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Summary 22 

(1) Plant population dynamics research has a long history, and data collection rates have 23 

increased through time. The inclusion of this information in databases enables 24 

researchers to investigate the drivers of demographic patterns globally and study life 25 

history evolution. 26 

(2) Studies aiming to generalise demographic patterns rely on data being derived from a 27 

representative sample of populations. However, the data are likely to be biased, both in 28 

terms of the species and ecoregions investigated and in how the original studies were 29 

conducted. 30 

(3) Matrix population models (MPMs) are a widely-used tool in plant demography, so an 31 

assessment of publications that have used MPMs is a convenient way to assess the 32 

distribution of plant demographic knowledge. We assessed bias in this knowledge using 33 

data from the COMPADRE Plant Matrix Database, which contains MPMs for almost 34 

800 plant species. 35 

(4) We show that tree species and tropical ecoregions are under-represented, while 36 

herbaceous perennials and temperate ecoregions are over-represented. In addition, there 37 

is a positive association between the number of studies per country and the wealth of 38 

the country. Furthermore, we found a strong tendency towards low spatiotemporal 39 

replication: More than 50% of the studies were conducted over fewer than 4 years, and only 40 

17% of the studies have replication across >3 sites. This limited spatiotemporal coverage 41 

means that the data may not be representative of the environmental conditions experienced 42 

by the species. 43 

(5) Synthesis: The biases and knowledge gaps we identify are a challenge for the progress 44 

of theory and limit the usefulness of current data for determining patterns that would 45 
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be useful for conservation decisions, such as determining general responses to climate 46 

change. We urge researchers to close these knowledge gaps with novel data collection. 47 

Keywords 48 

Biogeography, comparative biology, population growth rate, population projection matrix, 49 

transient dynamics  50 
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Introduction 51 

Population ecologists aim to understand and predict population dynamics using demographic 52 

data that includes the vital rates of survival, reproduction, and development. Their efforts 53 

include examining population responses to changes in climate, land use, and management 54 

(Silva et al., 1991; Buhler et al., 1997; Eriksson et al., 2002; Morris et al., 2008; Colautti & 55 

Barrett, 2013). Demographic data are also crucial for robust population viability analyses of 56 

threatened and invasive species (Morris & Doak, 2002; Hansen & Wilson, 2006; Rueda-Cediel 57 

et al., 2019). Besides single-species studies, researchers have conducted comparative analyses 58 

investigating broad demographic and life history patterns among species. These comparative 59 

analyses have aided the development of general theories of life history variation, including r-60 

K selection theory (MacArthur & Wilson, 1967; Gunderson, 1980), Grime’s C-S-R triangle 61 

(Grime, 1974; Silvertown et al. 1992), Stearns’ fast-slow continuum (Stearns, 1992; Franco & 62 

Silvertown, 1996; Salguero-Gómez et al., 2016) and reproductive strategies continuum 63 

(Salguero-Gómez 2017). The empirical exploration of these themes requires large quantities of 64 

data from diverse species experiencing a wide range of environmental conditions.  65 

Comparative analyses often rely on the collation of published data to obtain sufficient sample 66 

sizes. There are numerous recent examples of this (e.g., Iriondo, 2009; Dalgleish et al., 2010; 67 

Bullock et al., 2012; Burns et al., 2013), and large-scale collaborative efforts to collate global 68 

demographic and life history and related data are increasingly common (e.g., GBIF: The Global 69 

Biodiversity Information Facility; Wright et al., 2004; Loh et al., 2005; NERC Centre for 70 

Population Biology, 2010; Kattge et al., 2011; Salguero-Gómez et al., 2015). These databases 71 

provide a rich resource for workers focussing on life history strategies and demographic 72 

performance.  73 
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One of the most frequently used tools to describe a species’ demography and life history are 74 

matrix population models (MPMs, Crone et al., 2011). MPMs depict a population’s life cycle 75 

in terms of survival, reproduction, and transitions among discrete life stages (Leslie, 1945; 76 

Lefkovitch, 1965; Caswell, 2001). MPMs are particularly useful because they have well-77 

understood mathematical properties, and measures derived from MPMs are comparable across 78 

diverse species (Silvertown et al., 1993; Caswell, 2001; Salguero-Gómez & Kroon, 2010). The 79 

COMPADRE Plant Matrix Database (Salguero-Gómez et al., 2015) is the most comprehensive 80 

database of plant studies using MPMs and thus reflects our collective knowledge of plant 81 

demography. The contents of databases like COMPADRE were not explicitly collected for 82 

inclusion in large databases but rather for the disparate purposes of the many original studies. 83 

Although these large databases may be an unbiased (or even complete) sampling of the 84 

literature, researchers likely focus on species or geographical areas of particular interest. The 85 

resulting data collections are likely to be similarly taxonomically, geographically, or 86 

methodologically biased.  87 

Bias of this nature has far-reaching consequences for our understanding of plant demography 88 

and could limit the usefulness of databases like COMPADRE for comparative analyses. To 89 

identify potential biases in plant demographic data and discuss their implications, we used 90 

COMPADRE to address the following questions: (1) When have the studies been published? 91 

(2) Where is the research done? (3) For which species and populations do we have demographic 92 

data? (4) How are the MPMs constructed? More precisely, we tested the following nine 93 

hypotheses (H1-H9):  94 

 95 

WHEN HAVE THE STUDIES BEEN PUBLISHED? 96 
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We expected (H1) to see that the proportion of published plant ecology articles that use MPMs 97 

has increased through time, reflecting the growing importance of demographic research within 98 

plant ecology. 99 

 100 

WHERE IS THE RESEARCH DONE? 101 

To assess the potential geographic bias of plant demographic studies, we focussed on 102 

continental, ecoregion, and country-level biases. We also examined the relationship between 103 

the number of studies and the country’s wealth where the study was carried out (as indicated 104 

by gross domestic product, GDP). We expected (H2) Europe and North America to be over-105 

represented and, likewise, that temperate ecoregions (which characterise these continents) 106 

would dominate. Further, we expected (H3) wealthier countries would be over-represented 107 

compared to their poorer counterparts since they have more funds for research.  108 

 109 

FOR WHICH SPECIES AND POPULATIONS DO WE HAVE DEMOGRAPHIC DATA? 110 

We expected (H4) the representation of growth forms would not be proportional to their natural 111 

abundance, with herbaceous perennials being over-represented and some growth forms being 112 

almost absent. This potential bias is important because, if true, it would limit opportunities to 113 

make general inferences on the demography of poorly-represented growth forms. Furthermore, 114 

we expected to find (H5) a tendency to preferentially study threatened species because they are 115 

of particular interest in population ecology (Morris & Doak 2002). We also expected (H6) a 116 

trend towards choosing flourishing populations (i.e., those with λ>1) for data collection, 117 

reflecting the researchers’ desire to ensure the long-term viability of their project.  118 

 119 

HOW ARE THE MPMS CONSTRUCTED? 120 
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The usefulness of individual demographic studies for comparative analyses is sometimes 121 

limited by the methods used to construct the MPMs. We explored this by examining within-122 

study spatio-temporal replication and MPM dimension, which can influence demographic 123 

quantities calculated from MPMs, including asymptotic population growth rate (Salguero-124 

Gómez & Plotkin, 2010). We expected (H7) low rates of temporal and spatial replication, 125 

meaning that the data may not represent adequately the environmental conditions experienced 126 

by the population/species. We expected (H8) that matrix dimension would vary widely, with a 127 

tendency for the MPMs of long-lived species such as trees to have a greater dimension.  128 

Finally, we analysed the prevalence of a widespread simplification approach used in 129 

parameterisation: the assumption of transition constancy in two or more consecutive stages. 130 

This can occur, for example, when reproduction or survival in consecutive stages (e.g., small, 131 

medium, large plants) is assumed to be constant. Although researchers may justify this 132 

simplifying assumption based on data limitations, estimates derived from such simplified 133 

MPMs may be inaccurate, limiting their usefulness in comparative work. Studies featuring 134 

analyses of life expectancy or generation time (Gaillard et al., 2005; Staerk et al., 2019), ageing 135 

trajectories (Baudisch, 2011; Baudisch & Stott, 2019), and transient population dynamics (Stott 136 

et al., 2011) are all likely to be marred by the widespread use of this assumption. Despite this 137 

problem, we expected (H9) a large proportion of studies to parameterise matrices using average 138 

transition probabilities and fecundity estimates across stages in this way.  139 

We discuss the implications of the biases we identify for several applications. Our results 140 

highlight plant demographic knowledge gaps for assessing general patterns, and we encourage 141 

researchers to close these taxonomic, biogeographic, and methodological gaps going forward.  142 

  143 
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Materials and methods 144 

To quantify potential biases in our knowledge of plant demography, we used the COMPADRE 145 

Plant Matrix Database version 5.0.0 (Salguero-Gómez et al., 2015). Although COMPADRE 146 

also contains data on red and brown algae, and lichens, we restrict our analysis to plants (i.e., 147 

land plants and green algae) (Cavalier-Smith, 1981). We analysed our data using R version 148 

4.0.4 (R Core Team, 2021). 149 

Data in COMPADRE are organised by research publication such that particular species can 150 

appear multiple times in different articles, and a single publication can include several species. 151 

We derived our sample from 641 articles on 746 species. Most articles (547) focussed on single 152 

species while 94 focussed on multiple species (2-30 species). In some cases, the archived MPM 153 

represents the element-by-element average across several transitions (e.g., the average of 5 154 

years of data). However, COMPADRE also often includes data for the individual transitions 155 

(e.g., annual transitions are most commonly used, and COMPADRE thus often includes data 156 

on the transition from year 1 to 2, and another for year 2 to 3 and so on). Similarly, articles 157 

often include several MPMs representing different experimental treatments and/or different 158 

spatial areas for a given year or set of years. Our data set included 925 species-by-article 159 

combinations and a total of 9,022 MPMs. In addition to the MPMs, we use COMPADRE 160 

metadata on geolocation, ecoregion, growth form, taxonomy, and study timeframe, as well as 161 

the MPM projection interval, to examine potential temporal, biogeographic and taxonomic 162 

biases. We analyse this data in several ways. For most analyses, we use the entire data set but, 163 

due to specific requirements for some analyses, we subset the data for some parts of our study. 164 

For full transparency, we include the analysis code as supplementary information. 165 

 166 

WHEN HAVE THE STUDIES BEEN PUBLISHED? 167 
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To assess temporal trends in the publication of demography-focussed articles in plant ecology 168 

(H1), we examined the estimated proportion of articles published in the Journal of Ecology 169 

between 1991-2019 that used MPMs. We chose the Journal of Ecology as a proxy for the field 170 

of plant ecology because it is among the leading and the oldest journals for this field and is thus 171 

likely to reflect the temporal development of the discipline. To do this, we downloaded 172 

metadata for all of the journal articles for 1991-2019 from the Web of Science. We queried this 173 

dataset with the search terms [projection model OR matrix model OR MPM] to identify those 174 

that used MPMs. We then compared graphically the estimated percentage of articles that 175 

included MPMs.  176 

To gauge the completeness of COMPADRE’s data holdings, we compared COMPADRE’s 177 

currently available data (to February 2019) to the COMPADRE team’s curated list of articles 178 

targeted for eventual inclusion (data provided by Haydee Hernández-Yañez, pers. comm., 179 

2019).  180 

 181 

WHERE IS THE RESEARCH DONE? 182 

Biogeography.  183 

We characterised biases in the distribution of studies among continents and ecoregions (H2). 184 

We first quantified the density of studied species (i.e., number of studied species per unit area 185 

(n/km2) of each country). We then compared the distribution of species among ecoregions in 186 

COMPADRE with the estimated actual species distribution in nature among those ecoregions 187 

worldwide using Pearson’s Chi-squared tests (hereafter, χ2-tests) and post-hoc proportion z-188 

tests (using prop.test in R). We could do this because COMPADRE assigns each studied 189 

population to one or more of Olson’s 14 ecoregions (Olson et al., 2001). In some cases, 190 

populations were assigned to multiple closely-related ecoregions (e.g., different types of 191 
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temperate forests). To simplify the analysis, we collapsed Olson’s ecoregions into five broader 192 

categories: tropical (Olson’s ecoregions TMB, TDB, TSC and TGV, see Table S1 for 193 

explanation), temperate (TBM, TCF, TGS), Mediterranean/desert (MED, DES), tundra/boreal 194 

(BOR, TUN, MON), and wetland (MAN, FGS). We extracted the estimated number of species 195 

naturally occurring in each region from Kier (Kier et al., 2005). Kier et al. (2005) did not 196 

include bryophytes or algae, so we excluded them from this comparison. 197 

Country-specific wealth (GDP).  198 

We used country-level per-capita GDP for 2017 (World Bank, 2018) to examine whether 199 

wealthy countries are overrepresented in COMPADRE (H3). To do this, we used a Poisson 200 

generalised linear model (GLM) (log-link) with log-transformed GDP as the explanatory 201 

variable and the number of demographic studies as the response variable. Log-transformation 202 

of GDP was necessary to improve the fit of the model. We included only countries with at least 203 

one demographic study on plants to avoid a zero-inflated model.  204 

 205 

FOR WHICH SPECIES AND POPULATIONS DO WE HAVE DEMOGRAPHIC 206 

DATA? 207 

Taxonomy.  208 

To characterise potential biases in taxonomy and growth form (H4), we first analysed the 209 

distribution of taxa in COMPADRE among the taxonomic categories of angiosperm vs. 210 

gymnosperm, monocot vs. eudicot (for the 849 angiosperms only), and Family. We then used 211 

the COMPADRE database metadata variable OrganismType (hereafter, growth form), 212 

which includes a range of paraphyletic growth form categories such as “tree”, “herbaceous 213 

perennial”, and “shrub”. We compared the distribution of angiosperms vs. gymnosperms in 214 

COMPADRE with estimates of their diversity across all plant species from Campbell et al. 215 
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(2018) and the numbers of eudicots and monocots with numbers derived from Evert et al. 216 

(2013). We linked numbers of species within families extracted from COMPADRE with the 217 

number of species per Family listed in The Plant List (2010) for the same families. FitzJohn et 218 

al. (2014) and Willis (2017) estimate how many plant species in the world are woody, which 219 

we compared with the number of trees and shrubs in COMPADRE. We compared the number 220 

of epiphytes with estimates from (Zotz, 2013). As above, we used χ2-tests and post-hoc 221 

proportion tests for these comparisons. 222 

Conservation status.  223 

To characterise potential bias in the conservation statuses of species studied (H5), we obtained 224 

the IUCN Red List categories (IUCN 2019) for all species in our data set and in The Plant List, 225 

using the R package rredlist v. 0.4.0 (Chamberlain, 2017). We compared the distribution 226 

of COMPADRE species in each Red List category with the corresponding distribution of all 227 

species in The Plant List using a χ2-test.  228 

Population growth rates.  229 

To assess whether researchers tend to collect demographic data on growing or declining 230 

populations and whether researchers tend to study populations that are in a “boom phase” (H6), 231 

we examined the asymptotic population growth rates (λ) calculated from each MPM. We first 232 

filtered the data to include only studies that spanned at least five years, were experimentally 233 

unmanipulated, and for which λ could be calculated (i.e., the MPMs contained no missing 234 

values and did not violate ergodicity and irreducibility assumptions (Stott et al., 2010)). We 235 

then fitted an ordinary least squares regression with λ as the response variable and year as the 236 

explanatory variable. The slope of this model indicates the temporal trend in λ: a negative trend 237 

supports our hypothesis that researchers preferentially work on initially flourishing sites where 238 

population growth rates then decline over time. 239 
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 240 

HOW ARE THE MPMS CONSTRUCTED? 241 

Temporal and spatial replication. 242 

To explore potential biases in temporal and spatial replication (H7), we examined the 243 

frequency distributions of study length (years) and the number of spatially distinct populations 244 

(as defined by the original article authors) for all species-by-article combinations in 245 

COMPADRE.  246 

Matrix model dimension. 247 

To examine how the MPM dimension chosen by modellers varies systematically among growth 248 

form and ecoregion (H8), we compared the frequency distribution of the MPM dimension 249 

across these variables. As above, we tested for an association statistically using Poisson GLMs. 250 

Averaging matrix model elements.  251 

In COMPADRE, MPMs (A) are defined as the sum of three submatrices, A = U + F + C, 252 

where U represents survival-dependent transitions (e.g., growth, stasis, shrinkage, ageing), F 253 

describes sexual reproduction, and C represents clonal reproduction. We used these three 254 

submatrices to address H9 by characterising the prevalence of averaging across stage-/age-255 

classes. This approach was only possible for matrices without missing values. We assessed the 256 

number of consecutive life cycle stages in each MPM that contained averaged rates of survival, 257 

reproduction and clonality, using the following approaches:  258 

To estimate the degree of survival averaging, we calculated stage-specific survival probability 259 

as the column sums of the U matrix. When the survival probabilities across stages were all 260 

different, we categorised the MPM as not containing averaged rates (“no averaging”). When 261 

several survival probabilities were consecutively identical across up to 50% of stages, we 262 

assumed they had been averaged over those stages (“≤50% averaging”). Finally, when more 263 
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than half of the stages have consecutively identical survival probabilities, we assumed that they 264 

had been averaged (“> 50% averaging”).  265 

To estimate the degree of averaging for sexual reproduction, we calculated stage-specific 266 

sexual reproduction as the column sums of the F matrix. We classified the degree of averaging 267 

into three categories in the same way as for survival. Whereas every survival column must sum 268 

to >0, reproduction columns may include zero values. These may be before the stage of first 269 

reproduction (pre-reproductive) or after (post-reproductive). Post-reproductive stages with 270 

F = 0 are more likely to exist because researchers did not observe reproduction during 271 

fieldwork, rather than due to the method of averaging over multiple life-stages. Our 272 

assessments include only 'reproducing' stages (i.e., where reproduction >0). We estimated the 273 

degree of clonality averaging in the same way, using the C matrix.  274 
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Results 275 

WHEN HAVE THE STUDIES BEEN PUBLISHED? 276 

The proportion of articles focussing on plant demography (H1) in the Journal of Ecology has 277 

increased slightly in the past decades. However, the year-to-year variation is high, and the slope 278 

is not significantly different from zero (linear model: slope = 0.034±0.044, F1,21 = 0.601, 279 

P = 0.447; Fig. 1).  280 

 281 

WHERE IS THE RESEARCH DONE? 282 

Biogeography.  283 

As expected (H2), geographical bias was obvious, with study density being greatest in Europe 284 

(23.67 studies per million km2) and North America (17.56 studies per million km2), while 285 

Oceania, South American, Asian, and African countries were relatively poorly-represented, 286 

with 6.69, 5.10, 1.66, 1.02 studies per million km2, respectively (see also Fig. 2B; Fig.S2). 287 

Interestingly, a post-hoc analysis showed that the dominance of Europe and North America in 288 

the COMPADRE database has increased since the year 2000: 75% of articles post-2000 289 

focussed on these regions compared to 63% pre-2000 (Table S2). 290 

As hypothesised (H2), there was a significant difference between the species distribution in 291 

COMPADRE compared to in nature (χ2 -test: χ2 = 327.79, d.f. = 4, P <0.001). Indeed, species 292 

from temperate ecoregions are significantly over-represented in COMPADRE (48% compared 293 

to an estimated 24% of species inhabiting these regions in nature; proportion test: χ2 = 267.71, 294 

d.f. = 1, P <0.001; Fig. 2A). In contrast, tropical ecoregions are significantly under-represented 295 

(27% vs. 42%; proportion test: χ2 = 77.432, d.f. = 1, P <0.001). Similar results were apparent 296 

for wetlands (1% vs. 5%; proportion test: χ2 = 23.426, d.f. = 1, P <0.001) and tundra and boreal 297 
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ecoregions (6% vs. 13%; proportion test: χ2 = 40.335, d.f. = 1, P <0.001). Species from 298 

Mediterranean and desert ecoregions are represented in approximately the same proportion as 299 

in nature (18% in COMPADRE vs. an estimated 17%: proportion test: χ2 = 1.273, d.f. = 1, 300 

P = 0.259).  301 

Country-specific wealth (GDP).  302 

As expected (H3), the numbers of articles per country and per capita GDP are positively 303 

correlated (Poisson GLM: Null Deviance = 1494.7, Residual Deviance = 1144.3, d.f. = 1, 54, 304 

P <0.001, Fig. 2C). Here, 73% of countries (161 out of 222) are not represented in 305 

COMPADRE. The United States of America, with 202 research articles, dominates 306 

COMPADRE, followed by Mexico with 88 articles, Sweden (33 articles), Australia and 307 

Canada (both 26 articles), Spain (25 articles), Japan (22 articles), Czech Republic and the 308 

United Kingdom (both 21 articles), and Brazil (19 articles). Interestingly, several of the 309 

wealthiest countries are not represented in COMPADRE (e.g., China, Iceland, and Ireland). 310 

The positive correlation between the number of studies in COMPADRE and country GDP (Fig. 311 

2C) remains statistically significant even when we remove the two outliers with most studies 312 

(USA and Mexico). 313 

 314 

FOR WHICH SPECIES AND POPULATIONS DO WE HAVE DEMOGRAPHIC 315 

DATA? 316 

Taxonomy.  317 

As expected (H4), the representation of species in COMPADRE does not well-reflect natural 318 

diversity. COMPADRE categorises species as angiosperm (91%), gymnosperm (6%), or “non-319 

seed plants” (3%) which includes ferns, mosses etc. (Fig. 2D). According to Campbell et al. 320 

(2018), the corresponding figures in nature are 88% (angiosperm), 1% (gymnosperm) and 11% 321 
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(non-seed plants). Thus, COMPADRE’s taxonomic representativity is different than that found 322 

in nature (χ2 test: χ2 = 1282.7, d.f. = 2, P <0.001). In fact, COMPADRE over-represents 323 

gymnosperms (proportion test: χ2 = 1127.1, d.f. = 1, P <0.001) and under-represents the non-324 

seed plants (proportion test: χ2 = 64.39, d.f. = 1, P <0.001).  325 

Of COMPADRE’s angiosperms, 74% are eudicots and 26% monocots (Fig 2E), which 326 

approximately reflects Evert et al.’s (2013) estimate of their natural diversity distribution (69% 327 

eudicot, 31% monocot). Our χ2 test nevertheless indicated the COMPADRE distribution was 328 

significantly different to the natural distribution (χ2 test: χ2 = 9.79, d.f. = 1, P = 0.002).  329 

To better understand the distribution of COMPADRE species across plant families, we 330 

examined the five largest eudicot families (according to The Plant List, 2010): Compositae 331 

(Asteraceae), Leguminosae (Fabaceae), Orchidaceae, Rosaceae, and Rubiaceae (Fig. 2F). The 332 

χ2 test showed that the distributions differed between COMPADRE and in nature patterns 333 

(χ2test: χ2 = 24.161, d.f. = 4, P <0.001). However, this difference is driven by the Rubiaceae 334 

and Orchidaceae, which are significantly under-represented (Rubiaceae: proportion test: 335 

χ2 = 13.616, d.f. = 1, P <0.001; Orchidaceae: proportion test: χ2 = 7.0719, d.f. = 1, P = 0.008). 336 

The other families are fairly proportionately represented in COMPADRE (all P >0.05).  337 

Half of the species in COMPADRE are herbaceous perennials (462 of 932 species), and only 338 

26% are woody plants. This figure contrasts with current estimates that 45-48% of the world’s 339 

vascular plant species are woody (FitzJohn et al., 2014; Willis, 2017).  340 

Conservation status. 341 

The IUCN has assessed only 29% (n = 220) of the species in COMPADRE. Of these, contrary 342 

to our expectations (H5), COMPADRE’s content with respect to the Red List status reflects 343 

current Red List assessments (χ2 test: χ2 = 4.054, d.f. = 4, P = 0.399). Most of COMPADRE’s 344 
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species are assessed as Least Concern (62%), with the rest falling into one of the threatened 345 

categories (Vulnerable, Endangered, or Critically Endangered) (Fig. 3A).  346 

Population growth rates. 347 

As predicted (H6), there is a slight but statistically significant tendency to study growing 348 

populations (i.e., λ > 1), the effect size is small and driven by the skewed nature of the data 349 

(Fig. 3B; two-sided t-test on λ = 1: t = 10.941, d.f. = 2312, P = 0.001). The overall mean value 350 

for log λ was 0.013 (standard deviation = 0.45). Our analysis of ordinary least-squares 351 

regression slopes from the subset of populations with at least a 5-year time-series shows no 352 

tendency for researchers to select populations where λ is initially high but then decreases, 353 

leading to negative slope values (Fig. 3C; t-test: t = -0.020, d.f. = 192, P = 0.984). 354 

 355 

HOW ARE THE MPMS CONSTRUCTED? 356 

Temporal and spatial replication.  357 

As expected (H7), most studies in COMPADRE are short-term (Fig. 4A). The modal study 358 

duration is three years, while the median is four years. The mean is slightly longer (5.48 years), 359 

reflecting the skewed nature of the distribution. Some long-term exceptions include studies of 360 

the shrub Cassia nemophila (Silander, 1983) and the tree Acer saccharum (Lin & Augspurger, 361 

2008), which both span 51-years. The study duration varies by ecoregion, with tropical and 362 

marine studies tending to be shorter than those from other ecoregions (Fig. S3A). There was 363 

minimal variation in study duration among growth forms and, contrary to expectation, trees (a 364 

typically long-lived growth form) are not studied for longer periods than typically shorter-lived 365 

growth forms (Fig. S4A). 366 

As expected, most studies have a low degree of spatial replication (Fig 4B). Most studies are 367 

carried out at a single site, though the distribution is skewed (mean = 2.82, median = 2, 368 
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range = 1-60). Interestingly, species studied at four or more sites are mainly herbaceous 369 

perennials (57%).  370 

Each MPM is obtained from a different study site or year. Therefore, the number of MPMs 371 

present in a study may be an indicator of the range of environmental conditions captured by 372 

the study. However, the number of MPMs per study does not vary much among ecoregions 373 

(Fig S3A and S3B) or growth form (Fig S4A and B). 374 

Matrix model dimension.  375 

We expected (H8) that the MPM dimension would vary widely and would be greater for long-376 

lived groups like trees. MPM dimension ranges between two and 60 (for Rhododendron 377 

ponticum, (Travis et al., 2011) but is left-skewed (mean = 6.51, median = 5; Fig. 4C). 378 

Furthermore, typical matrix dimension varied significantly among ecoregions (ANOVA on log 379 

matrix dimension: F = 17.967, d.f. = 5 and 884, P <0.001) (Fig. S3C), with tropical species 380 

tending to have slightly larger matrices than temperate or Mediterranean ones (t-test on log 381 

matrix dimension: t = 6.855, d.f. = 375.36, P <0.001; though this effect is likely driven by large 382 

tropical tree matrices). Finally, MPM dimension varies systematically across growth forms 383 

(ANOVA on log matrix dimension: F = 22.718, d.f. = 6 and 730, P <0.001) with tree MPMs 384 

tending to be larger (mean = 9.48, median = 8, range = 2-60) than other growth forms (Fig. 385 

S4C), thus supporting our initial hypothesis (H8). 386 

Averaging matrix model elements.  387 

Contrary to our expectation (H9), researchers do not often appear to average survival rates 388 

across life cycle stages when parameterising MPMs. In COMPADRE, 77% of MPMs have no 389 

averaging of survival across consecutive stages at all, and only 4% have more than half of their 390 

stage-specific survival rates averaged across consecutive stages (Fig. 4D). A similar pattern 391 

follows for fecundity: 79% have no averaging and a smaller proportion (5.1%) have over half 392 
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of their stage/age-specific fecundity rates averaged (Fig. 4E). Fewer than 1% of the MPMs 393 

showed averaging in clonality rates (Fig. 4F).  394 

 395 

Discussion 396 

Before analysing large heterogeneous databases, it is essential to understand their potential 397 

biases and inconsistencies. Under-representation of particular ecoregions or taxonomic groups 398 

may lead to incorrect generalisations if those under-represented regions or groups have distinct 399 

demographic behaviour. Improved knowledge of systematic biases in databases like 400 

COMPADRE, and a recognition of their impact on inferences, will improve our understanding 401 

of the natural world. Researchers should carefully consider potential systematic biases in these 402 

large-scale datasets, especially when conducting comparative studies that seek to generalise 403 

across disparate taxa and geographic regions. 404 

COMPADRE v.5.0.0. contains data for 746 species, representing 0.002% of the ~370,000 405 

extant plant species (not including green algae) (The Plant List, 2010). Although COMPADRE 406 

covers only a fraction of plant diversity, we show that it contains the majority of published 407 

MPM-based plant demographic work (Fig. 1B). Thus, this database is a valid indicator of our 408 

knowledge of MPM-based plant demography and reveals demographic knowledge gaps for 409 

most species. We note, however, that the vast majority of these studies are published in the 410 

English language literature. Amano et al. (2016) found that a third of the literature in 411 

biodiversity conservation was non-English, and that half provide neither the title nor the 412 

abstract in English. About 16% of this corpus is unsearchable using English keywords, thus 413 

remaining hidden. Assuming that there is a similar pattern for plant demography literature, 414 

some knowledge gaps in the English-speaking research community could undoubtedly be 415 
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closed by engaging researchers familiar with non-English language literature to assist with 416 

contributions to COMPADRE. 417 

 418 

WHEN HAVE THE STUDIES BEEN PUBLISHED? 419 

The number of articles that focus on plant demography has steadily accumulated since the 420 

1970s (Fig. 1B). Our hypothesis that an increasing proportion of plant ecology research would 421 

be demography-focussed (H1) was supported, based on our survey of articles published in the 422 

Journal of Ecology (Fig 1A), although the relationship was rather noisy. The downturn in the 423 

rate of increase in MPM-related publication in recent years (since about 2015) may be due to 424 

the increasingly important role that integral projection models (IPMs, Easterling et al., 2000) 425 

play in plant demographic research. 426 

 427 

WHERE IS THE RESEARCH DONE? 428 

Biogeography.  429 

Plant biodiversity is unevenly distributed. Equatorial regions are usually relatively species-430 

rich, with declining biodiversity towards the poles for most plant groups (Gaston, 2000). 431 

Biodiversity and endemism hotspots are concentrated in the tropics, on equatorial islands, and 432 

in the southern hemisphere (Myers et al., 2000; Kier et al., 2009). Our finding that ~73% of 433 

demographic studies are carried out in the mainly temperate regions of the western northern 434 

hemisphere (Fig. 2A & B) contrasts with those hotspots, thus supporting H2. This result is not 435 

surprising given similar findings for population dynamics (Amano & Sutherland, 2013; McRae 436 

et al., 2017), biodiversity time-series (Dornelas et al., 2018), and the distribution of ecological 437 

study sites (Martin et al., 2012). Collectively, these patterns highlight important knowledge 438 

gaps for some of the planet’s most threatened ecosystems. For example, sub-Saharan Africa 439 
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and Southeast Asia have among the least ecological data yet show the most rapid decline of 440 

terrestrial ecosystems (MEA, 2005). Given that demographic data is important for assessing 441 

extinction risk, e.g., by assessing population trends and population viability analyses (IUCN 442 

2019; Rodrigues, et al., 2006), the lack of demographic data is a concerning impediment to 443 

species-level conservation. Beyond conservation, this biogeographic bias limits our 444 

understanding of global ecological trends and drivers of population dynamics and life history 445 

evolution.  446 

Country-specific wealth (GDP).  447 

As anticipated (H3), the number of demographic articles was positively associated with the 448 

per-capita GDP of the country where the work was carried out (Fig. 2C). We expected this 449 

because high-GDP countries can invest more in research (van Noorden & Butler, 2019; World 450 

Bank, 2019), and researchers tend to conduct research near their home institution for logistical 451 

reasons (Coutts et al., 2016). The fact that the relationship is relatively loose reflects the 452 

international networks and mobility of some researchers who carry out research away from 453 

their home institution. Nevertheless, one way to correct this bias is for funding bodies to 454 

encourage plant demographic research, and collaboration with researchers, in understudied and 455 

threatened regions.  456 

 457 

FOR WHICH SPECIES AND POPULATIONS DO WE HAVE DEMOGRAPHIC 458 

DATA? 459 

Taxonomy.  460 

As expected (H4), most of COMPADRE’s species are angiosperms, reflecting the high 461 

diversity of this group. However, COMPADRE over-represents gymnosperms and under-462 

represents the non-seed plants. Within the angiosperms, most of COMPADRE’s species are 463 
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eudicots. Although this reflects the natural distribution of eudicot vs. monocot species, we did 464 

detect a statistically significant bias towards the study of eudicots. COMPADRE’s species 465 

distribution among the major eudicot plant Families approximated the natural distribution, 466 

except for Rubiaceae and Orchidaceae, which were under-represented. The pattern for 467 

Rubiaceae may be explained by geographical bias since it mainly occurs in the (sub)tropics, 468 

which are not well-represented in COMPADRE. As expected (H4), we know more about the 469 

demography of herbaceous perennials than any other growth form. Trees, which are important 470 

both economically (Poore, 2013) and ecologically (Chambers et al., 2001), are under-471 

represented, probably due to the logistical difficulties of studying large, long-lived organisms, 472 

but perhaps also due to the relatively low tree species diversity in temperate regions.  473 

Although some of these biases may be overcome statistically (e.g., by resampling or 474 

rarefaction), the scarcity of demographic data on several growth forms, including ferns, lianas, 475 

and bryophytes, drastically reduces our ability to draw general patterns for these growth forms 476 

and set them in context with more commonly-studied forms. This issue is particularly 477 

troublesome for comparative studies of the evolution of plant life history. 478 

Conservation status.  479 

Demographic models are an indispensable tool to guide management decisions for threatened 480 

species (Norris, 2004). Contrary to our expectation (H5) that researchers may collectively 481 

focus on threatened species, the distribution of demographic studies in COMPADRE well-482 

approximates the distribution of Red List statuses of plants in general: There is no tendency to 483 

favour studies of threatened species. However, we should regard this result with caution 484 

because it is based on the subset of ~25% of COMPADRE species that have been assessed for 485 

the IUCN Red List. The true distribution of species among IUCN Red List categories may be 486 

quite different, especially since species endemic to biodiversity hotspots are less likely to have 487 

been assessed.  488 
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Population growth rates.  489 

There was a slight tendency for researchers to preferentially study growing populations 490 

(supporting H6) but there was no evidence for a “regression to the mean” effect whereby 491 

population growth rates decline along the time-series (contrary to Buckley et al., 2010). We 492 

initially expected this tendency because we expected researchers to select obviously flourishing 493 

populations to avoid the risk and logistical cost of local extinction. The differences between 494 

our results and those of Buckley et al. (2010) could be due to differences in data or methods. 495 

This effect warrants further investigation because biased sampling (e.g., towards growing 496 

populations) could lead to incorrect conclusions about population dynamics in comparative 497 

research.  498 

 499 

HOW ARE THE MPMS CONSTRUCTED? 500 

Temporal and spatial replication.  501 

The fact that demographic studies tend to have low spatial and temporal replication supports 502 

our original hypothesis (H7) and confirms previous findings (Crone et al., 2011; Ehrlén et al., 503 

2016). Limited spatial replication may affect confidence in inferences made from those models. 504 

The geographic distribution of plants varies widely, with some only occurring in specific small 505 

areas (e.g., Iliamna remota is endemic to the ~8 hectare Langham Island, Illinois, USA; 506 

Swinehart & Jacobs, 1998) and others even spanning continents (e.g., Plantago major, Sagar 507 

& Harper, 1964). Widely distributed species are likely to experience a greater range of 508 

environmental conditions than those with small ranges, and demographic data should ideally 509 

be collected in representative parts of this range to understand the species’ demography more 510 

fully. Work by Doak & Morris (2010), Wardle et al. (2014), and Römer et al. (2021) are good 511 

examples of such efforts.  512 
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The limited temporal extent in most studies is also a concern. Researchers have argued that 513 

accurate forecasting of population dynamics typically requires time-series extending well 514 

beyond three years, especially because of the demographic impacts of rare extreme weather 515 

events (Doak & Morris, 2010; Ehrlén et al., 2016; Teller et al., 2016; Pérez-Llorca, et al., 516 

2018). Given the cost and effort required for long-term research, it is not surprising that the 517 

temporal extent of studies in COMPADRE is short. In some settings, researchers could use an 518 

alternative space-for-time substitution approach to resolve this problem. The approach enables 519 

a rapid accumulation of data representing a large range of environmental conditions allowing 520 

the modelling of responses to future climate scenarios without the need for long time-series 521 

(Blois et al., 2013; Teller et al., 2016; Damgaard, 2019; Römer et al., 2021). However, the 522 

approach assumes that drivers of demographic variation across space are equivalent to those 523 

that drive temporal variation, which may not be the case (Pickett, 1989). In any case, the low 524 

spatial replication in COMPADRE may currently limit the application of this approach. 525 

Matrix model dimension.  526 

Researchers constructing MPMs decide an appropriate dimension for their model, based on 527 

factors including species life-history (including longevity or life cycle complexity), the study’s 528 

purpose, and the amount of data available to parameterise each stage. As expected (H8), matrix 529 

dimension varies hugely, with a substantial proportion (~20%) having a low dimension of 3 or 530 

less. This low dimension could limit utility in some cases. For example, this is likely to be too 531 

low for the derivation of measurements relying on the calculation of age trajectories from stage-532 

based MPMs (Cochran & Ellner, 1992; Caswell, 2001) such as Keyfitz’s entropy (Keyfitz, 533 

1968). Furthermore, other derived metrics, including elasticities (Salguero-Gómez & Plotkin, 534 

2010) and some transient measures (Stott et al., 2010), are sensitive to the MPM dimension. 535 

Besides influencing individual metrics, the systematic bias in model dimension among growth 536 
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forms and ecoregion could lead to spurious inferences in multi-species comparative studies if 537 

not taken into account. 538 

Averaging matrix model elements.  539 

MPM-derived metrics of population dynamics such as transient dynamics metrics (Stott et al., 540 

2010) and measures of life-history (e.g., survival inequality or entropy) are sensitive to 541 

homogeneity among the vital rates of stages because peaks and troughs of survival or mortality 542 

in certain life stages might be undetected. Despite this, researchers sometimes have no option 543 

but to parameterise MPMs with average vital rates across consecutive stages. We expected this 544 

would be common (H9), but our results show that plant ecology researchers seldom take this 545 

approach. This finding is good news because averaging of reproduction or survival could lead 546 

to an underestimation of the effects of temporal variation in the environment underlying the 547 

vital rates (Stott et al., 2010). This underestimation would be a challenge for applications that 548 

are not based on asymptotic properties of the MPM, such as calculations of extinction risk, the 549 

stochastic growth rate in population viability analyses, and short-term predictions of population 550 

fate (transient dynamics; Stott et al., 2011). Thus, inference from MPMs that have been 551 

parameterised in this way could lead to misguided management strategies that miss 552 

opportunities to influence the population dynamics in the desired way by manipulating vital 553 

rates with strong influences on short-term or stochastic population growth. This averaging of 554 

vital rates would also problematic for comparative life-history research, and in particular, work 555 

that relies on age-from-stage methods (Cochran & Ellner, 1992; Caswell, 2001) to calculate 556 

demographic trajectories and derived measures. We, therefore, encourage researchers to, 557 

wherever possible, avoid parameterisation using averaging over consecutive stages. 558 

 559 

Conclusions 560 
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Our current knowledge of global plant demography is based on geographically biased data 561 

heavily focused on herbaceous perennials, leaving important knowledge gaps. Demographic 562 

studies are constrained by funding, with the temporal length reflecting the typical grant and 563 

PhD tenure, with most work concentrated in wealthy countries. We did not find significant bias 564 

in conservation status or population growth rate, which indicates that researchers do not focus 565 

on species of conservation concern nor growing or shrinking populations. To close the 566 

aforementioned knowledge gaps and better understand generalities in life-history strategy and 567 

population dynamics, research targeting neglected growth forms and ecoregions is desirable, 568 

as is increased spatial and temporal replication within species. Furthermore, an improved 569 

understanding of the impact of these biases on model predictions and methodological 570 

developments to account for known biases would be helpful.  571 
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Figure captions 594 

Figure 1: Publication trajectories in plant demography. (A) The percentage of articles in a 595 

sample of plant ecology literature that use matrix population models (MPMs). Note that the 596 

time-series starts in 1993 before which abstracts have been not digitised. (B) The cumulative 597 

number of MPM-based studies by year, archived in the COMPADRE Plant Matrix Database 598 

(at February 2019) (blue line) compared to the estimated cumulative number of all published 599 

studies containing plant MPMs (black line). 600 

 601 

Figure 2. Geographic and taxonomic biases in the COMPADRE Plant Matrix Database. (A) 602 

The species distribution among ecoregions in COMPADRE compared to the natural 603 

distribution (Trop = tropical; temp = temperate; Med/Des = Mediterranean and deserts; 604 

Tund/Bor = tundra and boreal regions; Wetl = Wetlands). (B) The distribution of plant 605 

demography study density across continents. (C) The relationship between country per-capita 606 

GDP and the number of plant demography studies. The regression line represents a gamma-607 

error GLM, conditioned on countries having at least one plant demography study. (D) 608 

Comparison of the species distribution among broad categories of angiosperms, gymnosperms 609 

and non-seed plants, in COMPADRE and in nature. (E) Comparison of the distribution of 610 

angiosperm species among monocot and eudicot categories, in COMPADRE and in nature. (F) 611 

Comparison of the distribution of species among the five largest dicot families, in 612 

COMPADRE and in nature (Comp = Compositae; Legum = Leguminosae; 613 

Orchid = Orchidaceae; Rosa = Rosaceae; Rubia = Rubiaceae). (G) The distribution of species 614 

among growth form categories (Herb = herbaceous perennials; Tree = trees; Shrub = shrubs; 615 

Suc = succulents; Palm = palms; An = annuals; Epi = epiphytes; Other = includes mosses and 616 

ferns). 617 
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 618 

Figure 3. Conservation status and population trend biases in the COMPADRE Plant Matrix 619 

Database. (A) Comparison of the distribution of species among IUCN Red List conservation 620 

status in COMPADRE (blue) and in nature (black) (LC = Least Concern, NT = Near 621 

Threatened, VU = Vulnerable, EN = Endangered, CR = Critically Endangered). (B) The 622 

distribution of population growth rates (λ) for MPMs in COMPADRE. The graph is limited to 623 

λ-values between 0 and 4 to show the interesting area around λ = 1 (and λ > 4 seems 624 

biologically unreasonable and may represent errors). (C) The density distribution of the slope 625 

of the linear λ ~ year relationship for studies with >5 years of data.  626 

 627 

Figure 4: Spatiotemporal replication and MPM construction. (A) The distribution of study 628 

duration in COMPADRE. (B) The distribution of the number of study sites (spatial replication) 629 

in COMPADRE. (C) The distribution of matrix dimension across MPMs in COMPADRE. The 630 

magenta and yellow lines show the mean and median, respectively. (D, E, F) Summaries of 631 

element averaging in MPM submatrices of (D) survival, (E) fecundity and (F) clonality. 632 

none = all stages have different survival / fertility / clonality estimates; ≤50% = apparent 633 

averaging with two or more consecutive values are the same, but the number of stages apparent 634 

averaging does not exceed 50%; >50% = more than half of the stages have the same value. 635 

  636 
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Figures and Tables 637 

 638 

Figure 1. 639 

  640 
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 641 

 642 

Figure 2. 643 
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 645 

 646 

Figure 3. 647 
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 649 

 650 

Figure 4.  651 
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