2 receptors in the basal ganglia mediate approach and avoidance learning 547 

(Frank, Seeberger, & Reilly, 2004), and acute stress can improve associative learning by 548 

augmenting reward-evoked DA bursts in selective striatal subdivisions (Stelly, Tritley, 549 

Rafati, & Wanat, 2020). Dopamine’s enhancement via L-DOPA administration, moreover , 550 

improves reward but not action cost learning (Skvortsova et al., 2017). To the degree that 551 

pupillometry can be considered a proxy measure of activity of ascending neuromodulatory 552 

systems, these findings are consilient with greater encoding of RPEs by pupil size 553 

fluctuations during acute stress. Negative correlations between SBP and PANAS negative 554 

affect and RPE-pupil size slopes suggest that primarily moderately stressed participants 555 

displayed a preference for maximizing reward value, which might be consistent with an 556 

inverted U-shape relationship between cognitive performance and DA transmission which is 557 

modulated by stress (Arnsten & Goldman-Rakic, 1998; Baik, 2020). Noradrenaline, however, 558 

mobilizes available energy to complete effortful actions and locus coeruleus neurons track 559 
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energy expenditure (Varazzani et al., 2015). Stress-induced sAA concentrations, increased 560 

heart rate, and group differences in the association between pupil size fluctuations and EPEs 561 

all point to the involvement of the noradrenaline system. Thus, our model-based pupillometry 562 

and stress-induction results hint at stress-sensitive dopaminergic and noradrenergic 563 

mechanisms that may regulate cost and benefit learning, which could be explored in future 564 

work using targeted pharmacological approaches. 565 

 The results presented here may improve understanding of stress-related 566 

psychopathology. While asymmetric cost-benefit learning during acute stress may be 567 

beneficial to reach a desired goal state (e.g., safety) despite high action cost, such strategies 568 

could also be maladaptive. For example, stress exposure can lead to drug or smoking relapse 569 

(L. Schwabe, Dickinson, & Wolf, 2011), a context in which reward value and action cost 570 

may be misaligned. Cost-benefit reinforcement learning may provide a useful framework to 571 

test hypotheses regarding stress-related impairments in learning and decision-making.  572 

Some study limitations need to be acknowledged. First, pupil dilation associated with 573 

effort expenditure greatly reduced our power to detect robust associations between EPE 574 

encoding and pupil size fluctuations. Future studies should, therefore, consider a temporal 575 

delay between effort outcome and effort expenditure phases. Second, while our 576 

computational model was able to recover overall task performance patterns in both groups, 577 

such effects were subtle and dependent on the contribution of other (non-learning) 578 

parameters, which may highlight the importance of interindividual differences in model 579 

parameters. 580 

To summarize, we present evidence of asymmetric effects of acute stress on cost 581 

versus benefit reinforcement learning during acute stress, which computational analyses of 582 

task behaviour explain as a failure to assign appropriate importance to RPEs versus EPEs, 583 

and our model-based pupillometry tentatively link to activity of ascending midbrain 584 
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neuromodulatory systems. These results highlight for the first time how learning under acute 585 

stress can be tilted in favour of acquiring good things and away from the avoidance of costly 586 

things. 587 

 588 

Materials and Methods 589 

Participants 590 

Adult participants were recruited via paper and online advertisements. All participants were 591 

screened for a DSM-5 psychiatric and/or neurological disorder, substance use, endocrine 592 

and/or vascular disorder, abnormal BMI (>40 or <18), smoking and drinking (>10 593 

cigarettes/units per week), psychotropic medication use (lifetime) and hormonal 594 

contraceptive use (current; female participants only). All participants completed the ~2-hour 595 

experiment between 12:00h and 18:00h to minimize diurnal cortisol fluctuations (Bailey & 596 

Heitkemper, 2001). Participants were instructed to refrain from alcohol (starting the evening 597 

before the day of the experiment), smoking, food, caffeine intake, strenuous physical activity 598 

and brushing their teeth (all >2 hr prior to experiment), which was verified verbally at the 599 

start of the session. Four participants were excluded due to an equipment failure (n=4). Three 600 

participants quit during stress-induction (n=2) or task procedures (n=1). Because chance-601 

level performance on reinforcement learning tasks might indicate a successful manipulation, 602 

a lack of motivation, or a failure to comprehend the task instructions, participants that 603 

performed at or below chance level (0.5) on both RL and/or both EL pairs near the end of the 604 

experiment (final 10 presentations) were excluded (n=13; 6 acute stress, 7 no-stress control). 605 

Including these participants did not alter our key finding that acute stress was associated with 606 

asymmetric cost versus benefit learning (see Results). Pupillometry and neuroendocrine data 607 

were not processed further for these participants. The study was approved by the ethics 608 

committee of the Faculty of Psychology and Neuroscience, Maastricht University (ERCPN-609 
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197_03_08_2018) and carried out in accordance with the Declaration of Helsinki. 610 

Participants were remunerated in gift vouchers or research participation credits. Task 611 

earnings were paid out in gift vouchers. 612 

 613 

Acute stress induction 614 

The MAST is a validated stress-induction paradigm combining both psychological and 615 

physiological stressors, and robustly increases neuroendocrine, physiological, and subjective 616 

indices of acute stress (Smeets et al., 2012). During a 5-min preparation phase, participants 617 

are instructed about the upcoming task via oral and visually displayed instructions, followed 618 

by a 10-min stress-induction phase consisting of alternating blocks of cold-water immersion 619 

(non-dominant hand; 2oC) and backward counting in steps of 17 (while receiving negative 620 

evaluative feedback from an experimenter), with a (non-recording) camera continuously 621 

directed at the participant’s face, which was displayed to the participant on a second display. 622 

During the MAST no-stress control condition, participants immerse their hand in lukewarm 623 

water (36oC) and perform simple mental arithmetic, e.g., counting from 1 to 25, without 624 

receiving feedback or fake camera recordings.  625 

 626 

Neuroendocrine, physiological and subjective stress measurements 627 

sCORT and sAA were collected to measure stress-induced increases in hypothalamic-628 

pituitary-adrenal (HPA) axis and sympathetic-adrenal-medullary (SAM) axis activity, 629 

respectively (Dickerson & Kemeny, 2004; Koh, Ng, & Naing, 2014). Saliva samples were 630 

obtained using synthetic Salivette® devices (Sarstedt, Etten-Leur, the Netherlands) during 3-631 

min sampling periods at 6 time points. A baseline sample was collected 10 min prior to the 632 

MAST (baseline: t1 = t-10) and five samples post-MAST (t2= t+00, t3= t+10, t4= t+20, t5= t+30, t6= 633 

t+40). SAA assessments were obtained only for t1-t4, due to the rapid decay of sAA post-stress 634 
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induction (Dennis Hernaus, Quaedflieg, Offermann, Casales Santa, & van Amelsvoort, 2018; 635 

Nater et al., 2005). For all participants, t2 marked the starting point for the reward value 636 

maximisation/action cost minimisation task. Samples were stored at -20oC immediately after 637 

completion of each session. SCORT and sAA levels were determined using a commercially 638 

available luminescence immune assay kit (IBL, Hamburg, Germany) and kinetic reaction 639 

assay (Salimetrics, Penn State, PA, USA), respectively. 640 

 Systolic blood pressure (SBP) and heart rate (HR) as an index of autonomic nervous 641 

system (ANS) arousal (Schubert et al., 2009; Wright, O'Brien, Hazi, & Kent, 2014) were 642 

assessed at t1 and t2 using an OMRON M4-I  blood pressure monitor (OMRON Healthcare 643 

Europe B.V., Hoofddorp, The Netherlands). Subjective affect ratings were assessed at t1  and 644 

t2 using the 20-item Positive and Negative Affect Scale (PANAS) (Watson, Clark, & 645 

Tellegen, 1988). 646 

 647 

Reward maximization versus action cost minimization reinforcement learning task 648 

All participants completed a probabilistic stimulus selection paradigm during which they 649 

learned to select stimuli with high reward value (20 Eurocents) and avoid stimuli with high 650 

action cost (exerting force above a pre-calibrated individual threshold for a duration of 651 

3000ms). This reinforcement learning task is conceptually similar to a previously-validated 652 

probabilistic action selection task that has been employed to study the neural signatures of 653 

reward and effort prediction errors and dopaminergic drug effects on reward-effort 654 

computations (Skvortsova et al., 2017; Skvortsova et al., 2014). The paradigm was designed 655 

in PsychoPy v3.0.0b11 (Peirce et al., 2019) and presented on a 24″ monitor (iiyama ProLite 656 

b2483HSU). Physical effort (in mV/kgf) was registered using a hand-held dynamometer in 657 

combination with a transducer amplifier (DA100C) and data acquisition system (MP160; all 658 

manufactured by BIOPAC Systems, Inc). Individual effort thresholds used throughout the 659 
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task were obtained by calculating 50% of each participant’s maximal voluntary contraction 660 

(MVC) (Le Heron et al., 2018) reached over three calibration trials by squeezing the 661 

dynamometer with the dominant hand.  662 

 On each of 120 trials, participants chose between two paired distinct black-and-white 663 

images (“stimuli”) that were probabilistically associated with both the receipt of a monetary 664 

reward and exertion of physical effort (see Figure 1 for a graphical overview). At trial onset, 665 

a fixation cross flanked by two images was presented; participants chose one image by 666 

pressing the V/B button for the left/right option, respectively. A 440Hz/600Hz tone for 667 

left/right choice (200ms) was presented to confirm the participant’s choice. Next, a 668 

thermometer with the command “SQUEEZE” or “DON’T SQUEEZE” was displayed. If 669 

participants were required to exert effort, they were instructed to squeeze the dynamometer 670 

until the mercury level reached the top. The mercury bar only moved if participants exerted 671 

above-threshold levels of force and stopped moving if exerted force fell below. The 672 

cumulative above-threshold time was 3000ms. If no effort production was required, an 673 

animation of a rising mercury bar was displayed (3000ms). Finally, a screen was presented 674 

showing either a €0.20 coin or a crossed-out coin, indicating no reward (3000ms).  675 

 Participants learned to choose the optimal (most reward or most effort avoiding) 676 

stimulus for four distinct image pairs, 30 presentations each, with yoked reward and action 677 

cost contingencies. For 2/4 pairs, participants could regularly acquire rewards by selecting 678 

one (optimal) stimulus over the (suboptimal) other (henceforth, “reward learning”/RL pairs), 679 

while the probability of having to exert effort was identical for both stimuli. For the other two 680 

pairs, choices of one stimulus were more frequently followed by the avoidance of effort 681 

(“effort learning”/EL pairs), while the probability of reward was kept constant between both. 682 

For all pairs, the probability of the stimulus property that was kept constant (reward/effort) 683 
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was set to a 33.3% chance of positive outcome upon selection (reward/ effort avoidance) and 684 

66.6% chance of negative outcome (no reward/effort).  685 

 To assess whether any acute stress effects on reward maximization (measured using 686 

RL pairs) and effort cost minimization (measured using EL pairs) learning were potentially 687 

mediated by task difficulty, we employed different difficulty levels for each RL and EL pair. 688 

That is, for one RL and one EL (“easy”) pair, a choice for the optimal stimulus was followed 689 

by a positive outcome in 83% (vs. 17% negative outcome) of all trials (83% negative/17% 690 

positive outcome for suboptimal stimulus); for the other RL and EL (“hard”) pair a choice for 691 

the optimal stimulus was followed by a positive outcome in 70% (vs. 30% negative outcome) 692 

of all trials (and 70% negative/30% positive outcome) for the suboptimal stimulus. This 693 

approach allowed us to disentangle whether acute stress primarily impacted domain-specific 694 

(RL vs. EL) or general (easy vs. hard) reinforcement learning (the latter which also might 695 

involve other cognitive skills that might be beneficial to performance and sensitive to change 696 

under stress, such as working memory (Schoofs, Wolf, & Smeets, 2009). The task 697 

contingencies described above were based on extensive pilot tests to identify a reinforcement 698 

schedule that would enable us to detect stress-induced improvements and decreases in task 699 

performance. We selected task contingencies based on pilot sessions involving a no-stress 700 

control condition and chose a reinforcement schedule associated with non-ceiling/floor 701 

performance on RL and EL trials. 702 

Following the learning phase, participants completed a surprise test phase, similar to 703 

previous work (D. Hernaus et al., 2019; D. Hernaus et al., 2018). This phase consisted of 64 704 

trials in which participants were presented with the original four, as well as six novel, 705 

stimulus combinations. Participants were asked to choose the stimulus with the highest 706 

reward value or the lowest action cost - depending on a coin or thermometer image presented 707 

in the middle of the screen - and received no choice feedback. This allowed us to assess 708 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.25.441347doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.25.441347
http://creativecommons.org/licenses/by/4.0/


 34 

acquired choice tendencies, as well as generalizability of this information to novel situations. 709 

The four original pairs were presented four times (total n=16) during which we only asked 710 

participants to discriminate on the basis on the reward value (for RL) or action cost (for EL). 711 

For novel stimulus combinations, we only presented stimuli that differed in reward 712 

value/action cost if reward value discrimination/action cost discrimination was assessed (total 713 

n=48: n=4 presentations for the 6 combinations). 714 

 For every participant, stimuli were randomly assigned to pairs, optimal/suboptimal 715 

stimulus orientation was balanced (50% of all optimal stimulus presentations occurred on the 716 

left-hand side) and misleading outcomes (e.g., negative outcomes for optimal stimuli) were 717 

equally spaced out across the thirty presentations (and balanced for left/right side). Trial 718 

presentation order was pseudo-randomized such that I) a given pair would never be presented 719 

more than twice in a row and II) the gap between two presentations of a given pair was never 720 

greater than four trials. 721 

Prior to performing the actual task and prior before acute stress/no-stress control 722 

procedures, participants received standard verbal instructions and completed a 16-trial 723 

practice round of the learning phase. Participants were not informed about stimulus-outcome 724 

contingencies; they were only advised to accrue as much money as possible and avoid 725 

exerting unnecessary effort. A 60% accuracy performance threshold was used to confirm that 726 

participants understood the general task procedure. The practice round was repeated if 727 

participants failed to reach 60% accuracy. To prevent learning, we used deterministic 728 

stimulus-outcome probabilities and different stimuli. 729 

 730 

Computational cost-benefit reinforcement learning model: model space   731 

In an attempt to uncover latent mechanisms by which acute stress affects reward 732 

maximization and/or action cost minimization, we turned to cognitive computational 733 
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modelling. We employed a modified reinforcement learning framework based on Rescorla 734 

and Wagner (Rescorla, 1972), and used in Skvortsova et al. (Skvortsova et al., 2017; 735 

Skvortsova et al., 2014) to investigate whether acute stress impacted learning about 736 

sensitivity to, and/or discounting of reward value and action cost. We first describe the model 737 

space. 738 

Various reinforcement learning models assume that choice preferences of an agent are 739 

updated via the prediction error, i.e., the mismatch between outcome and expectation 740 

(equation 1A, 1B) and the critical quantity that drives learning (Rescorla, 1972):  741 

 742 

RPE(t)  = r(t) – QR(t)(s, a)  (1A) 743 

EPE(t)  = e(t) – QE(t)(s, a)  (1B) 744 

 745 

Here, QR(t)(s, a) and QE(t)(s, a) represent the expected reward value and action cost 746 

(i.e., effort), where s reflects the given pair and a refers to the more abstract action of 747 

selecting a stimulus (not to be confused with action selection), r(t) and e(t) represent the reward 748 

and effort outcome for the chosen stimulus at trial t. RPE(t) and EPE(t), thus, represent the RPE 749 

and EPE at trial t, respectively. 750 

In order to allow for the possibility that humans do not calculate the prediction error 751 

against the actual outcome but, rather, what the outcome “feels” like (Huys et al., 2013) , we 752 

considered a scenario in which reward and effort outcomes are first multiplied by a free 753 

parameter that captures the weight that reward and effort outcomes receive (“WR” and WE” in 754 

equation 2A and 2B). As the value of these parameters approaches 1, rewards are 755 

increasingly valued more positively, and effort more negatively. These parameters, therefore, 756 

control the maximum size of the prediction error. 757 

 758 
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RPE(t)  = (r(t)*WR) – QR(t)(s, a)  (2A) 759 

EPE(t)   = (e(t)*WE) – QE(t)(s, a)  (2B) 760 

 761 

In various formulations of reinforcement learning, such as Q-learning (Watkins & 762 

Dayan, 1992) and the actor-critic framework (Niv, 2009; Rescorla, 1972), the degree to 763 

which prediction errors update choice preferences is represented by α, the learning rate 764 

(equation 3A), which determines how current prediction errors update choice preferences on 765 

the subsequent trial. High values of α allow for rapid updating of choice preferences, while a 766 

low α implies that choice preferences are updated at a slower pace and are thus co-767 

determined by outcomes further into the past. 768 

 769 

QR(t)(s, a) = QR(t-1)(s, a) + αR*RPE(t-1)(s, a) (3A) 770 

QE(t)(s, a) = QE(t-1)(s, a) + αE*RPE(t-1)(s, a) (3B) 771 

  772 

Extensive evidence suggests that organisms use different learning systems for different types 773 

of information, including reward value and action cost (Palminteri & Pessiglione, 2017; 774 

Skvortsova et al., 2017; Skvortsova et al., 2014) (equation 3A/B). Thus, the use of separate 775 

learning rates for RPEs and EPEs allows for asymmetrical learning about these types of 776 

information. 777 

While the learning rate controls the speed at which choice preferences are updated, 778 

learning rate (nor reward/effort weight) alone does not explain how learned estimates of 779 

reward value and action cost may compete at the decision stage (i.e., when participants 780 

choose between two stimuli). Agents weight costs against benefits to calculate a subjective 781 

decision value (Pessiglione et al., 2017; Skvortsova et al., 2017), which is used to guide 782 

choices (equation 4). 783 
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 784 

Q(t)(s, a) = QR(t)(s, a)  - QE(t)(s, a) (4) 785 

 786 

In its simplest form, Q, the subjective decision value of a stimulus is represented by the 787 

difference between the expected reward and action cost value at trial t (equation 4) 788 

(Skvortsova et al., 2014). However, this particular operationalization of subjective value does 789 

not take into account the observation that humans tend to discount or prioritize certain types 790 

of information in their decisions (Apps, Grima, Manohar, & Husain, 2015; Inzlicht et al., 791 

2018). We, therefore, allowed for variation in the calculation of subjective decision value via 792 

action cost discounting (equation 5). While discounting rates can be linear or hyperbolic 793 

(Hartmann, Hager, Tobler, & Kaiser, 2013), here we only considered linear discounting in 794 

light of previous work using a similar task design (Skvortsova et al., 2017; Skvortsova et al., 795 

2014). As the value of γ approaches zero, action cost discounted increases leading the agent 796 

to ignore action cost/only utilize reward value to make a decision. 797 

 798 

Q(t)(s, a) = QR(t)(s, a)  - γ*QE(t)(s, a)  (5) 799 

 800 

Once the subjective decision value has been computed, the degree to which 801 

participants deterministically sample the optimal stimulus is captured by a softmax decision 802 

function (equation 6). 803 

 804 

pr(s, a) = exp(Q(t)(s, a)) / sum(exp(β*Q(t)(s))) (6) 805 

 806 

Here, pr is the probability of selecting an action, β is the inverse temperature parameter 807 

that among others captures the balance between exploration and exploitation (Nassar & 808 
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Frank, 2016), Q(t)(s, a) is the net value of the chosen option and Q(t)(s) represents the net 809 

values of both stimuli in the pair. 810 

Within the above-described model space our predictions of acute stress effects on reward 811 

maximization and action cost minimization could, thus, be explained by changes in 812 

sensitivity to reward value and/or action cost (WR, WE), changes in how much weight RPEs 813 

and EPEs are afforded (i.e., learning rates, αR, αE), and/or changes in the discounting of 814 

reward value by action cost (γ). If acute stress leads to more random responses, such effects 815 

should be captured by β. 816 

Based on our predictions and the obtained pattern of results (most notably asymmetrical 817 

RL/EL performance in the acute stress condition), we considered six candidate models that 818 

could capture these various scenarios: I) a model with 2 distinct learning rates for reward and 819 

effort (αR, αE) [2LR]; II) a model with 2 learning rates (αR, αE) and a discounting parameter 820 

(γ) (2LR_ γ); III) a model with 2 learning rates (αR, αE), a reward weight (WR) and an effort 821 

weight parameter (WE) (2LR_WR_WE), IV) a model with a single learning rate (α), reward 822 

weight (WR), effort weight (WE), and a discounting (γ) parameter (LR_ WR__WE_ γ); V) a 823 

model with 2 learning rates (αR, αE), a reward weight (WR), and a discounting (γ) parameter 824 

(2LR_WR_γ); VI) a model with 2 learning rates (αR, αE), a reward weight (WR), effort weight 825 

(WE) and discounting (γ) parameter (2LR_ WR_ WE_ γ). 826 

Lower/upper bounds for all parameters were set to [0,1] and all models contained a β 827 

parameter. Consistent with previous work (Skvortsova et al., 2017; Skvortsova et al., 2014), 828 

reward and action cost outcomes were set to [0,1 for no/yes reward] and [-1,0 for no/yes 829 

effort avoidance], respectively.  830 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.25.441347doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.25.441347
http://creativecommons.org/licenses/by/4.0/


 39 

Pupillometry 831 

Fluctuations in pupil diameter were continuously measured using an SR-Research Eyelink 832 

1000 Tower Mount infrared eye tracker while participants performed the reward 833 

maximization/action cost minimization reinforcement learning task (1000Hz sampling rate, 834 

except for three participants, whose data were obtained at 500Hz). Participants placed their 835 

head on an adjustable chin rest and against a forehead bar to minimize motion. Eye-tracker 836 

calibration was performed at the start of the paradigm, and subsequently every 10 min. 837 

Stimulus luminance was matched using the SHINE toolbox (Willenbockel et al., 2010) in 838 

MATLAB (v. 2014B; The MathWorks, Inc., Natick, Massachusetts, United States). Due to 839 

the COVID-19 pandemic, pupillometry data were not collected for the final eight 840 

participants. Three participants, moreover, failed the quality control for eye-tracking data (2 841 

no-stress control/1 acute stress) leaving a final sample of 69 participants with eye-tracking 842 

data (34 no-stress control/35 acute stress). 843 

 Eye-tracking data were pre-processed using an open source pre-processing toolbox 844 

(Kret & Sjak-Shie, 2019) and in accordance with previous work (Jackson & Sirois, 2009). 845 

Blinks and other invalid samples, due to dilation speed, deviation from the trend line, and 846 

extreme values (Kret & Sjak-Shie, 2019) were removed, interpolated, smoothed (4Hz low-847 

pass filter, fourth-order Butterworth filter) (Jackson & Sirois, 2009), z-scored and down-848 

sampled to 50hz (i.e., 20ms). Bins with fewer than 80% valid samples were removed 849 

(Lawson et al., 2020). For analyses, we considered three epochs of interest: choice (-1500ms 850 

pre-choice - 15000ms post-choice), effort outcome (0-1000ms post-outcome), and reward 851 

outcome (0-2000ms post-outcome). We reduced the duration of the effort outcome epoch to 852 

1000ms to minimize force exertion-related effects on pupil size (see below). Recent work has 853 

shown that expectation violations (prediction errors) are encoded by pupil size fluctuations 854 

within this timeframe (Lawson et al., 2020). Given that we observed large grip force-855 
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associated effects on the pupillometry signal (see Figure Supplement 8 middle row, for a 856 

comparison between effort and effort avoidance trials), we limited effort outcome analyses in 857 

the main text to effort avoidance trials, although we also report analyses involving all effort 858 

outcome trials in Figure Supplement 8. 859 

 860 

Statistical analyses 861 

Statistical analyses were conducted using R, version 3.6.2 (Team, 2020) and, where 862 

applicable, results were visualised using Raincloud Plots (Allen, Poggiali, Whitaker, 863 

Marshall, & Kievit, 2019). Acute stress measurements were analysed using mixed ANOVAs 864 

involving Condition (between-factor condition: no-stress control, acute stress induction) and 865 

Time (within-factor: 2 pre/post-MAST or 6 levels for sCORT).  866 

For the reward maximisation/action cost minimisation reinforcement learning task, an 867 

accuracy score was calculated by dividing the number of optimal stimulus choices by the 868 

total trial amount (n=30 per pair). Mixed ANOVAs involving Condition, Trial Type (RL, EL) 869 

and Difficulty (Easy, Hard pairs) were carried out. For analyses involving Time effects (i.e., 870 

repeated presentations of stimulus pairs), accuracy scores were averaged per bin of ten 871 

presentations (presentation 1-10, 11-20, and 21-30). To better understand whether acute 872 

stress effects on task performance were primarily driven by changes in sensitivity to positive 873 

or negative outcomes, win-stay (repeating a choice following a positive outcome) and lose-874 

shift (choosing the other stimulus following a loss) rates were calculated for RL and EL trials 875 

(Hanneke E. M. den Ouden et al., 2013). For RL trials, we calculated win-stay/lose-shift rates 876 

using reward outcomes (yes/no reward); for EL trials we used effort outcomes (yes/no effort). 877 

We refer to the 2-level factor representing win-stay/lose-shift rates as “Strategy”. For surprise 878 

test trials involving the original four pairs (n=4 presentations per pair), we investigated final 879 

choice tendences using a one-sample t-test against chance level (0.5). Participants’ ability to 880 
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discriminate stimuli based on reward value and action cost in novel stimulus arrangements 881 

(n=48, 24 reward value and 24 action cost discrimination trials) were investigated using 882 

mixed ANOVAs involving Condition and Trial Type.  883 

Group differences in model parameters from the non-hierarchically fit model were 884 

investigated using Condition-by learning rate (αR, αΕ) mixed ANOVAs and independent 885 

samples t-tests. Given that we used separate priors for the two groups, we report the Bayesian 886 

analogue of a t-test and mixed-ANOVA (Kruschke, 2014) - a more robust test of group 887 

differences - for posterior parameters obtained from the hierarchically fit model (for 888 

reference, we also report these analyses for the non-hierarchical data). 889 

Post hoc (simple) main effect analyses for all ANOVAs were conducted using 890 

independent sample (Condition), paired-samples (Time, Trial Type, Strategy), and one-891 

sample t-tests (≠ 0 or 0.5). Greenhouse–Geisser-corrected statistics were reported when 892 

sphericity assumptions were violated. We report statistical significance as p<0.05 (two-893 

sided), but we note that most main and interaction effects involving Condition survived at a 894 

more stringent threshold (p<.01), except for some strategy and surprise test phase effects, 895 

which should be interpreted with caution. In case of statistically significant results, 896 

generalized eta square (ges; n2G) was reported, with n2G values of 0.02, 0.06, and 0.14 897 

representing a small, medium, and large effect size, respectively (Lakens, 2013). 898 

With respect to pupillometry, we conducted model-free and model-based analyses. In 899 

model-free analyses, we investigated group differences in pupil size during the choice, effort 900 

outcome, and reward outcome stage, for every bin of interest. To better understand how 901 

putative activity of ascending neuromodulatory systems may drive stress-induced changes in 902 

computational strategies that support reward maximisation/action cost minimisation learning, 903 

we conducted model-based pupillometry analyses using computational parameters from the 904 

winning (2LR_ γ) model (Lawson et al., 2020). First, we used linear regression to estimate 905 
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beta weights for the association between pupil size and computational estimates of task-906 

related behaviour for every participant, for every epoch, for every bin. For the choice phase, 907 

we regressed trial-wise measures of pupil size against trial-wise estimates of the subjective 908 

decision value (i.e., effort-discounted reward value) of the chosen stimulus. For the effort and 909 

reward outcome phase, trial-wise EPEs and RPEs were the primary predictors of interest, 910 

respectively. Trial number (1-120) and presented images/pair (RL_easy, RL_hard, EL_easy, 911 

EL hard) served as additional predictors of interest for all models. Additional epoch-specific 912 

variables of interest were included for the choice (optimal choice yes/no), effort (action cost 913 

of chosen stimulus, effort avoidance yes/no), and reward (reward value of chosen stimulus, 914 

reward yes/no, effort avoidance yes/no) outcome phase. Similar results were obtained when 915 

repeating the analyses with more elaborate GLMs (e.g., the addition of yes/no most likely 916 

outcome based on reward/effort outcome probabilities [“surprise”] and reward/action cost for 917 

EL/RL trials). Secondly, in group-level GLMs, we compared the resulting beta weights I) 918 

against zero (for the no-stress control/acute stress condition separately), to investigate when 919 

the pupil encoded the computational process of interest, and II) between groups, to assess 920 

stress-induced changes in  associations between pupil size and computational processes. To 921 

control the false positive rate, we conducted permutation tests at the bin- and cluster-level 922 

(2000 permutations, apermute=0.05). All correlations were performed using Spearman’s ρ 923 

correlations. Permutation tests were also conducted for correlation analyses involving acute 924 

stress measures and pupil encoding of predictions errors.  925 
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Figure 3 – Source Data 1 926 

Source files for task performance data. 927 

This link contains all task performance data used for the analyses shown in Figure 3. Raw 928 

data can be found under “task_performance”. 929 

https://osf.io/ydv2q/ 930 

 931 

Figure 6 – Source Data 2 932 

Source files for pupillometry data. 933 

This link contains pupillometry data used for the analyses shown in Figure 6. Raw data can 934 

be found under “pupillometry”. 935 

https://osf.io/ydv2q/ 936 
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Supplementary Figures 1208 

Figure Supplement 1  1209 

 1210 

Evidence of reward and action cost reinforcement learning.  1211 

Optimal stimulus choices (“accuracy”) on reward learning (RL) and effort learning (EL) 1212 

(rows) trials for both conditions (columns). Trials were binned into groups of 10 1213 

presentations. Participants performed significantly better than chance level in all bins. Means 1214 

± SD. Significant differences are denoted by asterisks (*: p < 0.05, **: p < 0.01, ***: p < 1215 

0.001).   1216 
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Figure Supplement 2  1217 

 1218 

Acute stress does not affect difficulty learning. 1219 

Easy and hard pairs collapsed across RL/EL trials depicted for each condition separately. 1220 

While all participants sampled the optimal choices more frequently for Easy vs. Hard pairs, 1221 

no significant Condition-by-Difficulty interaction or between-group differences were 1222 

observed. Means ± SD, individual data points, distribution and density of the data are 1223 

displayed. Significant differences are denoted by asterisks (*: p < 0.05, **: p < 0.01, ***: p < 1224 

0.001). 1225 
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Figure Supplement 3 1226 

 1227 

Surprise test phase performance. 1228 

The acute stress group performed better on reward than action cost discrimination trials. 1229 

Means ± SD, individual data points, distribution and density of the data are displayed. 1230 

Significant differences are depicted with asterisks (*: p < 0.05, **: p < 0.01, ***: p < 0.001).  1231 
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Figure Supplement 4  1232 

 1233 

Correlations between empirical and simulated 2LR_γ choices. 1234 

Actual and post hoc simulated choices for RL and EL (rows) were highly correlated both for 1235 

no-stress control and acute stress subjects (columns). Simulations were averaged across 10 1236 

repetitions per subject. Solid and shaded lines represent mean ± CI95%. Dots represent 1237 

individual data points. Horizontal dashed lines indicate chance level (0.5).   1238 
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Figure Supplement 5   1239 

 1240 

Parameter estimates after Bayesian hierarchical model fitting.  1241 

Hierarchical model fitting reproduced the overall pattern of parameter estimates (Figure 5 for 1242 

comparison) .1243 
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 Figure Supplement 6 1244 

 1245 

Correlations between empirical and simulated 2LR_γ choices after Bayesian 1246 

hierarchical model fitting. 1247 

Correlations between actual and post hoc simulated choices for RL and EL (rows) for no-1248 

stress control and acute stress subjects (columns). Simulations were averaged across 10 1249 

repetitions per subject. Solid and shaded lines represent mean ± CI95%. Dots represent 1250 

individual data points. Horizontal dashed lines indicate chance level (0.5).   1251 
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Figure Supplement 7   1252 

 1253 

Bayesian estimation analysis to evaluate group differences in posterior parameter 1254 

distributions  1255 

Panel A. Bayesian estimation (mixed-ANOVA) using posterior parameters (following 1256 

hierarchical fitting) revealed evidence for a credible Condition-by-Learning Rate interaction. 1257 

The observed mean difference from zero that falls outside the 95% HDI suggests that the 1258 
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difference between αE and αR was greater in no-stress controls compared to acute stress 1259 

subjects. Panel B. Both groups did not differ in the magnitude of αR, as indicated by a 95% 1260 

HDI that included 0. Panel C. Acute stress compared to no-stress control subjects exhibited a 1261 

lower value of αE, as indicated by a 95% HDI that falls well above zero.  1262 
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Figure Supplement 8   1263 

 1264 

Pupillometry analyses using all effort outcome trials. 1265 

Left: Model-free analyses of pupil size using all effort outcome trials. Middle: Pupil size 1266 

differences during effort/effort avoidance outcomes in the entire sample; force exertion was 1267 

associated with large effects on pupil size and these trials were therefore excluded from 1268 

analysis. Right: Model-based action cost prediction error analyses using all effort outcome 1269 

trials.  1270 
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