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Abstract

Although knowing where a protein functions in
a cell is important to characterize biological pro-
cesses, this information remains unavailable for
most known proteins. Machine learning narrows
the gap through predictions from expertly chosen
input features leveraging evolutionary informa-
tion that is resource expensive to generate. We
showcase using embeddings from protein lan-
guage models for competitive localization pre-
dictions not relying on evolutionary information.
Our lightweight deep neural network architec-
ture uses a softmax weighted aggregation mech-
anism with linear complexity in sequence length
referred to as light attention (LA). The method
significantly outperformed the state-of-the-art for
ten localization classes by about eight percentage
points (Q10). The novel models are available as
a web-service and as a stand-alone application at
embed.protein.properties.

1. Introduction
Proteins are the machinery of life involved in all essential
biological processes (biological background in Appendix).
Knowing where in the cell a protein functions, referred to
as its subcellular localization or cellular compartment, is
important for unraveling biological function (Nair & Rost,
2005; Yu et al., 2006). Experimental determination of pro-
tein function is complex, costly, and selection biased (Ching
et al., 2018). In contrast, the costs of determining protein
sequences continuously decrease (Consortium, 2021), in-
creasing the sequence-annotation gap (gap between proteins
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of known sequence and unknown function). Computational
methods have been bridging this gap (Rost et al., 2003); one
way has been to predict protein subcellular location (Gold-
berg et al., 2012; 2014; Almagro Armenteros et al., 2017;
Savojardo et al., 2018). The standard tool in molecular
biology, namely homology-based inference (HBI), accu-
rately transfers annotations from experimentally annotated
to sequence-similar un-annotated proteins. However, HBI
is not available or unreliable for most proteins (Goldberg
et al., 2014; Mahlich et al., 2018). Machine learning meth-
ods perform less well (lower precision) but are available
for all proteins (high recall). The best methods use evo-
lutionary information from families of related proteins as
input (Goldberg et al., 2012; Almagro Armenteros et al.,
2017). Although the marriage of evolutionary information
and machine learning has influenced computational biology
for decades (Rost & Sander, 1993), due to database growth,
this information becomes increasingly costly to generate.

Recently, protein sequence representations (embeddings)
have been learned from databases (Steinegger & Söding,
2018; Consortium, 2021) using language models (LMs)
(Heinzinger et al., 2019; Rives et al., 2019; Alley et al.,
2019; Elnaggar et al., 2020) initially used in natural lan-
guage processing (NLP) (Radford, 2018; Devlin et al., 2019;
Radford et al., 2019). Models trained on protein embed-
dings via transfer learning tend to be outperformed by ap-
proaches using evolutionary information (Rao et al., 2019;
Heinzinger et al., 2019). However, embedding-based so-
lutions can even outshine HBI (Littmann et al., 2021) and
models predicting aspects of protein structure (Bhattacharya
et al., 2020; Rao et al., 2020). Yet, for location prediction,
embedding-based models (Heinzinger et al., 2019; Elnag-
gar et al., 2020; Littmann et al., 2021) remained inferior
to the state-of-the-art using evolutionary information, e.g.,
represented by DeepLoc (Almagro Armenteros et al., 2017).

In this work, we leveraged protein embeddings to predict
cellular location without evolutionary information. We pro-
posed a deep neural network architecture using light at-
tention (LA) inspired by previous attention mechanisms
(Bahdanau et al., 2015; Vaswani et al., 2017).
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2. Related Work
Previous state-of-the-art (SOTA) models for subcellular lo-
cation prediction combined homology, evolutionary infor-
mation, and machine learning, often building prior knowl-
edge about biology into model architectures. For instance,
LocTree2 (Goldberg et al., 2012) implemented profile-
kernel SVMs (Cortes & Vapnik, 1995; Rui Kuang et al.,
2004) which identified k-mers conserved in evolution and
put them into a hierarchy of models inspired by cellular
sorting pathways. BUSCA (Savojardo et al., 2018) com-
bines three compartment-specific prediction methods based
on SVMs using evolutionary information (Pierleoni et al.,
2006; 2011; Savojardo et al., 2017). DeepLoc (Alma-
gro Armenteros et al., 2017) uses convolutions followed
by a bidirectional LSTM (Hochreiter & Schmidhuber, 1997;
Schuster & Paliwal, 1997) that employs Bahdanau-Attention
(Bahdanau et al., 2015). Using evolutionary information
either in the form of residue substitution scores (Henikoff &
Henikoff, 1992) or protein sequence profiles (Gribskov et al.,
1987), DeepLoc rose to become the SOTA. Embedding-
based methods (Heinzinger et al., 2019) have not yet out-
performed this SOTA, although ProtTrans (Elnaggar et al.,
2020), based on very large data sets, came close.

3. Methods
3.1. Data

Standard set DeepLoc. Following previous work
(Heinzinger et al., 2019; Elnaggar et al., 2020), we mainly
used a data set introduced by DeepLoc (Almagro Ar-
menteros et al., 2017) for training and testing. The training
set contained 13 858 proteins annotated with experimen-
tal evidence for one of ten location classes (nucleus, cyto-
plasm, extracellular space, mitochondrion, cell membrane,
Endoplasmatic Reticulum, plastid, Golgi apparatus, lyso-
some/vacuole, peroxisome). Another 2 768 proteins made
up the test set (henceforth called setDeepLoc), which had
been redundancy reduced to the training set (but not to
itself) at 30% pairwise sequence identity (PIDE) or to an
E-value cutoff of 10−6. To tune model parameters and avoid
overestimating performance, we further split the DeepLoc
training set into a training set containing 9 503 sequences
and a validation set (redundancy reduced to training by 30%
PIDE) containing 1 158 sequences (distribution of classes
in Appendix: Datasets).

Novel setHARD. To rule out that methods had been op-
timized for the static standard test set (setDeepLoc) used
by many developers, we created a new independent test set
from SwissProt (Consortium, 2021). Applying the same
filtering mechanisms as the DeepLoc developers (only eu-
karyotes; only proteins longer than 40 residues; no frag-
ments; only experimental location annotations) gave 5 947

Table 1. Parameters and implementation details of SeqVec
(Heinzinger et al., 2019), ProtBert and ProtT5 (Elnaggar et al.,
2020). The time it takes to embed a single sequence (sec per se-
quence) is averaged over embedding 10 000 proteins taken from
the Protein Data Bank (PDB) (Berman et al., 2000). The num-
ber of sequences used for the pre-training task is detailed in ”#
sequences”.

SEQVEC PROTBERT PROTT5

PARAMETERS 93M 420M 3B
# SEQUENCES 33M 2.1B 2.1B
SEC PER SEQUENCE 0.03 0.06 0.1
ATTENTION HEADS - 16 32
FLOAT PRECISION 32BIT 32BIT 16BIT
SIZE (GB) 0.35 1.6 2.75

proteins. Using MMseqs2 (Steinegger & Söding, 2017), we
removed all proteins from the new set with more than 20%
PIDE to any protein in DeepLoc (both training and testing
data). Next, we mapped location classes from DeepLoc to
SwissProt, merged duplicates, and removed multi-localized
proteins (protein X both in class Y and Z). Finally, we clus-
tered proteins to representatives at 20% PIDE and obtained
a new and more challenging test set (dubbed setHARD) with
490 proteins. Class distributions differed between the two
sets (see Appendix: Datasets).

3.2. Models

Input: protein embeddings. As input to the LA architec-
tures, we extracted embeddings from three protein language
models (LMs; Table 1): the bidirectional LSTM SeqVec
(Heinzinger et al., 2019) based on ELMo (Peters et al.,
2018) trained on UniRef50 (Suzek et al., 2015), the encoder-
only model ProtBert (Elnaggar et al., 2020) based on BERT
(Devlin et al., 2019) trained on BFD (Steinegger & Söding,
2018), and the encoder-only model ProtT5-XL-UniRef50
(Elnaggar et al., 2020) (for simplicity: ProtT5) based on
T5 (Raffel et al., 2020) trained on BFD and fine-tuned on
Uniref50. ProtT5 was instantiated at half-precision (float16
weights instead of float32) to ensure the encoder could fit
on consumer GPUs with limited vRAM. Embeddings for
each residue (NLP equivalent: word) in a protein sequence
(NLP equivalent: document) were obtained using the bio-
embeddings software (Dallago et al., 2021). For SeqVec,
the per-residue embeddings were generated by summing the
representations of each layer. For ProtBert and ProtT5, the
per-residue embeddings were extracted from the last hidden
layer of the models. Finally, the inputs obtained from the
protein LMs were of size 1024× L, where L is the length
of the protein sequence.

Light Attention (LA) architecture. The input to the light
attention (LA) classifier (Figure 1) was a protein embedding
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x ∈ R1024×L where L is the sequence length. The input
was transformed by two separate 1D convolutions with filter
sizes s and learned weights W (e),W (v) ∈ Rs×1024×dout .
The convolutions were applied over the length dimension to
produce attention coefficients and values e, v ∈ Rdout×L

ei,j = bi +
1024∑
k=1

d s2 e∑
l=−b s2 c

W
(e)
l,i x:,j+l (1)

where b ∈ Rdout is a learned bias and x:,j denotes the j-
th residue embedding. For j /∈ [0, L), the x:,j were zero
vectors. To use the coefficients as attention distributions
over all j, we softmax-normalized them over the length
dimension. The attention weight αi,j ∈ R for the j-th
residue and the i-th feature dimension was calculated as:

αi,j =
exp(ei,j)∑L
l=1 exp(ei,l)

(2)

Note that the weight distributions for each feature dimension
i are independent, and they can generate different attention
patterns. The attention distributions were used to compute
weighted sums of the transformed residue embeddings vi,j .
Thus, we obtained a fixed-size representation x′ ∈ Rdout

for the whole protein, independent of its length.

x′i =
L∑

j=1

αi,jvi,j (3)

We concatenated x′i with the maximum of the values
over the length dimension vmax ∈ Rdout , meaning
vmax
i = max1≤j≤L(vi,j). This concatenated vector

was input into a two layer multi-layer perceptron (MLP)
f : R2dout 7→ Rdclass with dclass as the number of classes.
The softmax over the MLP output represents the class prob-
abilities indexed by c (⊕ denotes concatenation):

p(c|x) = softmaxc(f(x
′ ⊕m)) (4)

Implementation details. The LA models were trained us-
ing filter size s = 9, dout = 1024, the Adam (Kingma &
Ba, 2015) optimizer (learning rate 5× 10−5) with a batch
size of 150, and early stopping after no improvement in val-
idation loss for 80 epochs. We selected the hyperparameters
via random search (Appendix: Hyperparameters). Training
was done on either an Nvidia Quadro RTX 8000 with 48GB
vRAM or an Nvidia GeForce GTX 1060 with 6GB vRAM.

Methods used for comparison. For comparison, we
trained a two-layer MLP proposed previously (Heinzinger
et al., 2019). Instead of per-residue embeddings in R1024×L,
the MLPs used sequence-embeddings in R1024, which de-
rived from residue-embeddings averaged over the length
dimension (i.e. mean pooling). Furthermore, for these rep-
resentations, we performed annotation transfer (dubbed AT)

Figure 1. Sketch of LA solution. The LA architecture is parame-
terized by two weight matrices W (e),W (v) ∈ Rs×1024×dout and
the weights of an MLP f : R2dout 7→ Rdclass .

based on embedding similarity (Littmann et al., 2021). In
this approach, proteins in setDeepLoc and setHARD were
annotated by transferring the class of the nearest neighbor
in the DeepLoc training set (given by L1 distance).

3.3. Evaluation.

Following previous work, we assessed performance through
the mean ten-class accuracy (Q10), giving the percentage
of correctly predicted proteins in one of ten location classes.
Additional measures tested (e.g., F1 score and Matthew’s
correlation coefficient (MCC) for multiple classes (Gorod-
kin, 2004)) did not provide any additional insights and were
confined to the Appendix: Additional Results. Error esti-
mates were calculated over ten random seeds on both test
sets. For previous methods (DeepLoc and DeepLoc62 (Al-
magro Armenteros et al., 2017), LocTree2 (Goldberg et al.,
2012), MultiLoc2 (Blum et al., 2009), SherLoc2 (Briese-
meister et al., 2009), CELLO (Yu et al., 2006), iLoc-Euk
(Chou et al., 2011), YLoc (Briesemeister et al., 2010) and
WoLF PSORT (Horton et al., 2007)) published performance
values were used (Almagro Armenteros et al., 2017) for set-
DeepLoc. For setHARD, the webserver for DeepLoc1 was
used to generate predictions using either profile or BLO-
SUM inputs, whose results were later evaluated in Q10 and
MCC. The majority classifier was used as a naive baseline.
All evaluation scripts to reproduce results are available2.

1http://www.cbs.dtu.dk/services/DeepLoc
2https://github.com/HannesStark/

protein-localization
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Figure 2. LA architectures perform best. Bars give the ten-class accuracy (Q10) for popular location prediction methods on setDeepLoc
(light-gray bars) and setHARD (dark-gray bars). Baseline is the most common class in each set. Horizontal gray dashed lines mark the
previous SOTA on either set. Estimates for standard errors are marked in orange for the methods introduced here. setHARD results are
provided for a subset of methods that yielded the best results on setDeepLoc (see Methods for detail on the external methods used; tabular
data in Appendix: Additional Results). Two results stood out: (i) the LA approaches introduced here outperformed the top methods
although not using evolutionary information (highest bars), and (ii) the performance estimates differed completely between the two data
sets (difference light/dark gray).

4. Results
Embeddings outperformed evolutionary information.
The simple AT approach already outperformed some meth-
ods using evolutionary information in the form of sequence
profiles or BLOSUM62 encoding (Henikoff & Henikoff,
1992) (Figure 2: AT*). The MLP trained on ProtT5 (El-
naggar et al., 2020) outperformed DeepLoc (Almagro Ar-
menteros et al., 2017) (Figure 2: MLP ProtT5 vs. DeepLoc).
Methods based on ProtT5 embeddings consistently yielded
better results than ProtBert and SeqVec (Heinzinger et al.,
2019) (*ProtT5 vs *ProtBert/*SeqVec in Figure 2). Results
on Q10 are consistent with MCC (Appendix: Additional
Results).

LA architecture best. The light attention (LA) architec-
ture consistently outperformed other embedding-based ap-
proaches, irrespective of the protein LM used (LA* vs.
AT/MLP* in Figure 2). Using ProtBert embeddings, LA out-
performed the state-of-the-art (Almagro Armenteros et al.,
2017) by 1 and 2 percentage points on setHARD and set-
DeepLoc (LA ProtBert Figure 2). For both test sets, LA
improved the previous best on either set by around 8 per-
centage points when using ProtT5 embeddings.

Overfitting by using standard data set. The substantial
drop in performance (around 22 percentage points) between
results for the standard setDeepLoc and the new challeng-
ing setHARD (Figure 2: light-gray vs. dark-gray, respec-
tively) suggests some level of overfitting. Mimicking the
distribution of classes found in setDeepLoc by sampling
with replacement from setHARD led to better results (in
Q10: DeepLoc62=63%; DeepLoc=54%; LA ProtBert=62%;
LA ProtT5=69%). DeepLoc performed worse on setHARD
using profiles than when using simple sequence informa-
tion/BLOSUM (Figure 2: DeepLoc vs. DeepLoc62). Other-
wise, the relative ranking and difference of models largely
remained consistent between setDeepLoc and setHARD.

Low performance for minority classes. The confusion
matrix of predictions for setDeepLoc using LA trained on
ProtT5 embeddings highlighted how many proteins were
incorrectly predicted in the most prevalent class, cytoplasm,
and that even the two majority classes were often confused
with each other (Figure 3: nucleus and cytoplasm). In
line with the previous SOTA (Almagro Armenteros et al.,
2017), the performance was particularly low for the most
under-represented classes, namely Golgi apparatus , lyso-
some/Vacuole, and peroxisome (accounting for 2.6%, 2.3%,
and 1.1% of the data, respectively).
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Figure 3. Mostly capturing majority classes. Confusion
matrix of LA predictions on ProtT5 (Elnaggar et al., 2020)
embeddings for setDeepLoc (Almagro Armenteros et al.,
2017) (setHARD in Appendix) annotated with the fraction
of the true class. Vertical axis: true class, horizontal axis:
predicted class. Labels: Mem=cell Membrane; Cyt=Cytoplasm;
End=Endoplasmatic Reticulum; Gol=Golgi apparatus;
Lys=Lysosome/vacuole; Mit=Mitochondrion; Nuc=Nucleus;
Per=Peroxisome; Pla=Plastid; Ext=Extracellular

Light aggregation (LA) mechanism crucial. To probe
the effectiveness of LA’s aggregation mechanism on ProtT5
embeddings, a number of tests were run to consider both ar-
chitecture changes (Table 2: LA - Softmax & LA - MaxPool
& Attention from v & DeepLoc LSTM & Conv + AdaPool)
and input changes (Table 2: LA on OneHot & LA on Pro-
files). Performance deterioration by dropping the softmax
(Table 2: LA - Softmax) or max-pooling aggregation (Table
2: LA - MaxPool) confirmed that both aspects are crucial
and lead to better performance. Furthermore, LA is espe-
cially apt at extracting information from LM embeddings,
while it performs poorly on other protein representations,
e.g., one-hot encodings (Table 2: LA on OneHot) or profiles
(Table 2: LA on Profiles).

Model trainable on consumer hardware. After embed-
dings for proteins were generated, the final LA architec-
ture, made of 18 940 224 parameters, could be trained on an
Nvidia GeForce GTX 1060 with 6GB vRAM in 18 hours or
on a Quadro RTX 8000 with 48GB vRAM in 2.5 hours.

5. Discussion
Light attention beats pooling. The central challenge
for the improvement introduced here was to convert the

Table 2. LA + ProtT5 the winning combination. Accuracy of
baselines and ablations using ProtT5 embeddings (above the line),
one-hot residue encodings or profiles for setDeepLoc and setHARD
for various architectures. LA ProtT5: The proposed light atten-
tion architecture. LA - Softmax: replaced softmax aggregation
that previously produced x′ with averaging of the coefficients e
over the length dimension. LA - MaxPool: discarded max-pooled
values vmax as input to the MLP, aka. only the softmax aggre-
gated features x′ were used. Attention from v: attention coeffi-
cients e were obtained via a convolution over the values v in-
stead of over the inputs x. DeepLoc LSTM: the architecture of
DeepLoc (Almagro Armenteros et al., 2017) was used instead of
LA. Conv + AdaPool: a stack of convolutions (kernel-size 3, 9,
and 15) followed by adaptive pooling to a length of 5 and an MLP
was used instead of LA. LA on OneHot: LA using one-hot encod-
ings of residues in a protein sequence as input. LA on Profiles:
LA using evolutionary information in the form of protein profiles
(Gribskov et al., 1987) as input.

METHOD SETDEEPLOC SETHARD

LA PROTT5 86.01± 0.34 65.21± 0.61
LA - SOFTMAX 85.30± 0.32 64.72± 0.70
LA - MAXPOOL 84.79± 0.19 63.84± 0.67
ATTENTION FROM v 85.41± 0.27 64.77± 0.93
DEEPLOC LSTM 79.40± 0.88 59.36± 0.84
CONV + ADAPOOL 82.09± 0.92 60.79± 2.01
LA ON ONEHOT 43.53± 1.48 32.57± 2.38
LA ON PROFILES 43.78± 1.25 33.35± 1.82

residue-embeddings (NLP equivalent: word embeddings)
from protein language models such as SeqVec (Heinzinger
et al., 2019), ProtBert, or ProtT5 (Elnaggar et al., 2020) to
meaningful sequence-embeddings (NLP equivalent: docu-
ment). A qualitative evaluation of the influence of the at-
tention mechanism (Figure 4) highlighted its ability to steer
predictions. Although averaging surpassed evolutionary-
information-based methods using simple similarity-based
annotation transfer (Figure 2: AT*) and in one instance
even SOTA using a simple feed-forward network (Figure
2: DeepLoc vs. MLP ProtT5), LA was able to consistently
distill more information from embeddings. Most likely, the
improvement can be attributed to LA’s ability to regulate the
immense difference in lengths of proteins (varying from 30
to 30 000 residues (Consortium, 2021)) by learning atten-
tion distributions over the sequence positions. LA models
appeared to have captured relevant long-range dependencies
while retaining the ability to focus on specific sequence re-
gions such as beginning and end, which play a particularly
important role in determining protein location for some pro-
teins (Lange et al., 2007; Almagro Armenteros et al., 2017).

First win over evolutionary information. Effectively, LA
trained on protein LM embeddings from ProtT5 (Elnaggar
et al., 2020) was at the heart of the first method that clearly
appeared to outperform the best existing method (DeepLoc,
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Figure 4. Qualitative analysis confirms: attention effective.
UMAP (McInnes et al., 2018) projections of per-protein embed-
dings colored according to subcellular location (setDeepLoc). Both
plots were created with the same default values of the python umap-
learn library. Top: ProtT5 embeddings (LA input; x) mean-pooled
over protein length (as for MLP/AT input). Bottom: ProtT5 embed-
dings (LA input; x) weighted according to the attention distribution
produced by LA (this is not x′ as we sum the input features x and
not the values v after the convolution).

(Almagro Armenteros et al., 2017; Heinzinger et al., 2019))
in a statistically significant manner on two test sets (Fig-
ure 2). To the best of our knowledge, this improvement
was the first instance ever that embedding-based transfer
learning substantially outperformed AI/ML methods using
evolutionary information (in the form of protein profiles or
BLOSUM62 encoding in DeepLoc’s case) for function pre-
diction. Even if embeddings are extracted from LMs trained
on large sequence data originating from evolution, the vast
majority of data learned originates from much more generic
constraints informative of protein structure and function.

Better and faster than profiles. At inference, the embed-
dings needed as input for the LA models come with three
advantages over the historically most informative evolution-
ary information, i.e., protein profiles, which were essential
for methods such as DeepLoc (Almagro Armenteros et al.,
2017) to achieve SOTA. Chiefly, embeddings can be ob-
tained in far less time than is needed to generate profiles and
require fewer compute resources. Even the lightning-fast
MMseqs2 (Steinegger & Söding, 2017), which is not the

standard in bioinformatics (other methods 10-100x slower),
in our experience, required about 0.3 seconds per sequence
to generate profiles for a large set of 10 000 proteins. The
slowest but most informative protein LM (ProtT5) is 3x
faster, while the second most informative (ProtBert) is
5x faster (Table 1). Moreover, these MMseqs2 stats de-
rive from runs on a machine with > 300GB of RAM and
2x40cores/80threads CPUs, while generating LM embed-
dings required only a moderate machine (8 cores, 16GB
RAM) equipped with a modern GPU with >7GB of vRAM.
Additionally, extracting profiles relies on the use of tools
(e.g., MMseqs2) that are sensitive to parameter changes, ulti-
mately an extra complication for users. In contrast, generat-
ing embeddings doesn’t require a parameter choice beyond
which trained model to use (e.g., ProtBert vs. ProtT5). How-
ever, retrieving less informative evolutionary information
(BLOSUM (Urban et al., 2020)) consists of a simple hash-
table lookup. As such, up to implementation and optimiza-
tions, computing this type of information is instantaneous,
beating even the fastest protein LM SeqVec. One downside
to using embeddings is one-off expensive language model
pre-training (Elnaggar et al., 2020; Heinzinger et al., 2019).
Yet, compared to many-times expensive profile generation,
the cost may be justified and absorbed.

Overfitting through standard data set? For protein sub-
cellular location prediction, the data set of DeepLoc (Al-
magro Armenteros et al., 2017) has become a standard in
the field. Such static standards facilitate method compar-
isons. To further probe results, we created a new test set
(setHARD), which was redundancy-reduced both with re-
spect to itself and all proteins in the DeepLoc set (comprised
of training data and setDeepLoc, used for testing). For this
set, the 10-state accuracy (Q10) dropped, on average, 22
percentage points with respect to the static standard (Figure
2). We argue that this large margin may be attributed to
some combination of the following coupled effects.

(1) All new methods may simply have been substantially
overfitted to the static data set, e.g., by misusing the test
set for hyperparameter optimization. This could partially
explain the increase in performance on setHARD when
mimicking the class distributions in the training set and
setDeepLoc.

(2) The static standard set allowed for some level of
sequence-redundancy (information leakage) at various lev-
els: certainly within the test set, which had not been redun-
dancy reduced to itself, maybe also between the training and
test set. Methods with many free parameters might more
easily zoom into exploiting such residual sequence similar-
ity for prediction because proteins with similar sequence
locate in similar compartments. In fact, this may explain the
somewhat surprising observation that DeepLoc appeared to
perform worse on setHARD using evolutionary information
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instead of a generic BLOSUM metric (Figure 2: DeepLoc62
vs. DeepLoc). Residual redundancy is much easier to cap-
ture via evolutionary information than by BLOSUM (Urban
et al., 2020) (for computational biologists: the same way
in which PSI-BLAST (Altschul et al., 1997) outperforms
pairwise BLAST).

(3) The confusion matrix (Figure 3) demonstrated how
classes with more experimental data tended to be predicted
more accurately. As setDeepLoc and setHARD differed in
their class composition, even without overfitting and redun-
dancy, prediction methods would perform differently on
the two. In fact, this can be investigated by recomputing
the performance on a similar class-distributed superset of
setHARD, on which performance dropped only by 11, 24,
18, and 17 percentage points for DeepLoc62, DeepLoc, LA
ProtBert, and LA ProtT5, respectively.

Overall, several overlaying effects caused the performance
to drop between the two data sets. Interestingly, different
approaches behaved alike: both for alternative inputs from
protein language models (SeqVec, ProtBert, ProtT5) and
for alternative methods (AT, MLP, LA), of which one (AT)
refrained from weight optimization.

What can users expect from subcellular location predic-
tions? If the top accuracy for one data set was Q10 ∼ 60%
and Q10 ∼ 80% for the other, what can users expect for
their next ten queries: six correct or eight, or 6-8? The an-
swer depends on the query: if those proteins were sequence
similar to proteins with known location (case: redundant):
the answer is eight. Conversely, for new proteins (without
homologs of known location), six in ten will be correctly
predicted, on average. In turn, this implies that for novel
proteins, there seems to be significant room for pushing
performance to further heights, possibly by combining LA
ProtBert/LA ProtT5 with evolutionary information.

6. Conclusion
We presented a light attention mechanism (LA) in an archi-
tecture operating on language model embeddings of protein
sequences, namely those from SeqVec (Heinzinger et al.,
2019), ProtBert, and ProtT5 (Elnaggar et al., 2020). LA
efficiently aggregated information and coped with arbitrary
sequence lengths, thereby mastering the enormous range of
proteins spanning from 30-30 000 residues. By implicitly
assigning a different importance score for each sequence
position, the method succeeded in predicting protein sub-
cellular location much better than methods based on simple
pooling. More importantly, for two protein LMs, LA suc-
ceeded in outperforming the state-of-the-art without using
evolutionary-based inputs, i.e., the single most important
input feature for previous methods. This constituted an im-
portant breakthrough: although many methods had come

close to the state-of-the-art using embeddings instead of
evolutionary information, none had ever overtaken as the
methods presented here. Our best method was based on
the largest protein LM, namely on ProtT5 (LA ProtT5 in
Figure 2). Many location prediction methods have been
assessed on a standard data set (here: setDeepLoc) intro-
duced a few years ago (Almagro Armenteros et al., 2017).
Using a new, more challenging data set (setHARD), the per-
formance of all methods appeared to drop by around 22
percentage points. While class distributions and data set
redundancy (or homology) may explain some of this drop,
over-fitting might have also contributed. Overall, the drop
underlined that many challenges remain to be addressed by
future methods. For the time being, the best methods LA
ProtBert and LA ProtT5, are freely available via a webserver
(embed.protein.properties) and as part of a high-throughput
pipeline (Dallago et al., 2021).
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Appendix: Light Attention Predicts Protein Location from the Language of Life
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1. Protein Preliminaries
Protein Sequences. Proteins are built by chaining and arbi-
trary number of one of 20 amino acids in a particular order.
When amino acids come together to form protein sequences,
they are dubbed residues. During the assembly in the cell,
constrained by physiochemical forces, the one-dimensional
chains of residues fold into unique 3D shapes based solely
on their sequence that largely determine protein function.
The ideal machine learning model would predict a protein’s
3D shape and thus function from just protein sequence (the
ordered chain of residues).

Protein Subcellular Location. Eukaryotic cells contain
different organelles/compartments. Each organelle serves a
purpose, e.g., ribosomes chain together new proteins while
mitochondria synthesize ATP. Proteins are the machinery
used to perform these functions, including transport in and
out and communication between different organelles and
a cell’s environment. For some compartments, e.g., the
nucleus, special stretches of amino acids, e.g., nuclear local-
ization signals (NLS), help identifying a protein’s location
via simple string matching. However, for many others, the
localization signal is diluted within the whole sequence,
requiring sequence-level predictions. Furthermore, some
organelles (and the cell itself) feature membranes with dif-
ferent biochemical properties than the inside or outside,
requiring protein gateways.

Homology-inference. Two highly similar protein se-
quences will most likely fold in similar 3D structures and
more likely to perform similar functions. Homology based
inference (Nair & Rost, 2002; Mahlich et al., 2018), which
transfers annotations of experimentally validated proteins
to query protein sequences, is based on this assumption
(Sander & Schneider, 1991). Practically this means search-
ing a database of annotated protein sequences for sequences
that meet both an identity threshold and a length-of-match
threshold to some query protein sequence. Sequence ho-
mology delivers good results, but its stringent requirements
render it applicable to only a fraction of proteins (Rost,
1999).

Machine learning Function Prediction. When moving
into territory where sequence similarity is less conserved
for shorter stretches of matching sequences (Mahlich et al.,
2018; Rost, 2002), one can try predicting function using

evolutionary information and machine learning (Goldberg
et al., 2012; Almagro Armenteros et al., 2017). Evolution-
ary information from protein profiles, encoding a protein’s
evolutionary path, is obtained by aligning sequences from
a protein database to a query protein sequence and com-
puting conservation metrics at the residue level. Using
profiles leads to impressively more accurate predictions for
sequences with no close homologs and has been the stan-
dard for most protein prediction tasks (Urban et al., 2020),
including subcellular localization (Goldberg et al., 2012;
Almagro Armenteros et al., 2017; Savojardo et al., 2018).
While profiles provide a strong and useful inductive bias,
their information content heavily depends on a balance of
the number of similar proteins (depth), the overall length
of the matches (sequence coverage), the diversity of the
matches (column coverage), and their generation is parame-
ter sensitive.

2. Hyperparameters
The following describes the search space used to find hy-
perparameters of our final LA and FFN models. We per-
formed random search over these parameters. The eval-
uated learning rates were in the range of [5 × 10−6 -
5 × 10−3]. For the light attention architecture, we tried
filter sizes [3, 5, 7, 9, 11, 13, 15, 21] and hidden sizes dout ∈
[32, 128, 256, 512, 1024, 1500, 2048], as well as concate-
nating outputs of convolutions with different filter sizes.
For the FFN, we searched over the hidden layer sizes
[16, 32, 64, 512, 1024], where 32 was the optimium. We
maximized batch size to fit a Quadro RTX 8000 with 48GB
vRAM, resulting in the batch size of 150. Note that the
memory requirement is dependent on the size of the longest
sequence in a batch. In the DeepLoc dataset, the longest
sequence had 13 100 residues.
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3. Additional Results
We provide results for both setDeepLoc (Table 4) and
setHARD (Table 3) in tabular form, including the Matthew’s
Correlation Coefficients (MCC) and class unweighted F1
score.

Table 1. MCC of additional baselines and ablations compared to
the LA architecture on ProtT5 embeddings (above the line) of set-
DeepLoc and setHARD averaged over 10 seeds. The best method
is bold and the second best is underlined.

METHOD SETDEEPLOC SETHARD

LA PROTT5 .831± .004 .577± .007
LA - SOFTMAX .828± .004 .570± .008
LA - MAXPOOL .816± .002 .559± .008
ATTENTION FROM V .824± .003 .571± .012
DEEPLOC LSTM .752± .010 .505± .009
CONV + ADAPOOL .785± .010 .526± .022
MEANPOOL + FFN .785± .006 .529± .010
LA ON ONEHOT .326± .012 .216± .014
LA ON PROFILES .302± .016 .195± .022

Table 2. Class unweighted F1 score of additional baselines and
ablations compared to the LA architecture on ProtT5 embeddings
(above the line) of setDeepLoc and setHARD averaged over 10
seeds. The best method is bold and the second best is underlined.

METHOD SETDEEPLOC SETHARD

LA PROTT5 .854± .004 .642± .004
LA - SOFTMAX .850± .004 .633± .008
LA - MAXPOOL .842± .002 .632± .006
ATTENTION FROM V .845± .004 .634± .011
DEEPLOC LSTM .788± .009 .590± .007
CONV + ADAPOOL .818± .010 .608± .020
MEANPOOL + FFN .814± .005 .604± .008
LA ON ONEHOT .367± .025 .262± .033
LA ON PROFILES .384± .018 .279± .019

Table 3. Accuracy and Matthew’s correlation coefficient (MCC)
on setHARD.

METHOD ACCURACY MCC

DEEPLOC62 56.94 0.476
DEEPLOC 51.36 0.410
AT PROTBERT 42.04 0.306
AT PROTT5 55.01 0.454
FFN PROTBERT 53.16± 1.19 0.429± 0.014
FFN PROTT5 61.27± 0.98 0.529± 0.011
LA PROTBERT 58.36± 1.02 0.490± 0.012
LA PROTT5 65.21± 0.61 0.577± 0.007

Table 4. Accuracy and Matthew’s correlation coefficient (MCC)
on setDeepLoc.

METHOD ACCURACY MCC

LOCTREE2 61.20 0.525
MULTILOC2 55.92 0.487
SHERLOC2 58.15 0.511
YLOC 61.22 0.533
CELLO 55.21 0.454
ILOC-EUK 68.20 0.641
WOLF PSORT 56.71 0.479
DEEPLOC62 73.60 0.683
DEEPLOC 77.97 0.735

AT SEQVEC 60.97 0.508
AT PROTBERT 64.85 0.567
AT PROTT5 73.92 0.687
FFN SEQVEC 70.57± 0.93 0.636± 0.011
FFN PROTBERT 75.88± 0.45 0.702± 0.006
FFN PROTT5 82.28± 0.51 0.786± 0.006
LA SEQVEC 75.63± 0.11 0.705± 0.002
LA PROTBERT 80.29± 0.21 0.762± 0.002
LA PROTT5 86.01± 0.34 0.832± 0.004

Figure 1. Confusion matrix of LA predictions on ProtT5
(Elnaggar et al., 2020) embeddings for setHARD annotated
with the fraction of the true class. Vertical axis: true class,
horizontal axis: predicted class. Labels: Mem=cell Membrane;
Cyt=Cytoplasm; End=Endoplasmatic Reticulum; Gol=Golgi
apparatus; Lys=Lysosome/vacuole; Mit=Mitochondrion;
Nuc=Nucleus; Per=Peroxisome; Pla=Plastid; Ext=Extracellular
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4. Datasets
Table 5 shows the distribution of subcellular localization
classes in the setDeepLoc and our new setHARD.

Table 5. Number of proteins and percentage of dataset for each
class for the DeepLoc dataset and our setHARD. ER abbreviates
Endoplasmatic Reticulum

LOCATION DEEPLOC SETHARD
# % # %

NUCLEUS 4043 28.9 99 20.2
CYTOPLASM 2542 19.3 117 23.8
EXTRACELLULAR 1973 14.0 92 18.8
MITOCHONDRION 1510 11.8 10 2.0
CELL MEMBRANE 1340 9.5 98 20.0
ER 862 6.2 34 6.9
PLASTID 757 5.4 11 2.6
GOLGI APPARATUS 356 2.6 13 2.6
LYSOSOME/VACUOLE 321 2.3 13 2.2
PEROXISOME 154 1.1 3 0.6

4.1. New test set creation

Figure 2. Screenshot of the filtering options applied to the ad-
vanced UniProt search (uniprot.org/uniprot).

In the following, we lay out the steps taken to produce
the new test set (setHARD). The starting point is a filtered
UniProt search with options as selected in Figure 2. Python
code used is available here: OMITTED.

• Download data as FASTA & XML:

wget "https://www.uniprot.org/
uniprot/?query=taxonomy:%
22Eukaryota%20[2759]%22%
20length:[40%20TO%20*]%
20locations:(note:*%20evidence:%
22Inferred%20from%20experiment%
20[ECO:0000269]%22)%20fragment:no%
20AND%20reviewed:yesformat=
xmlforce=truesort=scorecompress=
yes"

wget "https://www.uniprot.org/
uniprot/?query=taxonomy:%

22Eukaryota%20[2759]%22%
20length:[40%20TO%20*]%
20locations:(note:*%20evidence:%
22Inferred%20from%20experiment%
20[ECO:000026%22)%20fragment:no%
20AND%20reviewed:yesformat=
fastaforce=truesort=scorecompress=
yes"

• Download deeploc data:

wget http://www.cbs.dtu.dk/services/
DeepLoc-1.0/deeploc data.fasta

• Align sequences in swissprot to deeploc that have more
than 20% PIDE:

mmseqs easy-search swissprot.fasta
deeploc data.fasta -s 7.5
--min-seq-id 0.2 --format-output
query,target,fident,alnlen,mismatch,
gapopen,qstart,qend,tstart,tend,
evalue,bits,pident,nident,qlen,tlen,
qcov,tcov alignment.m8 tmp

• Extract localizations from SwissProt XML:

python extract localizaiotns from
swissprot.py

• Map deeploc compartments on swissprot localiza-
tions & remove duplicates ([P123, Nucleus] appear-
ing twice), remove multilocated ([P123, Nucelus] and
[P123, Cytoplasm] –> remove P123) empty or not
experimental annotations:

python map and filter swissprot
annotations.py

• Create FASTA like deeploc from sequences not in
alignment:

python extract unaligned
sequences.py

• Redundancy reduce new set to 20%:

mmseqs easy-cluster --min-seq-id
0.2 new test set not redundancy
reduced.fasta new hard test set
PIDE20.fasta tmp
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